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Abstract: In this paper, we propose an extended credit migration model with asymmetric fixed
boundaries and multiple ratings, for a more precise depiction of credit changes in the real world.
A model with three ratings is established and analyzed as an example, and then the results are
generalized to a general multirating form model. We prepare the model meaningfully by arranging
the asymmetric boundaries in a suitable order. A PDE system problem is deduced, and the existence
and uniqueness of the solution for the problem are obtained using PDE techniques, which further
ensure the rationality of the model. Due to the flexible configuration of asymmetric boundaries, the
multirating model has various types of structures in the buffer zones where the credit rating keeps its
original state. For instance, the two buffers in the three-rating model may be separated, connected, or
intersected, as presented in the numerical results for different boundary parameters.

Keywords: multiple credit ratings; asymmetric boundaries; buffer zone; monotonic iteration; corporate
bond pricing

1. Introduction

Credit risk refers to the possibility of credit-related events, which include defaults and
migrations of credit ratings. After the financial crisis in 2008 and European debit crisis in
2010, credit migration risk has attracted more attention. Credit migration is a change in
an issuer’s creditworthiness from one credit rating category to another. For example, at
the onset of the European debit crisis, Greece’s sovereign credit rating was downgraded
from an initial rating of “A” to “BBB” and subsequently, to “BB” or even lower. Investors
holding Greek bonds experienced a decline in the value of their investments due to the
increased credit risk and the credit ratings of other European countries were also affected
due to broader concerns about the stability of the eurozone. Indeed, the credit migration
risk has a great impact on the financial market, not only affecting confidence in the market
but also affecting the value of financial products.

There have been some studies on the transformation of credit ratings, which can
be traced back to the reduced form method. In detail, Jarrow, Lando and Turnbull [1]
were the first to apply a Markov chain, and they adopted a transfer intensity matrix to
capture the credit migration process. This reduced-form approach is developed naturally
(see Arvanitis et al. [2], Hurd and Kuznetsov [3], Lando [4], Thomas et al. [5], Nguyen [6],
Chen et al. [7] and so forth). The transfer intensity matrix is usually derived from general
statistical data and mainly reflects the impact of macroeconomic factors on credit rating.
However, the firm’s features, such as its financial status, play a key role in credit rating
migration.

Liang et al. [8,9] took a firm’s asset value or capital structure as the major determinant
of credit migration using the structural method. In detail, Liang and Zeng [8] built the first
structural model to price bonds with credit migration, in which a given credit migration
boundary divides the asset value into high- and low-rating regions. Further, Hu, Liang
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and Wu [9] governed the credit migration boundary via the liability–asset ratio rather
than giving it directly, and they deduced a credit migration problem with a free boundary.
However, setting a strict threshold in the structural model may lead to an infinite number
of credit rating migrations under the assumption that the asset values follow a geometric
Brownian motion. This is because Brownian motion crosses any level an infinite number
of times in any time interval. Chen and Liang [10] and Liang and Lin [11] introduced a
buffer zone to overcome this shortcoming in the free-boundary model [9] and the fixed-
boundary model [8], respectively. That is, they set a pair of asymmetric thresholds for credit
rating migration: one threshold for upgrades and the other slightly different threshold
for downgrades. Compared to models with a strict threshold, those with asymmetric
thresholds represent a significant improvement as they limit the frequency of credit rating
transitions. All the models in [8–11] bifurcate credit ratings into two categories: high rating
and low rating.

In reality, there are more than two ratings for firms’ credit. Rating agencies use a
wide range of scales; for instance, Standard and Poor’s divides credit ratings into several
letter grades ranging from “AAA” (the highest credit rating) to “C” (the lowest credit
rating). For applications, it is necessary to consider structural models for credit migration in
cases with multiple credit ratings. For the strict threshold model in [9], Wu and Liang [12]
extended this to the case with three rating regions and suggested a general form for multi-
credit-rating models. However, there has not yet been a multirating form proposed for
the asymmetric threshold model. In fact, this form may have a more complex multirating
structure as the downgrade threshold and upgrade threshold are different. To fill this
research gap, we aim to define a well-posed multi-credit-rating model with asymmetric
thresholds. We confirm the mathematical theory for the corresponding PDE problem to
ensure the rationality of this kind of model and solve the problem in numerical schemes to
show the different structures of models for different parameters of asymmetric boundaries.
As a first attempt, we focus on the fixed-boundary problem in this paper.

