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Abstract: In this work, we develop a new iterative method for computing the digits of π by argument
reduction of the tangent function. This method combines a modified version of the iterative formula
for π with squared convergence that we proposed in a previous work and a leading arctangent
term from the Machin-like formula. The computational test we performed shows that algorithmic
implementation can provide more than 17 digits of π per increment. Mathematica codes, showing
the convergence rate for computing the digits of π, are presented.
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1. Introduction

In 1706, English astronomer and mathematician John Machin discovered a formula for
π, expressed in terms of two arctangents:

π

4
= 4 arctan

(
1
5

)
− arctan

(
1

239

)
. (1)

By using this formula, he was the first to compute 100 digits of π [1–4]. Nowadays, identities
of the kind

π

4
=

J

∑
j=1

αj arctan

(
1
β j

)
, (2)

where the coefficients αj and β j are either integers or rational numbers, are named after
him as the Machin-like formulas for π.

The Maclaurin series expansion of the arctangent function is given by

arctan(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞

∑
n=0

(−1)nx2n+1

2n + 1
, (3)

from which it follows that
arctan(x) = x + O(x3). (4)

Consequently, we can conclude that the convergence of the Machin-like Formula (2) for π
is better when the coefficients β j are larger by their absolute values.

In order to estimate the efficiency of a given Machin-like formula, Lehmer introduced
the measure [5–9]:

µ =
J

∑
j=1

1
log10

(
|β j|
) . (5)
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A smaller value of µ indicates a higher efficiency of a given Machin-like formula.
According to this formula, the measure µ is smaller when the total number of the terms
J is lower and the coefficients β j are higher by their absolute values. A more detailed
description and the significance of the measure (5) can be found in the literature [6,9].

Although Lehmer’s paper [5] assumes that β j ∈ Q, it seems that the measure (5) is
applicable only when all values of β j are integers. Otherwise, even if a single value from
the set

{
β j
}

represents a quotient, its presence causes complexities in the computation [10],
which appear due to the rapidly increasing number of digits in the numerators in summa-
tion terms when a series expansion of the arctangent function, like Equations (3), (30) or
(31), is used in the computation. That is why it is very desirable to generate the Machin-like
formulas for π where β j ∈ Z.

The following Machin-like formula [5]

π

4
= 12 arctan

(
1

18

)
+ 8 arctan

(
1

57

)
− 5 arctan

(
1

239

)
,

discovered by Gauss, has Lehmer’s measure µ ≈ 1.78661. This signifies that this equation
is more efficient in computing digits of π since its measure is smaller than the original
Machin-like Formula (1) with measure µ ≈ 1.85113.

All coefficients in any Machin-like formula for π satisfy the relation

J

∏
j=1

(β j + i)αj ∝ (1 + i) (6)

implying that the real and imaginary parts of this product must be equal to each other. This
relation can be used for validation. For example, there is a simple and elegant proof of the
original Machin Formula (1) for π [11]

(5 + i)4(259 + i)−1 = 2(1 + i).

Although several iterative formulas with quadratic, cubic, quartic, quintic and nonic
convergences have been discovered [12–16], they require undesirable surd numbers that
appear over and over again at each consecutive step of the iteration.

Historically, algorithms based on the Chudnovsky and Machin-like formulas succes-
sively broke records in computing the digits of π [4]. Currently, the Chudnovsky formula,
providing linear convergence with 14 to 16 digits of π per increment of the summation
terms [1,2,4], appears to be the most efficient.

In 2002, Kanada broke a record by computing more than one trillion decimal dig-
its of π for the first time by using the following self-checking pair (also known as the
Störmer–Takano pair) of Machin-like formulas [4,17]

π

4
= 44 arctan

(
1

57

)
+ 7 arctan

(
1

239

)
− 12 arctan

(
1

682

)
+ 24 arctan

(
1

12943

)
and

π

4
= 12 arctan

(
1
49

)
+ 32 arctan

(
1

57

)
− 5 arctan

(
1

239

)
+ 12 arctan

(
1

110443

)
with Lehmer’s measures of 1.58604 and 1.7799, respectively. Although the current record,
achieved by using the Chudnovsky formula, exceeds one hundred trillion digits of π [10],
application of the Machin-like formulas may be promising to calculate a comparable number
of digits due to availability of more advanced and powerful supercomputers then those used
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by Kanada more than 20 years ago. Furthermore, more Machin-like formulas with smaller
Lehmer’s measures have been discovered [18–20]. For example, the following two equations

π

4
= 83 arctan

(
1

107

)
+ 17 arctan

(
1

1710

)
− 22 arctan

(
1

103697

)
− 24 arctan

(
1

2513489

)
− 44 arctan

(
1

18280007883

)
+ 12 arctan

(
1

7939642926390344818

)
+ 22 arctan

(
1

3054211727257704725384731479018

)
(7)

and
π

4
= 83 arctan

(
1

107

)
+ 17 arctan

(
1

1710

)
− 22 arctan

(
1

103097

)
− 12 arctan

(
1

1256744

)
− 22 arctan

(
1

9140003941

)
+ 12 arctan

(
1

3158812219818

)
+ 22 arctan

(
1

167079344092131066905

)
,

(8)

may be more efficiently used as a self-checking pair since their Lehmer’s measures of
1.34085 and 1.39524, respectively, are considerably smaller. Therefore, application of
Machin-like formulas with small Lehmer’s measure have colossal potential and can be
competitive for computing the digits of the constant π.

Equation (7) was reported by Wetherfield [20]. Equation (8) was obtained from another
Wetherfield identity [20]

π

4
= 83 arctan

(
1

107

)
+ 17 arctan

(
1

1710

)
− 22 arctan

(
1

103697

)
− 12 arctan

(
2

2513489

)
− 22 arctan

(
2

18280007883

)
.

by using the identity [21]

arctan
(

1
z

)
= arctan

(
1
⌊z⌋

)
+ arctan

(
⌊z⌋ − z

1 + z⌊z⌋

)
, z /∈ [0, 1).

