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Abstract: A new method based on the backpropagation multilayered perceptron network for
calculating the bandwidth of resonant rectangular microstrip patch antennas is presented The
method can be used for a wide range of substrate thicknesses and permittivities, and is useful
for the computer-aided design (CAD) of microstrip antennas. The results obtained by using
this new method are in conformity with those reported elsewhere. This method may find wide
applications in high-frequency printed antennas, especially at the millimeter-wave frequency
range.

1. INTRODUCTION
Microstrip antennas have sparked interest among researchers because of their many

advantages over conventional antennas, advantages such as low cost, light weight, conformal
structure, low profile, reproducibility, reliability, ease in fabrication and integration with
solid-state devices, etc. [1-12].

Consider a rectangular patch of width Wand length L over a ground plane with a
substrate of thickness h and a relative dielectric constant Cr, as shown in Fig 1. In rectangular
microstrip antenna designs, it is important to determine the bandwidth of the antenna
accurately because the bandwidth is a critical parameter of a microstrip antenna.
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A number of attempts [1-8] have been made to determine the bandwidth of rectangular
microstrip antennas, as this is one of the popular and convenient shapes. However, most of
the previous theoretical and experimental work has been carried out only with electrically-
thin rectangular microstrip antennas, normally of the order of h/AJ~002, where Ad is the
wavelength in the substrate. Recently interest has developed in radiators etched on



is the fact that microstrip antennas are currently being considered for use in millimeter-wave
systems. The substrates proposed for such applications often have high relative dielectric
constants and, hence, appear electrically thick. The need for greater bandwidth is another
major reason for studying thick substrate microstrip antennas. Consequently, this problem,
particularly the bandwidth aspect, has received considerable attention.

Some popular methods, such as the cavity model methods [1] (radiation losses are
included in the effective loss tangent of the dielectric) and the transmission line models [I]
(radiation losses are included in the attenuation coefficient of the propagation constant) are
simple and successful in the analysis of microstrip antennas, and therefore in calculating the
bandwidth of rectangular microstrip patch antennas. However, these models are valid for
electrically thin microstrip antennas.

A practical algorithm for calculating the bandwidth has been developed by Carver [2]
for implementation on a computer. However, this involves computations via a nonlinear
difference scheme, and it is not presented by a simple unique expression.

The most important of the results published is by Pozar [4]. He presented bandwidth
against normalized substrate thickness. The bandwidth data calculated by using the moment
method approach were presented by [4] for rectangular microstrip antennas on substrates
which may be electrically thick, as would be the case for microstrip antennas at millimeter
wave frequencies.

One of certain ways of calculating the bandwidth of a rectangular microstrip antenna
involves the evaluation of a double integral. Among others, this approach has been
introduced by [6]. A certain current distribution is assumed along the upper conductor which
is typical of the geometry of the element. The current in the radiating element is obtained by
using cavity or equivalent transmission line models. The electric field is derived from the
assumed current distribution using the appropriate Green's function. The radiated power is
found by integration of field. The bandwidth of a rectangular microstrip antenna is then
obtained by using the formula given in [6]. Perlmutter et al. [6] also considered cases other
than those considered by Pozar [4]. The results obtained by [5] confirmed the results
obtained by [4], but they did not provide extra material. However, the methods in [4-6] are
very complicated and rigorous.

Guney [8] proposed a closed-form expression for the bandwidth of rectangular
microstrip antennas. This expression was derived from numerical results available in the
literature and provides insight into the fundamental influence of the substrate parameters on
the bandwidth.

From the studies cited above we see that the certain way of calculating the bandwidth
of rectangular microstrip antennas involves the complicated Green's function methods and
integral transformation techniques [1,4-6].

Artificial neural networks (ANNs) are known to provide simpler and faster solutions
than the complicated methods and techniques. The features of ANNs such as ability and
adaptability to learn, generalisation, less information requirement, fast real-time operation and
ease of implementation have made them popular in recent years [13,14]. Because of these
fascinating features, ANN models have been applied in many areas. In previous works [IS-
18], we successfully introduced a neural model to compute the resonant frequency of the
triangular and circular microstrip antennas and the resonant resistance of rectangular
microstrip antennas.