Specifically, this article improved the model in [11] to the level of that with multiple
credit ratings. First, we divide the firm’s value into low-, medium- and high-rating regions
using two pairs of asymmetric boundaries within a proper order. Thus, a buffer zone
is introduced between each pair of asymmetric boundaries, in which the credit rating
maintains its status. Then, we derive a system of partial differential equations with several
overlaps. For the existence of the solution, we construct convergence sequences by using
a method of monotonic iteration. As a significant difference with [11], it is necessary to
construct two sequences converging towards the solution on the intermediate-rating region
(i.e., the medium rating in the three-rating model), for a complete iterative loop. And
we prove the uniqueness of the solution by contradiction with more branches than [11].
Finally, the general multirating problem with asymmetric migration boundaries is obtained.
This kind of model has more types of structures than the original multirating model
in [12], which is mainly reflected in the aspect of buffers, due to the flexible asymmetric
boundary settings. As far as we know, this is the first time that the asymmetric model with
multiple ratings has been studied, which guarantees the model’s rationality and indicates
its potential advantage in real-world settings.

The structure of this paper is as follows. In Section 2, the relevant literature is reviewed.
In Section 3, we establish an asymmetric threshold model with three ratings, and derive a
PDE system. In Section 4, by constructing monotonic sequences, we prove the existence
of the solution to this problem. In Section 5, the uniqueness of the solution is confirmed
via contradiction. Section 6 presents the numerical results for different parameters of
asymmetric boundaries and conducts a real parameter calibration. Section 7 shows the
form of general multirating models. Section 8 constitutes the conclusion and discussion.

2. Literature Review

The first structural model on credit risk could be traced back to Merton [13], which
focuses on the default. In Merton’s model, the firm’s asset value was assumed to follow a
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geometric Brownian motion and a default would be triggered if the asset value fell below
the debt at maturity. Thus, the corporate debt was a contingent claim of the asset value.
Black and Cox [14] extended this model to allow the default to occur before maturity as
long as the asset value dropped below a given threshold. For further research on structural
models of defaults, see also Leland [15], Longstarff and Schwartz [16], Leland and Toft [17],
Briys and deVarenne [18] and so forth. In addition to the default, the phenomenon of
credit rating migration has also been analyzed, such as the stability and dependencies
of rating transitions (Carty [19]; Nickell et al. [20]), non-Markov effects in rating drifts
(Altman and Kao [21] and Lando and Skødeberg [22]), implied migration rates (Albanese
and Chen [23]), etc. As for the valuation of credit migration risk, Liang et al. [8,9] pioneered
the adoption of structured models, subsequently followed by a series of further studies,
while the reduced-form model is another important method [2–4].

Under the framework of the structural model with a strict credit migration threshold,
some studies have concentrated on model extension, theoretical exploration, empirical anal-
ysis and so forth. For instance, Wu et al. [24] extended the free-boundary model in [9] by
permitting defaults to occur at any time up to maturity, while Li et al. [25] proved the con-
vergence and error estimates of a finite difference scheme for this model. Lin and Liang [26]
identified the credit migration boundaries empirically by pricing long-term corporate bonds
in the U.S. financial market. And another crucial extension for applying the strict threshold
model is to transition it from the simplicity of two-tiered ratings to a more general multi-
rating scenario. Wu and Liang [12] extended the model in [9] to the multirating case, and
Wang et al. [27] studied the asymptotic traveling-wave solution for the new model using an
inductive method to overcome the multiplicity of free boundaries. Yin et al. [28] considered
a multirating model with a stochastic interest rate based on the model in [29].

In the form of a structural model with a pair of different upgrade and downgrade thresh-
olds, Chen and Liang [10] investigated the free-boundary problem, while Liang and Lin [11]
explored the fixed-boundary one. Liang and Lin [30] presented more theoretical results pri-
marily on the traveling-wave solution with a buffer zone. However, there is a research gap
concerning the multirating scenarios for the asymmetric threshold model. It is imperative to
proffer a general form of multirating asymmetric model and establish its well-posedness,
which serves as the basis for further theoretical research and the practical applications of the
model. In this paper, we begin to explore the asymmetric threshold model with multiple
ratings, focusing on the fixed-boundary problem as the first step.