In our earlier publication [22], we derived the following two-term Machin-like formula

π

4
= 2k−1 arctan

(
1
γ

)
+ arctan

1 − sin
(

2k−1 arctan
(

2γ
γ2−1

))
cos
(

2k−1 arctan
(

2γ
γ2−1

))
, (9)

where the constant γ may be conveniently chosen according to a relation [23]

2k−1

γ
≈ π

4
. (10)

The complete proof of the identity (9) is quite lengthy and, therefore, beyond the scope
of the present work. However, the detailed derivation of identity (9), which is available
in [22], can be briefly outlined as a determination of the value η at a given k and γ in the
two-term Machin-like formula of kind
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π

4
= 2k−1 arctan

(
1
γ

)
+ arctan

(
1
η

)
(11)

and a subsequent reformulation of Equation (11) into Equation (9) with the help of de
Moivre’s formula

(cos(x) + i sin(x))n = cos(nx) + i sin(nx).

It is not difficult to prove that if the first constant γ of Equation (11) is an integer or a
rational number, then the second constant η must also be a rational number. Specifically,
when γ is either an integer or a rational number, then from the relation [22]

η =
2(

γ+i
γ−i

)2k−1

− i
− i (12)

it follows that both the real and the imaginary parts of η must be rational numbers. How-
ever, from the identity

η =
cos
(

2k−1 arctan
(

2γ
γ2−1

))
1 − sin

(
2k−1 arctan

(
2γ

γ2−1

))
it follows that η ∈ R since γ ∈ R. Consequently, we prove that η is a rational number at
γ ∈ Q.

It should be noted that the two-term Machin-like formula of kind (11) that we con-
sidered in our paper [22] represents a practical interest. Recently, a group of independent
researchers has developed a different method for determination of the value of η at given
values of k and γ (see Table 2 in [10]). Unlike our iterative method described in [22], their
algorithm is built on the basis of the rational functions Rj(n, x) with a remarkable property
(see [10] a for detailed description).

Rj(n, x) = tan(nθ + nj/4), x = tan θ, j ∈ N.

Following the same procedure that is described in our work [22], one can also obtain a
generalization of identity (9) in the form

π

4
= φ arctan

(
1
γ

)
+ arctan

1 − sin
(

φ arctan
(

2γ
γ2−1

))
cos
(

φ arctan
(

2γ
γ2−1

))
. (13)

Consequently, the two-term Machin-like Formula (11) can be generalized as

π

4
= φ arctan

(
1
γ

)
+ arctan

(
1
η

)
, (14)

where (compared with Equation (12) above)

η =
2(

γ+i
γ−i

)φ
− i

− i.

Both constants φ and γ in Equation (13) may be chosen conveniently. For example,
consider a ratio of 22/7, representing a rough approximation of π. Therefore, we can write

22
28

≈ 22 arctan
(

1
28

)
≈ π

4
.
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Thus, by choosing φ = 22 and γ = 28, we can show that the ratio

1 − sin
(

22 arctan
(

2×28
282−1

))
cos
(

22 arctan
(

2×28
282−1

)) =
1744507482180328366854565127

98646395734210062276153190241239

since
η =

2(
28+i
28−i

)22
− i

− i =
98646395734210062276153190241239

1744507482180328366854565127
.

Consequently, we obtain the identity that corresponds to the first row of Table 1 in [10]

π

4
= 22 arctan

(
1

28

)
+ arctan


28 digits︷ ︸︸ ︷

1744507482180328366854565127
98646395734210062276153190241239︸ ︷︷ ︸

32 digits

.

We can see now that Equation (9) is just a specific case φ = 2k−1 of more general form of the
two-term Machin-like Formula (13) for π. Therefore, the method described in our paper [22]
can also be generalized to generate all two-term Machin-like formulas of kind (14), shown
in Table 1 from the work [10] (see first row showing f 28

32 ).
In our recent publication [24], using the two-term Machin-like Formula (9) for π, we

found the following iterative formula

θn =
1

1
θn−1

+ 1
2k

(
1 − tan

(
2k−1

θn−1

)) , k ≥ 1, (15)

where θ1 = 2−k, such that
π

4
= 2k−1 lim

n→∞

1
θn

. (16)

This equation can be employed to compute digits of the constant π with quadratic conver-
gence (see Mathematica code provided in [24]).

Motivated by recent publications [10,23,25,26] in connection to our works [21,22,24,27,28],
we developed a new algorithm based on a modified version of the iterative Formula (15).

Although Equation (15) provides squared convergence in computing digits of π,
its direct application results in a slow convergence rate in the intermediate steps of the
calculations of the tangent function. This occurs because the argument of the tangent
function in this equation tends to the relatively large value of π/4 as n increases. In this
work, we propose a new method that resolves this problem. In particular, we show how
Equation (15) can be rearranged and used in combination with arctangent terms of the
Machin-like formula for π. Such an approach may be promising for efficient computation
of π with more than 17 digits per increment of n in Equation (29) that will be discussed
below. To the best of our knowledge, algorithmic implementation based on the combination
of iterative and Machin-like formulas for computing digits of π has never been reported.

2. Preliminaries
2.1. Machin-like Formulas

In our recent work, we derived the following identity [21]

π

4
= 2k−1 arctan

(
1

Ak

)
+

(
M

∑
m=1

arctan

(
1⌊

Bm,k
⌋))+ arctan

(
1

BM+1,k

)
, (17)

where

Ak =

⌊
ak√

2 − ak−1

⌋
(18)
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such that a0 = 0 and ak =
√

2 + ak−1 are nested radicals of 2 and

Bm,k =
1 +

⌊
Bm−1,k

⌋
Bm−1,k⌊

Bm−1,k
⌋
− Bm−1,k

, m ≥ 2 (19)

with an initial value B1,k that can be computed by substituting Ak into Equation (12)

B1,k =
2(

Ak+i
Ak−i

)2k−1

− i
− i. (20)

Equation (17) implies two important rules. First, since the integer B0,k is not defined,
it follows that at M = 0, the sum of arctangent functions

M

∑
m=1

arctan

(
1⌊

Bm,k
⌋)∣∣∣∣∣

M=0

= 0.