This article presents a new model based on the backpropagation multilayered
perceptron network to find accurately the bandwidth of both electrically thin and thick
rectangular microstrip antennas. This proposed neural model does not require the
complicated Green's function methods and integral transformation techniques. The model



only requires three parameters W/Ao, hand Er. The results obtained from this model are in
excellent agreement with the results available in the literature even when h( E r / l'A ° = 0.15 .

2. BANDWIDTH OF RECTANGULAR MICROSTRIP ANTENNAS
The input impedance of this antenna, which can be modeled by a simple parallel-resonant
RLC circuit, can be expressed as [1,7]

R
Z. =---

m 1+ .iQrv

I II'v=---
II' I

where R is the resonant resistance, QT is the total quality factor, f is the frequency variable,
and :t;. is the resonant frequency. In the vicinity of its fundamental resonant frequency, the
input impedance of a microstrip antenna can also be modeled by a series-resonant RLC
circuit. In the series-resonant case, the input impedance is given by

Zm = R(1 + .iQrv)
The input VSWR can be written as

ZiJ IJ - Zo VSWR( IJ - 1=
Zin(IJ + Zo VSWR( IJ + 1

where Zo is the characteristic impedance of the feed line. If the bandwidth criterion is taken to
be VSWR:::s, and f1 and f2 are the lower and upper band edge frequencies, respectively, so
that VSWR(f1)=VSWR(f2)=s, the bandwidth is given as

BW= 12- II
II'

From (1)-(5), the following equation is obtained

BW = _1_[(TS-l)(S - TJ]1!2
o S~r

where T=ZofR in the series-resonant case, and T=R1Zo in the parallel-resonant case. Because,
normally, an antenna is designed to be perfectly matched at its resonant frequency (e.g., by
properly locating the position of a coaxial feed probe or by using a quarter-wavelength
transformer), T normally equals unity. (6) then becomes the following expression

s-1
BW=--

Qr~
The total quality factor, QT, can be written as

1 [1 1 1 11
Qr = Qr + Qc + Qd + Qs (8)

where the four terms represent the radiation quality factor, the quality factors due to
conductor loss, dielectric loss and surface wave. Although, Qd and Qc are easily found, Qr
and Qs has to be obtained using the complicated Green function methods and integral
transformation techniques [1,4-6]. These methods and techniques suffer from a lack of
computational efficiency, which in practice can restrict their usefulness because of high
computational time and costs.

Bandwidth was defined by Pozar [4] as the half-power width of the equivalent circuit
impedance response. For a series-type resonance, this bandwidth is
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where Z=R+jX is the input impedance at the radian resonant frequency wr. For a parallel-type
resonance, (9) is used with R replaced by G and X replaced by B, where Y=G+jB is the input
admittance at resonance. This definition of bandwidth implies a standing wave ratio of about
2.4, for a transmission line of characteristic impedance R or 11G n. The derivative in (9) can
be evaluated by calculating the input impedance at two frequencies near resonance and using
a finite difference approximation. The resonant resistance, R, is given by

R = Rr + Rd + Rc + Rs (10)
where the four terms represent the radiation resistance, the equivalent resistance of the
dielectric loss, the equivalent resistance of the conductor loss, and surface wave radiation
resistance. Although, Rct and Rc are easily found, Rr and Rs has to be obtained using the
rigorous numerical methods [1,4-6]. These methods require high performance large-scale
computer resources and a very large number of computations.

In this paper, we will concentrate on the bandwidth results reported by Pozar [4] and
Perlmutter et al. [6]. Because the results presented by Pozar [4] and Perlmutter et al. [6]
agree with those presented by other scientists in the literature. The results calculated by [6]
using the electric surface current model are presented in Figs. 4-7 for sr=1.1, 2.2 and 9.8. The
results calculated by Pozar [4] using a moment method approach for a substrate with relative
permittivity sr=2.55 and W/Ao=0.3 are given in Fig. 8. The graphs refer to end feed resonant
rectangular elements that is to elements whose length is half a wavelength in the microstrip.
The feeding method or position does not effect the intrinsic patch bandwidth. It was shown
by Pozar [4] that the bandwidth of a patch is significantly greater than that of a printed
dipole, at least over the range for which the patch actually resonates (hO.11Ao). Therefore,
the effect of the patch width W on the bandwidth of rectangular microstrip antennas must be
taken into consideration in the bandwidth calculation of these antennas. From the plots we
see that for a given frequency, larger bandwidth is possible by choosing a thicker substrate
and a wider patch. The curves also indicate that a lower value of Sr results in a larger
bandwidth. As we are only interested in resonant antennas, the physical length L of the patch
is not of importance: it is determined by

c
L = r::- 2M

2!rVse

where c is the velocity of electromagnetic waves in free space, Se is the effective relative
dielectric constant for the patch,j;. is the resonant frequency, and M is the edge extension. Se

and M depend on Sr, h, and W. Thus the length L is determined by w: h, Sr, and j;.. Therefore
only three parameters, h, W/Ao and Sr, are needed to describe the bandwidth. These
parameters are used for neural calculation of the bandwidth.