3. Model
3.1. Assumption

Let (Ω,F ,P) be a complete probability space. We assume that the firm issues one
corporate bond, which is a contingent claim of its asset value and its credit rating in
(Ω,F ,P).

Assumption 1 (Firm’s asset with credit rating migration). Let St denote the firm’s asset value
in the risk-neutral world. It satisfies

dSt =


rStdt + σHStdWt, in the high-rating region,
rStdt + σMStdWt, in the medium-rating region,
rStdt + σLStdWt, in the low-rating region.

where r is the risk-free interest rate, and positive constants

σH < σM < σL (1)

represent the volatility of the firm under the high, medium and low credit grades, respectively. Wt is
the standard Brownian motion which generates the filtration {Ft}.
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Remark 1. It is reasonable to consider the asset process under the risk-neutral measure rather than
the real-world measure, since we aim not to analyze the credit migration phenomenon for fitting
the history data but to price a bond with credit migration for the valuation of credit migration
risks. The probabilities of default based on this underlying process are forward-looking and point in
time, although the credit rating are typically identified by rating agencies on the through-the-cycle
methodology [31,32].

Remark 2. It is natural to set (1) in Assumption 1, namely, that the volatility of a firm’s asset
return in the higher-rating region is lower than the one in the lower-rating region.

Assumption 2 (Debt obligation). The firm issues a zero-coupon bond that has a face value
of F. Denote by Φt the value of the bond at time t. At the maturity time T, the bond value is
ΦT = min{ST , F}.

Assumption 3 (Credit rating migration). Two pairs of asymmetric thresholds are introduced for
the debt’s credit rating migration. The

SM1 < SL (2)

are a pair of thresholds for downgrades and upgrades in the low- and medium-rating regions, and the

SH < SM2 (3)

are the other pair of thresholds for downgrades and upgrades in the medium- and high-rating regions.
To make the model meaningful, we assume that SM1 > F, SL < SM2 and SH > SM1 .

The changes in credit ratings are determined by the asset value St. Starting from time t, let
τ1, τ2, τ3, τ4 denote the first moment when the firm’s credit is downgraded from a high-rating region,
upgraded from a middle-rating region, downgraded from a middle-rating region and upgraded from
a low-rating region, respectively. That is,

τ1 = inf{τ > t|Sτ ≤ SH , St > SH},

τ2 = inf{τ > t|Sτ ≥ SM2 , SM1 < St < SM2},

τ3 = inf{τ > t|Sτ ≤ SM1 , SM1 < St < SM2},

τ4 = inf{τ > t|Sτ ≥ SL, St < SL}.

It is worth noting that credit migration occurs only between two adjacent ratings; for example,
if St leaves from the high rating or low rating, it can only enter the medium rating.

Remark 3. The inequalities (2) and (3) ensure that there are buffers (the overlaps of adjacent rating
regions) introduced for credit rating migrations. For example, the firm that has just upgraded to the
middle rating will not immediately downgrade even if the asset value falls back below SL, unless the
asset value continues to fall to SM1 . Therefore, the number of changes between every two adjacent
ratings per unit time is limited.

Remark 4. In Assumption 3, the parameters of thresholds SH and SL can theoretically be set into
three cases: SH > SL, SH = SL and SH < SL. In the first case, there are two separate overlapping
areas, a low–medium overlap SM1 ≤ S ≤ SL and a medium–high overlap SH ≤ S ≤ SM2 . In the
second situation, these two overlapping areas are connected on S = SH(SL). In the last case, these
two overlapping regions have a common part, SH ≤ S ≤ SL. Thus, the buffer between the low and
medium ratings and the buffer between the medium and high ratings have three kinds of positional
relationships: separation, connection and intersection. However, the PDE problems derived from the
above three cases are all in the same form, and a unified analysis method can be adopted. We only
show the difference among these three situations in the numerical simulation.
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3.2. Cash Flow