Second, if
⌊

BM+1,k
⌋
− BM+1,k = 0, then no further iteration is required, as the fractional

part of the number BM+1,k does not exist.
We may compute the coefficient B1,k by using Equation (20) at smaller values of the

integer k. However, the computation slows down as k increases. To resolve this problem, we
proposed a more efficient method of computation based on a two-step iterative formula [22]{

un = u2
n−1 − v2

n−1,

vn = 2un−1vn−1, n = 2, 3, 4, . . . , k
(21)

with initial values

u1 =
A2

k − 1
A2

k + 1

and
v1 =

2Ak

A2
k + 1

leading to

B1,k =
uk

1 − vk
. (22)

Equation (22), based on the two-step iteration (21), is more efficient for computation
of the constant B1,k than Equation (20), since at larger values of the integer k, the rapidly
growing exponent 2k−1 in Equation (20) drastically decelerates the computation.

Consider a few examples. At k = 2, we can find that

A2 =

⌊√
2 +

√
2√

2 −
√

2

⌋
= 2

and at M = 0, the constant B1,2 = −7 according to Equation (22). Since ⌊B1,2⌋ − B1,2 = 0,
the constants Bm,2 at m ≥ 2 do not exist. Consequently, we get the identity

π

4
= 22−1 arctan

(
1

A2

)
+ arctan

(
1

B1,2

)
= 2 arctan

(
1
2

)
− arctan

(
1
7

) (23)

that is commonly known as Hermann’s formula [15].
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At k = 3, we obtain

A3 =


√

2 +
√

2 +
√

2√
2 −

√
2 +

√
2

 = 5

and at M = 0, the coefficient B1,3 = −239 according to Equation (22). Since ⌊B1,3⌋ − B1,3 = 0,
the constants Bm,3 at m ≥ 2 do not exist. Consequently, we end up with the following identity

π

4
= 23−1 arctan

(
1

A3

)
+ arctan

(
1

B1,3

)
representing the original Machin-like Formula (1) for π.

The case k = 4 requires more computations. In particular, we can see that

A4 =


√

2 +
√

2 +
√

2 +
√

2√
2 −

√
2 +

√
2 +

√
2

 = 10

and at M = 0, we have

B1,4 = −147153121
1758719

.

Consequently, we can write

π

4
= 24−1 arctan

(
1

A4

)
+ arctan

(
1

B1,4

)
= 8 arctan

(
1

10

)
− arctan

(
1758719

147153121

)
.

Since ⌊B1,4⌋−B1,4 ̸= 0, the constant B2,4 exists and can be computed according to Equation (19).
Thus, at M = 1, this leads to

π

4
= 8 arctan

(
1

10

)
− arctan

(
1

84

)
− arctan

(
579275

12362620883

)
,

where
1

84
= − 1

⌊B1,4⌋
and

579275
12362620883

= − 1
B2,4

.

Again, since ⌊B2,4⌋ − B2,4 ̸= 0, the constant B3,4 can be computed, and at M = 2, we
can derive the following identity

π

4
= 8 arctan

(
1

10

)
− arctan

(
1
84

)
− arctan

(
1

21342

)
− arctan

(
266167

263843055464261

)
,

where
1

21342
= − 1

⌊B2,4⌋
and

266167
263843055464261

= − 1
B3,4

.
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Repeating the same procedure over and over again up to M = 5, we can finally obtain
the following seven-term Machin-like formula

π

4
= 8 arctan

(
1

10

)
− arctan

(
1
84

)
− arctan

(
1

21342

)
− arctan

(
1

991268848

)
− arctan

(
1

193018008592515208050

)
− arctan

(
1

197967899896401851763240424238758988350338

)
− arctan

(
1

|B6,4|

)
,

(24)

where

B6,4 = −117573868168175352930277752844194126767991915008537 · · ·
018836932014293678271636885792397.

is also an integer. Therefore, all iterations are completed.
From these examples, we can see that Hermann’s (23), Machin’s (1) and the derived

(24) formulas for π belong to the same generic group, since all of them can be constructed
from their generalized form (17) at different integers k, equal to 2, 3 and 4, respectively.
Further, we will use Equation (24) as an example for computing digits of π.

The following Mathematica code:

(* Define long string *)
longStr = StringJoin["11757386816817535293027775284419412676",
"7991915008537018836932014293678271636885792397"];

coeff = (10 + I)^8*(84 + I)^-1*(21342 + I)^-1*
(991268848 + I)^-1*(193018008592515208050 + I)^-1*
(197967899896401851763240424238758988350338 + I)^-1*
(FromDigits[longStr] + I)^-1;

Re[coeff] == Im[coeff]

validates Equation (24) by returning True. This code applies the product relation (6)
for verification.

2.2. Tangent Function

Since the tangent function can be represented as a series expansion

tan(x) =
∞

∑
n=1

(−1)n−122n(22n − 1)B2n

(2n)!
x2n−1

= x +
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ · · · ,

(25)

where B2n are the Bernoulli numbers, defined by the contour integral

Bn =
n!