In the following section, the backpropagation multilayered perceptron network used in
this paper is briefly described and the neural model for calculating the bandwidth of a
microstrip antenna is then explained.

3. BACKPROPAGATION MULTILAYERED PERCEPTRON NETWORKS
Multilayered perceptrons (MLPs) which are among the simplest and therefore most

commonly used network structures have been adapted for many applications [13,19]. Fig. 2
shows an MLP with three layers: an input layer, an output layer and an intermediate or
hidden layer. The circles and the connection lines in the figure represent neurons and weights,
respectively. The biases are not shown in the figure. Each layer consists of a number of



neurons. All the neurons in a layer are fully connected to the neurons in adjacent layers but
there is no connection between the neurons within the same layer. Each connection has an
unbounded positive and negative weight associated with it. The output of multilayered
perceptron is a function of the inputs and the weights.

Inputs to the network are passed to each neuron in the input layer. The outputs of the
neurons in the first layer become inputs to the hidden layer and so on. Neurons in the input
layer only act as buffers for distributing the input signals xi to neurons in the hidden layer.
Each neuronj in the hidden layer sums up its input signals xi after weighting them with the
strengths of the respective weight connections W.ji from the input layer and computes its
outputYj, which is the output ofthej-th neuron in the hidden or output layer, as a function!
of the sum,

netj = LWji Xi +8 j
I

where! is a transfer or activation function and can be a sigmoid or a hyperbolic tangent
function, and ~. is a variable bias with similar function to a threshold. The transfer function
has the feature of being nondecreasing and differentiable, and the range of Yj is between -1.0
and 1.0 for the tangent hyperbolic function.

Note that Yj can be defined recursively in terms of its inputs. The computation
continues until the output of the network is found. After computing the output, the training
process starts in according with the learning algorithm used.

MLPs can be trained using many different learning algorithms. For simplicity, the
standard backpropagation learning algorithm [19] has been selected for training in this work.
It is a gradient descent algorithm. Basically, the learning in an MLP is to find a set of weights
that minimizes the mismatching between the network outputs and the target values. It is an
iterative training process in which an output error is propagated back through the layers and
used to modify weights. The error E is defined by

I 2
E = LEp = -2 LL(typj - Ypj) (14)

p p I

where tyj is the desired or target value of output for a given input, and the summation is
performed over all output neurons j. Once the outputs from the hidden layers and output



layer have been calculated for each input pattern p, the direction of steepest descent in
parameter space is determined by the following partial derivatives of E

aE
- -a- = "i8pjYpi (15)
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(19) and (20) are, respectively, valid for the output and hidden neurons. (20) also shows how
the analysis proceeds from the output layer to the proceeding layers. So the quantities 0pl can
be calculated in parallel for all output neuronsj as

8 Pl = ( ty pj - Y Pl)( 1- Y Pl)( 1+ Y Pl)
The following quantities op} for all hidden layer can be then written by using (17)

8 pj = (1- Yp;}(1 + ypj)f8 Plwkl (22)

where j refers to a neuron in one of the hidden layers, and the summation is over all neurons
k, which receive signals from neuronj.

Substituting (21) and (22) into (15) and (16), the steepest descent direction from a
current weight bias configurations is obtained. The weights wJI and biases OJ are changed
according to the following equations

f:",wp1(t)=a "i8p1Ypl +~Wkl(t-l) (23)
P

f:",ej(t)=a"i8pj+~ej(t-1) (24)
P

where t indexes the number of times to train the neural model, a is the learning coefficient, fJ
is the momentum coefficient which determines the effect of past weights' changes on the
current direction of movement in the weight surface.