When discussing the cash flow of the bond, we consider that the bond is virtually
terminated and substituted by a new one with a new credit rating if the credit rating
migrates before the maturity T. Let ΦH(s, t), ΦM(s, t) and ΦL(s, t) denote the values of the
bond in the high, medium and low grades, respectively. They can be represented by the
conditional expectations of the following formulas:

ΦH(s, t) =E[e−r(T−t) min{ST , F} · 1{T≤τ1}

+ e−r(τ1−t)ΦM(Sτ1 , τ1) · 1{τ1<T}|St = s > SH ], (4)

ΦM(s, t) =E[e−r(T−t) min{ST , F} · 1{T≤τ2∨τ3}

+ e−r(τ2−t)ΦH(Sτ2 , τ2) · 1{τ2<T∨τ3}

+ e−r(τ3−t)ΦL(Sτ3 , τ3) · 1{τ3<T∨τ2}|St = s, SM1 < s < SM2 ], (5)

ΦL(s, t) =E[e−r(T−t) min{ST , F} · 1{T≤τ4}

+ e−r(τ4−t)ΦM(Sτ4 , τ4) · 1{τ4<T}|St = s < SL], (6)

where 1event = 1 if the event happens and 0 otherwise.

3.3. PDE Problem

Using the Feynman–Kac formula (e.g., see [33]), it is not difficult to drive the partial
differential equations that ΦH , ΦM and ΦL satisfy in their respective regions:

∂ΦH

∂t
+

1
2

σ2
HS2 ∂2ΦH

∂S2 + rS
∂ΦH

∂S
− rΦH = 0, for S > SH , 0 < t < T,

∂ΦM

∂t
+

1
2

σ2
MS2 ∂2ΦM

∂S2 + rS
∂ΦM

∂S
− rΦM = 0, for SM1 < S < SM2 , 0 < t < T,

∂ΦL

∂t
+

1
2

σ2
LS2 ∂2ΦL

∂S2 + rS
∂ΦL

∂S
− rΦL = 0, for 0 < S < SL, 0 < t < T.

with the following terminal condition:

ΦH(S, T) = ΦM(S, T) = ΦL(S, T) = min{S, F}.

The Formulas (4)–(6) imply that the value of the bond is continuous when it passes
the rating thresholds, i.e.,

ΦH(SH , t) = ΦM(SH , t),

ΦM(SM2 , t) = ΦH(SM2 , t),

ΦM(SM1 , t) = ΦL(SM1 , t),

ΦL(SL, t) = ΦM(SL, t).

Thus, we get a complete PDE problem. Without a loss of generality, we assume that
F = 1. Using the standard change of variables x = log S and renaming T − t as t, from
Φi(ex, T − t), we obtain a function of the variables x and t, still denoted as Φi, i = H, M, L.
They satisfy the equations and conditions as follows:
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

∂ΦH

∂t − 1
2 σ2

H
∂2ΦH

∂x2 − (r − 1
2 σ2

H)
∂ΦH

∂x + rΦH = 0, for x > XH , t > 0,
ΦH(x, 0) = min{ex, 1}, for x > XH ,
ΦH(XH , t) = ΦM(XH , t), for t > 0,
∂ΦM

∂t − 1
2 σ2

M
∂2ΦM

∂x2 − (r − 1
2 σ2

M) ∂ΦM

∂x + rΦM = 0, for XM1 < x < XM2 , t > 0,
ΦM(x, 0) = min{ex, 1}, for XM1 < x < XM2 ,
ΦM(XM2 , t) = ΦH(XM2 , t), for t > 0,
ΦM(XM1 , t) = ΦL(XM1 , t), for t > 0,
∂ΦL

∂t − 1
2 σ2

L
∂2ΦL

∂x2 − (r − 1
2 σ2

L)
∂ΦL

∂x + rΦL = 0, for x < XL, t > 0,
ΦL(x, 0) = min{ex, 1}, for x < XL,
ΦL(XL, t) = ΦM(XL, t), for t > 0.

(7)

where

XL = log SL,

XM1 = log SM1 , XM2 = log SM2 ,

XH = log SH .

The meaning of all symbols in the PDE problem (7) is summarized in Table 1.

Table 1. Symbols in the PDE problem (7).