2πi

∮ z
ez − 1

dz
zn+1 ,

it follows that
tan(x) = x + O(x3). (26)

Consequently, the accuracy of the tangent function improves with decreasing the argu-
ment x.
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Unfortunately, the series expansion of the tangent function (25) requires the determi-
nation of the Bernoulli numbers, which is itself a big challenge [29–32]. For example, one of
the most known formulas for computation of the Bernoulli numbers

Bn =
n

∑
m=0

1
m + 1

m

∑
ℓ=0

(−1)ℓ
(

m
ℓ

)
ℓn,

is based on double summation with the binomial coefficients that decelerate the computation.
There are other equations for computation of the tangent function [31–33] and one

of the efficient techniques to perform computation of the tangent function is the
Newton–Raphson iteration (see [27] for more details). In particular, the following iter-
ation formula

sn(x) = sn−1(x)−
(

1 + s2
n−1(x)

)
(arctan(sn−1(x))− x) (27)

with an initial value that can be taken as

s1(x) = x,

can be employed. This iteration leads to

tan(x) = lim
n→∞

sn.

Iteration (27) leads to the quadratic convergence of the tangent function. In practice,
however, quadratic convergence can be achieved only if a sufficiently large number of the
summation terms are applied in the series expansions like (3), (30) or (31) to approximate
the arctangent function. We have already applied the Newton–Raphson iteration (27) to
compute the digits of π [27].

As an option, we can also apply the most common equation

tan(x) =
sin(x)
cos(x)

=

∞
∑

n=0
(−1)n x2n+1

(2n+1)!

∞
∑

n=0
(−1)n x2n

(2n)!

,

where sine and cosine functions in the numerator and denominator are represented as
the Maclaurin expansions. Unfortunately, this representation is not optimal for practical
application since it requires separate computations of the expansion terms for the sine and
cosine functions. However, if we rewrite the tangent function as

tan(x) =
sin(x)
cos(x)

sin(2x)
sin(2x)

and take into account that sin(2x) = 2 sin(x) cos(x), we can obtain the following identity

tan(x) =
2 sin2(x)
sin(2x)

. (28)

Although this this representation of the tangent function is not common, its application
is significantly advantageous, since each nth term in the expansion

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · ,
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can be utilized again just by multiplying 22n+1 to obtain the expansion for the denominator

sin(2x) = (2)x − (23)
x3

3!
+ (25)

x5

5!
− (27)

x7

7!
+ · · · .

Such a technique may accelerate computation and reduce memory usage. Thus, we can
write the following iterative procedure

p0(x) = 0,

q0(x) = 0,

rn(x) =
(−1)nx2n+1

(2n + 1)!
,

pn(x) = pn−1(x) + rn−1(x),

qn(x) = qn−1(x) + 22n−1rn−1(x),

leading to

tan(x) = lim
n→∞

2p2
n(x)

qn(x)
, (29)

according to Equation (28).
In this work, we used truncated Equation (29) as an alternative to Equations (25) and (27)

since one of our objectives in this work is to develop an algorithm for computing the digits
of π as simply as possible and without undesirable surd numbers.

2.3. Arctangent Function

Since in this work we utilize the terms from the Machin-like Formula (17), a series
expansion with rapid convergence of the arctangent function should be applied. Based on
our empirical results, we can consider two equations with rapid convergence that can be
used for implementation. The first equation is Euler’s series expansion [6,34]

arctan(x) =
∞

∑
n=0

22n(n!)2

(2n + 1)!
x2n+1

(1 + x2)
n+1 . (30)

The second equation is given by the series expansion [35]

arctan(x) = 2
M

∑
m=1

∞

∑
n=1

1
(2n − 1)(2m − 1)2n−1

κn(x, γm,M)

κ2
n(x, γm,M) + λ2

n(xγm,M)
, (31)

where the expansion coefficients are computed by a two-step iteration such that

κ1(x, t) = 1/(xt),

λ1(x, t) = 1,

κn(x, t) = κn−1(x, t)
(

1 − 1/(xt)2
)
+ 2λn−1(x, t)/(xt),

λn(x, t) = λn−1(x, t)
(

1 − 1/(xt)2
)
− 2κn−1(x, t)/(xt),

and
γm,M =

m − 1/2
M

.
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The derivation of the series expansion (31), shown in our work [35], is based on the
Enhanced Midpoint Integration (EMI) formula (see also [22])

1∫
0

f (x, t)dt = 2
M

∑
m=1

∞

∑
n=0

1
(2M)2n+1(2n + 1)!

∂2n

∂t2n f (x, t)
∣∣∣∣
t= m−1/2

M

,

where we imply that

f (x, t) =
x
2

(
1

1 + ixt
+

1
1 − ixt

)
since

arctan(x) =
1∫

0

x
1 + x2t2 dt =

1∫
0

x
2

(
1

1 + ixt
+

1
1 − ixt

)
dt.

The series expansion (31) appears to be rapid in convergence. In particular, even
at M = 1, its convergence rate is faster by many orders of the magnitude than that of
Euler’s Formula (30) (see [35] for details). Thus, by taking M = 1, Equation (31) can be
conveniently rearranged as

arctan(x) = 2
∞

∑
n=1

1
2n − 1

gn(x)
g2

n(x) + h2
n(x)

, (32)

where the expansion coefficient can be computed by the following two-step iteration

gn(x) = gn−1(x)
(

1 − 4/x2
)
+ 4hn−1(x)/x,

hn(x) = hn−1(x)
(

1 − 4/x2
)
− 4gn−1(x)/x,

with initial values
g1(x) = 2/x,

h1(x) = 1.

Series expansions (30) and (32) are significantly faster in convergence than the Maclau-
rin series expansion (3). In this work, the truncated series expansion (32) is used. Although
a value of integer M that is greater than 1 further improves the convergence rate, it may be
preferable to apply Equation (32) rather than its generalization (31), since an increment of
M just by 1 increases the number of the terms in series expansion (31) by a factor of 2.

3. Results and Discussion
3.1. Modified Iteration

Changing the variable θn → 1/σn in Equation (15) leads to a more convenient form

σn = σn−1 + 2−k
(

1 − tan
(

2k−1σn−1

))
, k ≥ 1, (33)

where
σ1 = 2−k.