A good choice of fJ and a is essential for training process success and speed. The
backpropagation learning is strongly affected by these two coefficients. Good values for the
coefficients must be determined empirically. They depend on applications [20] or problems
[21]. The typical good values for learning coefficient are between 0.01 and 0 9. For
complicated tasks, the coefficient may be chosen as a small value [22].

Training an MLP by backpropagation to compute BW involves presenting it
sequentially with different (h, W/Ao and &r) tuples and corresponding target values. Errors
between the target output and the neural model output are backpropagated through the
network to adapt its weights using (14)-(24).



The training explained above is known as pattern-based training, as opposed to batch
training where the weights are only modified once all the tuples in the training set have been
presented to the network. Pattern-based training was adopted in this work as it is faster than
batch training.

A training epoch is completed after all tuples (sets) in the training set applied to the
network. Training stops when the bandwidth accuracy of the network is deemed satisfactory
according to some criterion such as the root-mean-square (rms) error between the target
bandwidth and neural model output for all the training set falls below a given threshold or the
maximum allowable number of epochs is reached.

4. NEURAL COMPUTING OF THE BANDWIDTH, SIMULATION RESULTS AND
DISCUSSIONS

The neural model for calculating BW is shown in Fig. 3. In the figure, LF and TF
represent the linear activation function and the tangent hyperbolic function used in the MLP
structure, respectively.

A set of random values distributed uniformly between -0.1 and +0.1 was used to
initialise the weights of the networks. The tuples were scaled between -1.0 and + 1.0 before
training. The neural models used in this paper had two hidden layers as this number of hidden
layers should be sufficient for a neural network to perform such calculations [22-25].

192 train data sets obtained from electric surface current model [6] for WIAo=O.I, 0.2,
0.4, 0.5 and &r =1.1, 2.2, 9.8 were used to train the neural models. The unseen 48 data sets
for WIAo=0.3 were applied to the network for test. During training, the learning and
momentum coefficients were set to 0.01 and 0.1, respectively. The seed number used in the
random number generator to initialise the weights of network was fixed to 1.0. The number
of training epoch was 20.000. After several trials, the most suitable processing elements
numbers for the both hidden layers found were five. Figs. 4-6 and Figs. 7-8 show the training
results and the test result, respectively. It can be clearly seen from the figures that the outputs
of neural models were almost similar with the data from the Green function methods.

The adaptation in this study has been carried out after the presentation of each set (h,
WIAo, &r and BW) until the rms error in learning process was less than 0.009. The rms errors
obtained were 0.009 for training and 0.012 for test.

In order to demonstrate the validity of the neural model, the unseen data set to the
network obtained from moment method [1,4] for WIAo=0.3 and &r = 2.55 were also used for
test the performance of network. The test results of the model are shown in Fig. 8.

The both test results illustrate that the performances of the networks are quite robust
and precise. Thus, the neural models achieve the calculation of the bandwidth for a resonant
rectangular microstrip patch antenna with a very good agreement.



In this work, we have not compared the results of neural models with the results of
other papers in the literature because all the results reported in the literature agree with those
obtained by [4,6]. For this reason, a comparison of the neural model results with the results
of other papers is unnecessary.

5. CONCLUSION
A new method based on artificial neural networks trained with the backpropagation algorithm
for calculating the bandwidth of both electrically thin and thick rectangular microstrip
antennas has been presented. As can be seen from the Figs. 4-8, there is an excellent
agreement with the data from the Green function methods. This excellent agreement supports
the validity of neural models. When the results of neural models are compared with those by
[4,6], the test rms error is within 0.012, which is tolerable for most design applications.
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Since the neural model presented in this work has high accuracy in the range of 1.1:::;&r:::;10.0
and 0<h/Ad:::;0.15 and requires no complicated mathematical functions, it can be very useful
for the development of fast CAD algorithms. This CAD model capable of accurately
predicting the bandwidths of rectangular rnicrostrip antennas is also very useful to antenna
engineers. Using this model, one can calculate accurately, by a personal computer, the



bandwidth of rectangular patch antennas, without possessing any background knowledge of
microstrip antennas. It takes only a few microseconds to produce the bandwidth on a
Pentium/I 00 l\1Hz Pc. Even if the training time takes less than ten minutes, after training, the
calculation time is less than hundred microseconds in real time calculation. Thus, the neural
model is very fast after training.

Finally, we expect that the neural models will find wide applications in CAD of
microstrip antennas and microwave integrated circuits.
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