Φi (i = H, M, L) x t σi (i = H, M, L) r XL, X M2 X M1 , X H

Bond value Natural logarithm
of asset value Time to maturity Volatility of asset

return
Risk-free interest

rate
Upgrade
threshold

Downgrade
threshold

4. Existence

In this section, we prove the existence of solutions to the PDE problem (7). It is not a
general semi-unbounded problem or a Dirichlet problem, since the value of the solution on
the boundaries is not given. We use a monotonic iterative method, which is a generalization
from [10,11]. In detail, starting from ΦL

0 (XL, t) ≡ 1 and ΦM,1
0 (XM2 , t) ≡ 1, we successively

construct the sequences {ΦL
k , ΦM,1

k , ΦM,2
k , ΦH

k }∞
k=0 which are decreasing with k. Sending

k → ∞, we obtain the limit as a solution.

4.1. Monotonic Sequences

We first define the sequences via induction and then show that the sequences are mono-
tonic. Define the operator Li = ∂

∂t −
1
2 σi

2 ∂2

∂x2 − (r − 1
2 σi

2) ∂
∂x + r, i = H, M, L and the domains

QL = (−∞, XL)× (0,+∞), QM = (XM1 , XM2)× (0,+∞) and QH = (XH,+∞)× (0,+∞).
Suppose k ≥ 0 is an integer.

Step 1. Define ΦL
0 (x, t) as the solution of

LLΦL
0 = 0, for x < XL, t > 0,

ΦL
0 (x, 0) = min{ex, 1}, for x < XL,

ΦL
0 (XL, t) = 1, for t > 0.

(8)

This is a general semi-unbounded problem for a diffusion equation in QL, and the
solution satisfies the compatibility conditions. It has a closed-form solution and ΦL

0 (x, t) ∈
C∞(QL\(0, 0)).
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Step 2. Define ΦM,1
0 (x, t) as the solution of

LMΦM,1
0 = 0, for XM1 < x < XM2 , t > 0,

ΦM,1
0 (x, 0) = min{ex, 1}, for XM1 < x < XM2 ,

ΦM,1
0 (XM1 , t) = ΦL

0 (XM1 , t), for t > 0,
ΦM,1

0 (XM2 , t) = 1, for t > 0,

(9)

Since ΦL
0 is solved, the value of ΦM,1

0 on the boundary is already known. Thus, such a
Dirichlet problem in QM generates a solution ΦM,1

0 (x, t) ∈ C∞(QM).

Step 3. Assuming ΦL
k−1, ΦM,1

k−1, k ≥ 1 are known, ΦH
k−1, ΦM,2

k−1, ΦL
k , ΦM,1

k could be defined via
induction.

ΦH
k−1 is defined as the solution of

LHΦH
k−1 = 0, for x > XH , t > 0,

ΦH
k−1(x, 0) = min{ex, 1}, for x > XH ,

ΦH
k−1(XH , t) = ΦM,1

k−1(XH , t), for t > 0.

ΦM,2
k−1 is defined as the solution of

LMΦM,2
k−1 = 0, for XM1 < x < XM2 , t > 0,

ΦM,2
k−1(x, 0) = min{ex, 1}, for XM1 < x < XM2 ,

ΦM,2
k−1(XM1 , t) = ΦM,1

k−1(XM1 , t), for t > 0,
ΦM,2

k−1(XM2 , t) = ΦH
k−1(XM2 , t), for t > 0.

ΦL
k is defined as the solution of

LLΦL
k = 0, for x < XL, t > 0,

ΦL
k (x, 0) = min{ex, 1}, for x < XL,

ΦL
k (XL, t) = ΦM,2

k−1(XL, t), for t > 0.

ΦM,1
k is defined as the solution of

LMΦM,1
k = 0, for XM1 < x < XM2 , t > 0,

ΦM,1
k (x, 0) = min{ex, 1}, for XM1 < x < XM2 ,

ΦM,1
k (XM1 , t) = ΦL

k (XM1 , t), for t > 0,
ΦM,1

k (XM2 , t) = ΦM,2
k−1(XM2 , t), for t > 0.