Consequently, the constant π can be found by iteration in accordance with Equation (16)
such that

π

4
= 2k−1 lim

n→∞
σn. (34)

Comparing the limit (34) with (see [28] for derivation)

π

4
= 2k−1 arctan

(√
2 − ak−1

ak

)
,
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we can obtain an important relation

σn → arctan

(√
2 − ak−1

ak

)
, n → ∞

or
2k−1σn → π

4
, n → ∞. (35)

Consequently, the argument of the tangent function in Equation (33) tends to 1 with
increasing n.

Since, in Equation (33), the argument of the tangent function tends to 1, the conver-
gence per iteration of n in applied Equation (29) is expected to be extremely slow. Indeed,
if the argument of the tangent function is not small enough, then, in accordance with
relation (26), we cannot gain a reasonable convergence of the tangent function.

This problem can be effectively resolved by introducing a constant such that

c ≈ 1
2k−1

π

4
.

The value of this constant is close to σn when n is sufficiently large (see Equation (35)).
Therefore, with the help of this constant, we can modify the iteration Formula (33) by using
the following procedure

σ1 = 2−k,

δ1 = c − σ1,

σ2 = c − δ1 + 2−k
(

1 − tan
(

2k−1(c − δ1)
))

,

δ2 = c − σ2,

σ3 = c − δ2 + 2−k
(

1 − tan
(

2k−1(c − δ2)
))

,

δ3 = c − σ3,
...

σn = c − δn−1 + 2−k
(

1 − tan
(

2k−1(c − δn−1)
))

,

δn = c − σn.

The expression for σn can be simplified as follows

σn = c − δn−1 + 2−k
(

1 − tan
(

2k−1(c − δn−1)
))

= c − δn−1 + 2−k
(

1 − tan
(

2k−1c − 2k−1δn−1

))
= c − δn−1 + 2−k

1 −
tan
(

2k−1c
)
− tan

(
2k−1δn−1

)
1 + tan

(
2k−1c

)
tan
(
2k−1δn−1

)


or

σn = c − δn−1 + 2−k

1 −
α − tan

(
2k−1δn−1

)
1 + α tan

(
2k−1δn−1

)


or

σn = σn−1 + 2−k

1 −
α − tan

(
2k−1δn−1

)
1 + α tan

(
2k−1δn−1

)
, (36)
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where α = tan
(

2k−1c
)

. Since |δn| is supposed to be a small value, we may expect a
reasonable convergence rate in iteration (36) at each increment n in Equation (29).

The tangent function in Equation (36) is represented twice. Therefore, we can define

τn = tan
(

2k−1δn

)
and rewrite this equation in a more simplified form

σn = σn−1 + 2−k
(

1 − α − τn−1

1 + ατn−1

)
. (37)

3.2. Methodology

In our algorithm, we utilize a modified Equation (37). This yields the iteration based
on a set of equations 

δn−1 = c − σn−1,

τn−1 = tan
(

2k−1δn−1

)
,

σn = σn−1 + 2−k
(

1 − α − τn−1

1 + ατn−1

)
.

(38)

We can take a few initial terms in the Machin-like Formula (17) as a value to compute the
constant c.

Return to Equation (24), corresponding to the case k = 4. If we take only the first term,
then the constant

c =
1

2k−1 8 arctan
(

1
10

)
︸ ︷︷ ︸

first term of Equation (24)

= arctan
(

1
10

)
(39)

is not close enough to π/(4 × 2k−1) to compute the digits of π. As a consequence, we
cannot achieve a rapid convergence. Specifically, our empirical results show that with
constant (39), the set (38) of iteration formulas provides convergence of four to five digits
of π per increment of n in Equation (29). However, if we take the first two terms from
Equation (24) such that

c =
1

2k−1

 8 arctan
(

1
10

)
︸ ︷︷ ︸

first term of Equation (24)

− arctan
(

1
84

)
︸ ︷︷ ︸

second term of Equation (24)


= arctan

(
1

10

)
− 1

8
arctan

(
1
84

)
,

(40)

then the convergence rate significantly improves, providing ten digits of π per increment.
Consider the following identity [36]

tan(nx) =
1
i
(1 + i tan(x))n − (1 − i tan(x))n

(1 + i tan(x))n + (1 − i tan(x))n

=
2i(1 − i tan(x))n

(1 − i tan(x))n + (1 + i tan(x))n − i.
(41)

This identity can be used for computation of the constant α. Thus, according to identity (41),
we have

tan
(

8 arctan
(

1
10

))
=

2i(1 − i/10)8

(1 − i/10)8 + (1 + i/10)8 − i =
74455920
72697201

.
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Now, using

tan
(

arctan
(

1
84

))
=

1
84

and an elementary trigonometric relation

tan(x − y) =
tan(x)− tan(y)

1 + tan(x) tan(y)
(42)

we can find that the constant is

α = tan
(

8 arctan
(

1
10

)
− arctan

(
1

84

))
=

6181600079
6181020804

. (43)

Once the exact value of the constant α is calculated according to Equation (43), we can
use the set of iteration Formula (38) for computing the digits of π. The Mathematica codes
and their description are provided in the next section.

Although the convergence rate of 10 digits of π per increment of n in Equation (29) is
relatively high, application of the Machin-like Formula (17) may not be efficient at a smaller
value of the integer k. In particular, the computation of both arctangents arctan(1/10) and
arctan(1/84) is expected to be slow, since the two integers in the argument denominators
(10 and 84) are not big enough for rapid convergence in accordance with Equation (4).