This completes the construction of the sequences {ΦL
k , ΦM,1

k , ΦH
k , ΦM,2

k }∞
k=0 that satisfy

ΦL
k (x, t) ∈ C∞(QL\(0, 0)), ΦH

k (x, t) ∈ C∞(QH),

ΦM,1
k (x, t), ΦM,2

k (x, t) ∈ C∞(QM), for all k ≥ 0.

Remark 5. It is necessary to build two sequences ΦM,1
k and ΦM,2

k towards ΦM to form an iterative
loop. The establishment of the existence of solutions to the general multirating problem follows
the same rule; two iterative sequences need to be constructed for the solution function on the
intermediate-rating region.
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Lemma 1. The sequences {ΦL
k , ΦM,1

k , ΦH
k , ΦM,2

k }∞
k=0 are monotonically decreasing with a lower

bound; in fact, for each k ≥ 0,

0 ≤ ΦH
k+1 ≤ ΦH

k , in QH ,

0 ≤ ΦL
k+1 ≤ ΦL

k , in QL.

0 ≤ ΦM,2
k+1 ≤ ΦM,1

k+1 ≤ ΦM,2
k ≤ ΦM,1

k , in QM.

Consequently, for each (x, t) ∈ QH , QM or QL, there are the limits

ΦH(x, t) = lim
k→∞

ΦH
k (x, t), ΦL(x, t) = lim

k→∞
ΦL

k (x, t)

ΦM(x, t) = lim
k→∞

ΦM,2
k (x, t) = lim

k→∞
ΦM,1

k (x, t)
(10)

Proof. The main idea of the proof is to take the maximum principle and comparison
principle (e.g., see [34]) repeatedly.

First, we show ΦM,2
0 < ΦM,1

0 in QM and ΦL
1 < ΦL

0 in QL. For a semi-unbounded
problem (8), using the maximum principle gives ΦL

0 (x, t) < 1. Thus, ΦM,1
0 (XM1 , t) =

ΦL
0 (XM1 , t) < 1 for t > 0. For the Dirichlet problem (9), using the maximum principle, we

obtain
ΦM,1

0 (x, t) < 1, ∀(x, t) ∈ QM.

Therefore, ΦH
0 (XH , t) = ΦM,1

0 (XH , t) < 1 for t > 0. It follows that ΦH
0 (x, t) < 1

in QH according to the maximum principle. Given that ΦM,2
0 (XM2 , t) = ΦH

0 (XM2 , t), we
have ΦM,2

0 (XM2 , t) < 1 for t > 0. Noting that ΦM,1
0 (XM2 , t) = 1 and ΦM,2

0 (XM1 , t) =

ΦM,1
0 (XM1 , t), using the comparison principle, we find

ΦM,2
0 (x, t) < ΦM,1

0 (x, t), ∀(x, t) ∈ QM. (11)

Further, ΦM,2
0 < 1 in QM. Hence, ΦL

1 (XL, t) = ΦM,2
0 (XL, t) < 1. Combining with

ΦL
0 (XL, t) = 1 yields

ΦL
1 (x, t) < ΦL

0 (x, t), ∀(x, t) ∈ QL. (12)

Then, we make an inductive assumption that ΦM,2
k−1 < ΦM,1

k−1 in QM,ΦL
k < ΦL

k−1 in
QL, k ≥ 1.

On account of the iterative relationships ΦM,1
k (XM1 , t) = ΦL

k (XM1 , t) and ΦM,2
k−1(XM1 , t) =

ΦM,1
k−1(XM1 , t) = ΦL

k−1(XM1 , t), we obtain ΦM,1
k (XM1 , t) < ΦM,2

k−1(XM1 , t) for t > 0. And con-
sidering that ΦM,1

k (XM2 , t) = ΦM,2
k−1(XM2 , t), using the comparison principle, we obtain

ΦM,1
k (x, t) < ΦM,2

k−1(x, t), ∀(x, t) ∈ QM. (13)

Combined with ΦM,2
k−1 < ΦM,1

k−1 in QM, we have ΦM,1
k < ΦM,1

k−1 in QM.
Also, the iterative conditions ΦH

k (XH , t) = ΦM,1
k (XH , t) and ΦH

k−1(XH , t) = ΦM,1
k−1(XH ,

t) imply ΦH
k (XH , t) < ΦH

k−1(XH , t). Appling the comparison principle shows that

ΦH
k (x, t) < ΦH

k (x, t), ∀(x, t) ∈ QH . (14)

From this, we deduce that

ΦM,2
k (XM2 , t) = ΦH

k (XM2 , t) < ΦH
k−1(XM2 , t)

= ΦM,2
k−1(XM2 , t) = ΦM,1

k (XM2 , t).

Combined with ΦM,2
k (XM1 , t) = ΦM,1

k (XM1 , t), it follows that
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ΦM,2
k (x, t) < ΦM,1

k (x, t), ∀(x, t) ∈ QM. (15)

Noting (13), we conclude that ΦM,2
k < ΦM,2

k−1 in QM.
We thus obtain

ΦL
k+1(XL, t) = ΦM,2

k (XL, t) < ΦM,2
k−1(XL, t) = ΦL

k (XL, t).

According to the comparison principle,

ΦL
k+1(x, t) < ΦL

k (x, t), ∀(x, t) ∈ QL. (16)

From Equations (13)–(16), we can see that the induction argument for the monotonicity
of the sequences is completed.

Similarly, via induction, we can derive that for each k ≥ 0, ΦL
k , ΦM1

k , ΦM,2
k , ΦH

k ≥ 0.

Lemma 2. ΦH(x, t), ΦM(x, t) and ΦL(x, t) defined by (10) form a solution for the PDE problem (7).

Proof. I. LHΦH = 0 in QH , LMΦM = 0 in QM, and LLΦL = 0 in QL.
Based on interior estimates of parabolic differential equations, it is easy to obtain that

any finite derivative of Φi
k is uniformly bounded for k ≥ 0 in any interior neighborhood

of (x, t) ∈ Qi for i = H, M, L. Thus, we can deduce that Φi, i = H, M, L is infinitely
differentiable within its region and satisfies the corresponding equation.

II. ΦH , ΦM and ΦL satisfy the initial and boundary conditions.
For any k ≥ 0, ΦH

k (x, 0) = ΦM
k (x, 0) = ΦL

k (x, 0) = min{ex, 1}, hence it is obvious that

ΦH(x, 0) = ΦM(x, 0) = ΦL(x, 0) = min{ex, 1}.

Since

ΦH
k−1(XH , t) = ΦM,1

k−1(XH , t), ΦM,2
k−1(XM2 , t) = ΦH

k−1(XM2 , t),

ΦL
k (XL, t) = ΦM,2

k−1(XL, t), ΦM,1
k (XM1 , t) = ΦL

k (XM1 , t),

for all k ≥ 1, as k → +∞, we obtain

ΦH(XH , t) = ΦM(XH , t), ΦM(XM2 , t) = ΦH(XM2 , t),

ΦL(XL, t) = ΦM(XL, t), ΦM(XM1 , t) = ΦL(XM1 , t).

4.2. Existence

Lemma 2 gives the following existence result:

Theorem 1 (Existence). Problem (7) admits a solution (ΦL, ΦM, ΦH) that satisfies

ΦL(x, t) ∈ C∞(QL\(0, 0)), ΦM(x, t) ∈ C∞(QM), ΦH(x, t) ∈ C∞(QH).

5. Uniqueness

We use the maximum principle to prove the uniqueness of the solution of problem (7).
Since the asymmetric boundary of each region is inside another region, the solution of each
region cannot obtain the maximum or minimum value on the boundary.

Theorem 2 (Uniqueness). The solution of problem (7) is unique.
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Proof. It suffices to show that the following equation has solutions only for zero functions.

LHΦH = 0, for x > XH , t > 0,
ΦH(x, 0) = 0, for x > XH ,
ΦH(XH , t) = ΦM(XH , t), for t > 0,
LMΦM = 0, for XM1 < x < XM2 , t > 0,
ΦM(x, 0) = 0, for XM1 < x < XM2 ,
ΦM(XM2 , t) = ΦH(XM2 , t), for t > 0,
ΦM(XM1 , t) = ΦL(XM1 , t), for t > 0,
LLΦL = 0, for x < XL, t > 0,
ΦL(x, 0) = 0, for x < XL,
ΦL(XL, t) = ΦM(XL, t), for t > 0.