Consider another case where k is sufficiently large. We can take, for example, k = 27.
Applying identity (17) together with Equation (22), we can find that [22]

π

4
= 227−1 arctan

(
1

A27

)
+ arctan

(
1

B1,27

)

= 67108864 arctan
(

1
85445659

)
− arctan


522,185,807 digits︷ ︸︸ ︷

9732933578 . . . 4975692799
2368557598 . . . 9903554561︸ ︷︷ ︸

522,185,816 digits

.
(44)

Recently, the same equation was derived by Gasull et al. by a different method of computa-
tion (see Table 2 in [10] showing the row with f 522,185,807

522,185,816 ).
At first glance, it may appear problematic to find the corresponding coefficient α, since

at k = 27, the substitution 227−1 = 67108864 into identity (41) results in an expression

α = tan
(

67108864 arctan
(

1
85445659

))
=

2i(1 − i/85445659)67108864

(1 − i/85445659)67108864 + (1 + i/85445659)67108864 − i

that is impossible to compute due to the extremely large value of the exponent. However,
application of the two-term Machin-like formula for π of kind (11) gives a big advantage,
since the multiplier 2k−1 is continuously divisible by 2. Thus, using the elementary
trigonometric identity

tan(2x) =
2 tan(x)

1 − tan2(x)

in the iteration process, we can compute the required constant α. Specifically, in accor-
dance with this identity and due to relation x = tan(arctan(x)), at k = 27, the following
iteration formula

λn(x) =
2λn−1(x)

1 − λ2
n−1(x)

, (45)

with initial value
λ1(x) =

2x
1 − x2 ,



Math. Comput. Appl. 2024, 29, 17 15 of 23

yields a rational number

α = λ27−1

(
1

85445659

)
=

522,185,816 digits︷ ︸︸ ︷
1184278804 . . . 8037709539
1184278794 . . . 2617464027︸ ︷︷ ︸

522,185,816 digits

= 1.00000000821844790606 . . . ,

(46)

in which the integer 85445659 = ⌊A27⌋ is calculated according to Equation (18). It is
interesting to note that the number of digits (522,185,816) in this equation is the same as the
number of digits in the denominator of Equation (44).

At a larger value of the integer k, it is sufficient to take only the first term (leading
term) of the Machin-like formula for π to achieve rapid convergence. In particular, using
only the leading term from Equation (44)

67108864 arctan
(

1
85445659

)
,

the set of iteration Formula (38) provides 17 to 18 digits of π per increment of n in Equation (29).
The corresponding Mathematica code and its description are discussed in the next section.

4. Mathematica Codes and Description
The Mathematica codes consist of seven cells that can be copied and pasted directly to

the Mathematica notebook. The first cell is given by the following code:

atanF := {(* ARCTANGENT FUNCTION APPROXIMATION *)

Clear[atan,g,h];

(* Expansion coefficients *)
g[1,x_] := g[1,x] = 2/x;
h[1,x_] := h[1,x] = 1;
g[m_,x_] := g[m,x] = g[m - 1,x]*(1 - 4/x^2) + 4*(h[m - 1,x]/x);
h[m_,x_] := h[m,x] = h[m - 1,x]*(1 - 4/x^2) - 4*(g[m - 1,x]/x);

(* Arctangent approximation *)
atan[x_,n_] := atan[x,n] = 2*Sum[(1/(2*m - 1))*(g[m,x]/

(g[m,x]^2 + h[m,x]^2)),{m,1,n}]};

that defines the two-step iterative method for the arctangent function, based on Equation (32).
This function can be invoked by running the command atanF.

The second cell provides the code:

tanF:= {(*TANGENT FUNCTION APPROXIMATION*)

Clear[p,q,r,t];

(* Computing coefficients *)
r[n_,x_] := r[n,x] = (-1)^n*(x^(2*n + 1)/(2*n + 1)!);
p[0,x_] := p[0,x] = 0;
q[0, x_] := q[0,x] = 0;
p[n_,x_] := p[n,x] = p[n - 1,x] + r[n - 1,x];
q[n_,x_] := q[n,x] = q[n - 1,x] + 2^(2*n - 1)*r[n - 1,x];

(* Tangent approximation *)
t[x_,n_] := t[x,n] = 2*(p[n,x]^2/q[n,x])};

that defines the iterative method for the tangent function, based on Equation (29). This
function can be invoked by running the command tanF .
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The code below in the third cell:

heading := {Print[Abs[MantissaExponent[Pi - 2^(k + 1)*\[Sigma][1]][[2]]],
" digits of \[Pi] before iteration"];

Print["-------------------------------"];
Print["Number of terms n"," | ","Digits of \[Pi]"];

Print["-------------------------------"]};

ending:={Print["-------------------------------"];
Print[Abs[MantissaExponent[Pi - 2^(k + 1)*\[Sigma][2]][[2]]],

" digits of \[Pi] after iteration"]};

defines the output format that includes the heading and ending parts for intermediate
computed data. The header and the ending parts can be invoked by running the commands
heading and ending, respectively.

The code in the fourth cell:

Clear[k,f,\[Alpha],c,\[Sigma],\[Delta],\[Tau],n];
(* Computing coefficient alpha *)
k=4; f[x_,n_] = (2*I*(1 - I*x)^n)/((1 - I*x)^n + (1 + I*x)^n) - I;
\[Alpha] = f[1/10,2^(k - 1)];
(* Computing coefficient c *)
atanF; c = atan[1/10,500];

(* Iteration *)
\[Sigma][1] = SetPrecision[Floor[Pi*10^100]/10^100,250]/2^(k + 1);
\[Delta] = c - \[Sigma][1];
n = 1;
heading;
While[n <= 42,

tanF; \[Tau] = t[2^(k - 1)*\[Delta],n]; \[Sigma][2] =
SetPrecision[\[Sigma][1] + (1 - (\[Alpha] - \[Tau])/

(1 + \[Alpha]*\[Tau]))/2^k,5 + 5*n];
piApp1 = 2^(k + 1)*\[Sigma][2];

str=If[n < 10," | "," | "];
If[n <= 5 || n >= 33,

Print[n,str,Abs[MantissaExponent[Pi - piApp1][[2]]]]];
If[n==6,Print["... COMPUTING ..."]]; n++];

ending;

computes the coefficient α according to Equation (41) and coefficient c at k = 4 by taking
only the leading (first) term of the Machin-like Formula (24) for π. As we do not require
the highest precision at each cycle of computation within the while loop, the precision
increases with increasing n in Equation (29). The parameter of the precision is given as
5 + 5n, where n is the increment in Equation (29), since at n = 1, the number of correct
digits of π is 5 and multiplier 5 is the largest number of digits of π per increment n.

Suppose we know the first 100 digits of π. These digits of π can be extracted from
Mathematica by using the following division⌊

10100π
⌋

10100 .

Once we know 100 digits of π, we can use the described iteration to double its number.
Running this cell generates the following output:
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100 digits of π before iteration
-------------------------------
Number of terms n | Digits of π
-------------------------------
1 | 5
2 | 9
3 | 14
4 | 19
5 | 25
... COMPUTING ...
33 | 169
34 | 174
35 | 179
36 | 184
37 | 189
38 | 194
39 | 199
40 | 200
41 | 200
42 | 200
-------------------------------
200 digits of π after iteration

that shows the first five and last fifteen cycles. As we can see, each increment of n by one
gives four to five digits of π. After 39 cycles, the convergence slows down due to saturation.
In particular, after 40th cycle, the number of digits doubles to 200. This saturation occurs
since we have reached the limit of squared convergence in the determination of the digits
of π.

The code in the fifth cell:

Clear[k,f,\[Alpha],c,\[Sigma],\[Delta],\[Tau],n];
(* Computing coefficient alpha *)
k=4; f[x_,n_] = (2*I*(1 - I*x)^n)/((1 - I*x)^n + (1 + I*x)^n) - I;
(* Computing coefficient c *)
\[Alpha] = f[1/10,2^(k - 1)]; \[Alpha] = (\[Alpha] - 1/84)/(1 + \[Alpha]/84);
atanF; c = atan[1/10,500] - (1/2^(k - 1))*atan[1/84,500];

(* Iteration *)
\[Sigma][1] = SetPrecision[piApp1/2^(k + 1),500];
\[Delta] = c-\[Sigma][1];
n = 1;
heading;
While[n <= 42,

tanF; \[Tau] = t[2^(k - 1)*\[Delta],n]; \[Sigma][2] =
SetPrecision[\[Sigma][1] + (1 - (\[Alpha] - \[Tau])/

(1 + \[Alpha]*\[Tau]))/2^k,12 + 10*n];
piApp2 = 2^(k + 1)*\[Sigma][2];

str=If[n < 10," | "," | "];
If[n <=5 || n >= 33,

Print[n,str,Abs[MantissaExponent[Pi - piApp2][[2]]]]];
If[n == 6,Print["... COMPUTING ..."]]; n++];

ending;

computes the coefficients c and α at k = 4 with the help of Equations (40), (45) and (46).
Again, the precision increases with increasing n in Equation (29). The parameter of the
precision is given as 12 + 10n, where n is the increment in Equation (29), since at n = 1,
the number of correct digits of π is 12 and multiplier 10 is the largest number of digits of π
per increment n. We can use the 200 already obtained digits of π to double it by iteration.

Running this cell produces the output:
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200 digits of π before iteration
-------------------------------
Number of terms n | Digits of π
-------------------------------
1 | 12
2 | 21
3 | 31
4 | 41
5 | 51
... COMPUTING ...
33 | 341
34 | 351
35 | 361
36 | 371
37 | 381
38 | 391
39 | 401
40 | 402
41 | 402
42 | 402
-------------------------------
402 digits of π after iteration

that shows first five and last fifteen cycles. The convergence rate always remains the same,
10 digits per increment of n. After 39 cycles, the convergence slows down. In particular,
after the 40th cycle, the number of digits of π doubles to 402. Further cycles do not
contribute to increasing the number of digits since again we reached the limit in the
determination of the digits of π.

The code in the sixth cell is the most interesting:

Clear[k,\[Alpha],c,\[Sigma],\[Delta],\[Tau],n];
(* Computing coefficient alpha *)
k = 27; \[Sigma][1] = SetPrecision[piApp2/2^(k + 1),1000];
(* Computing coefficient c *)
c = SetPrecision[atan[1/85445659,500],1000];

(* Iteration *)
\[Alpha] = t[2^(k - 1)*c,500];
\[Delta] = c - \[Sigma][1];
n = 1;
heading;
While[n <= 46,

tanF; \[Tau] = t[2^(k - 1)*\[Delta],n]; \[Sigma][2] =
SetPrecision[\[Sigma][1] + (1 - (\[Alpha] - \[Tau])/

(1 + \[Alpha]*\[Tau]))/2^k,25 + 18*n]; piApp3 = 2^(k + 1)*\[Sigma][2];
str=If[n < 10," | "," | "];

If[n <=5 || n >= 37,
Print[n,str,Abs[MantissaExponent[Pi - piApp3][[2]]]]];

If[n == 6,Print["... COMPUTING ..."]]; n++];
ending;

as it provides an excellent convergence rate at 17 to 18 digits per increment n in Equation (29)
at k = 27. Although the exact value of the rational number α can be used (see Equation (46)),
this code does not utilize it since a regular desktop or laptop computer requires a few hours for
computation by using Equation (46). However, we can observe a rapid convergence computing
this coefficient with tangent and arctangent approximations based on Equations (46) and (32),
respectively. The code in this cell utilizes only a leading term of the Machin-like Formula (44)
for π. This is possible to achieve since at larger value of k = 27, the argument 1/85445659 in
the leading arctangent term becomes small. Consequently, this reduces the value of δn and
improves the convergence rate according to Equation (29).
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The precision of this code increases with increasing n in Equation (29). The parameter
of the precision is given as 25 + 18n, where n is the increment in Equation (29), since at
n = 1, the number of correct digits of π is 25 and the multiplier 18 is the largest number
of digits of π per increment n. Again, we can use the 402 already obtained digits of π to
double it by iteration.

Running this cell produces the output:

402 digits of π before iteration
-------------------------------
Number of terms n | Digits of π
-------------------------------
1 | 25
2 | 42
3 | 60
4 | 78
5 | 96
... COMPUTING ...
37 | 690
38 | 708
39 | 726
40 | 744
41 | 762
42 | 780
43 | 798
44 | 804
45 | 804
46 | 804
-------------------------------
804 digits of π after iteration

that shows first five and last fifteen cycles. After 43 cycles, the convergence slows down.
In particular, after the 44th cycle, the number of digits of π doubles to 804. Further cycles do
not contribute to the number of digits since we have reached the limit in the determination
of the digits of π for squared convergence.

Since the proposed method requires at least the leading term of the Machin-like
Formula (44) for π, we have to verify its convergence rate to ensure efficient computation.
Thus, at k = 27, the corresponding value of the leading term in Equation (44) is

arctan
(

1
⌊A27⌋

)
= arctan

(
1

85445659

)
. (47)

An additional cell below is the Mathematica code:

Clear[arg,n]

(* Argument of arctangent *)
arg=SetPrecision[1/85445659,500];

Print["Increment of n"," | ","Correct digits"];
Print["---------------------------------"];
n = 1;
(* Convergence of arctangent *)
While[n <= 15,

str=If[n < 10," | "," | "];
Print[n,str,

Abs[MantissaExponent[ArcTan[arg] - atan[arg,n]][[2]]]]; n++];

showing the convergence rate of the arctangent function. This code generates following output:
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Increment of n | Correct digits
---------------------------------
1 | 24
2 | 41
3 | 58
4 | 74
5 | 91
6 | 107
7 | 124
8 | 140
9 | 157
10 | 173
11 | 190
12 | 206
13 | 223
14 | 239
15 | 256

As we can see, the code provides 16 to 17 correct digits of the arctangent function
value (47) per increment of n in Equation (32). Furthermore, computing just a single
arctangent term greatly minimizes Lehmer’s measure (5). In particular, the value of the
measure of the arctangent term (47) is only

µ =
1

log10 (85445659)
≈ 0.126077.

The increase of the convergence rate with increasing k is due to a decrease of the
argument of the tangent function. These results show that the set of Equation (38) can
provide rapid convergence when computing the digits of π.

5. Rational Numbers

There is an alternative method for computing the digits of π. This method is based
only on rational numbers and implemented without the iterative Formula (29).

As an example, consider the following approximation

π

4
≈ 8 arctan

(
1
10

)
− arctan

(
1
84

)
− arctan

(
1

21342

)
− arctan

(
1

991268848

)
(48)

that represents the first four terms in Equation (24). This approximation can provide at
most 19 decimal digits of π. Consequently, we can define

σ1 = arctan
(

1
10

)
− 1

8

[
arctan

(
1

84

)
+ arctan

(
1

21342

)
+ arctan

(
1

991268848

)]
= 0.098174770424681038702605213693...

such that
π

4
≈ 8σ1

according to relation (48).
Using the iterative Formula (45) together with identity (42), we can find the exact

value of the tangent as a rational number

tan(8σ1) =
26153940164285810690885
26153940164285810690614

(49)
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since all arguments of the arctangent terms in approximation (48) are also rational numbers
(integer reciprocals). Once the exact value of tangent (49) is known, substituting it into
iterative Formula (33) results in

σ2 = σ1 +
1
16

(
1 − 26153940164285810690885

26153940164285810690614

)
such that the value 32σ2 doubles the number of the decimal digits of π up to 39.

The corresponding Mathematica code:

(* Iterative formula (45) *)
\[Lambda][x_,1] := \[Lambda][x,1] = (2*x)/(1 - x^2);
\[Lambda][x_,n_] := \[Lambda][x,n] = (2\[Lambda][x,n - 1])/

(1 - \[Lambda][x,n - 1]^2);

(* Integer k *)
k = 4;

(* Computation of rational number *)
rNum = \[Lambda][1/10,k - 1];
rNum = (rNum - 1/84)/(1 + rNum*1/84);
rNum = (rNum - 1/21342)/(1 + rNum*1/21342);
rNum = (rNum - 1/991268848)/(1 + rNum*1/991268848);

(* Before iteration *)
\[Sigma][1] = N[ArcTan[1/10] - 1/2^(k - 1)*

(ArcTan[1/84] + ArcTan[1/21342] + ArcTan[1/991268848]),100];
(* After iteration *)
\[Sigma][2]=\[Sigma][1] + 1/2^k*(1 - rNum);

Print[MantissaExponent[Pi - 2^(k + 1)*\[Sigma][1]][[2]]//Abs,
" digits of \[Pi] before iteration"];

Print[MantissaExponent[Pi - 2^(k + 1)*\[Sigma][2]][[2]]//Abs,
" digits of \[Pi] after iteration"];

produces the following output:

19 digits of π before iteration
39 digits of π after iteration

showing number of digits of π before and after a single iteration. This example demon-
strates that the combination of iteration Formula (33) with the Machin-like formula for π of
type (17) can also be implemented for computing the digits of π without any approximation
formula of the tangent function.

Since Equation (24) consists of only seven terms, we should not expect a high accuracy.
However, increasing k in Equation (17) leads to a rapid increase in the number of arctangent
terms. Therefore, at sufficiently large values of k, we may also achieve the required accuracy
for computing the digits of π by using this alternative method based on rational numbers.

6. Conclusions

A new iterative method for computing the digits of π by argument reduction of the
tangent function is developed. This method combines a modified iterative formula for π
with squared convergence and a leading arctangent term from the Machin-like Formula (17).
The computational test shows that algorithmic implementation can provide more than
17 digits of π per increment n in Equation (29). This method requires no surd numbers,
and with an arbitrarily large k, there is no upper limit for the convergence rate.
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