(17)

We first show that ΦL ≤ 0 in QL. If not, there is a point which is denoted by (x0, t0) in
QL such that ΦL(x0, t0) > 0. According to the maximum principle, the maximum value
of ΦL in QL, represented by ΦL

max, must be taken at the boundary. Since ΦL ≡ 0 at t = 0,
there must be a point on x = XL, denoted by (XL, t1), t1 > 0, such that ΦL(XL, t1) = ΦL

max.
Clearly, ΦM(XL, t1) = ΦL(XL, t1) > 0. From the maximum principle, the maximum

value of ΦM in QM, represented by ΦM
max, must be taken at the boundary. Since ΦM ≡ 0

at t = 0, there must be a point on x = XM1 , denoted by (XM1 , t2), t2 > 0, such that
ΦM(XM1 , t2) = ΦM

max, or a point on x = XM2 , denoted by (XM2 , t3), t3 > 0, such that
ΦM(XM2 , t3) = ΦM

max.
If the former holds, then

ΦM(XM1 , t2) > ΦM(XL, t1) = ΦL(XL, t1). (18)

Since (XM1 , t2) ∈ QL, we also see that

ΦL(XL, t1) > ΦL(XM1 , t2) = ΦM(XM1 , t2), (19)

contrary to (18).
If the latter is true, then ΦH(XM2 , t3) = ΦM(XM2 , t3) > 0. Using the maximum

principle, the maximum value of ΦH in QH , represented as ΦH
max, must be taken at the

boundary. Since ΦH ≡ 0 at t = 0, there exists a point on x = XH , denoted by (XH , t4),
t4 > 0, such that ΦH(XH , t4) = ΦH

max. It follows that

ΦH(XH , t4) > ΦH(XM2 , t3) = ΦM(XM2 , t3). (20)

As (XH , t4) ∈ QM, we have

ΦM(XM2 , t3) > ΦM(XH , t4) = ΦH(XH , t4), (21)

which is a contradiction.
Next, we can prove that ΦL ≥ 0 in QL in the same manner. It follows immediately

that ΦL ≡ 0 in QL.
Similarly, we have ΦM ≡ 0 in QM and ΦH ≡ 0 in QH .

6. Numerical Results

We used an explicit difference scheme to calculate Φi(x, t), i = H, M, L and present the
results in figures. The parameters we chose as examples are listed in the figure captions.

Figure 1 shows the bond value functions on different rating regions. Figure 1a–c
depict the function images on the low-, medium- and high-rating regions that correspond
to the domains x ≤ XL, XM1 ≤ x ≤ XM2 and x ≥ XH , respectively. The function image
on the lower-rating region exhibits greater variation with respect to x, which implies that



Math. Comput. Appl. 2024, 29, 7 11 of 16

lower-grade bonds are more affected by the asset value. Note that Figure 1d displays the
overall shape of the function graph across the entire region. In fact, there is an overlapping
area between every two adjacent rating regions, forming a buffer zone for credit rating
migrations where the credit rating maintains its original status. The overlap of the low-
rating and medium-rating regions is confined in the range of XM1 ≤ x ≤ XL, while that of
the medium-rating and high-rating regions is restricted within the interval XH ≤ x ≤ XM2 .
In these overlaps, the graphs of the functions effectively consist of two layers, and the
differences between these layers are depicted in Figure 2.

We can see the differences are negative, except at zero on the boundaries in Figure 2,
which means that the price of higher-grade bonds exceeds that of lower-grade bonds in
the buffer zone, although the gap is not huge. Figure 2a–c were prepared based on three
groups of different asymmetric boundary parameters, respectively. From Figure 2a with
XL = 0.3, XH = 0.7, the low–medium overlap and the medium–high overlap are separate.
In Figure 2b with XL = XH = 0.5, the two overlaps are connected on x = 0.5(x = XH(XL)).
In Figure 2c with XL = 0.6, XH = 0.4, the function images on the two overlaps are crossed
together. Indeed, the two overlaps have a common part, the low–medium–high overlap
0.4 ≤ x ≤ 0.6(XH ≤ x ≤ XL), where the credit rating of bonds may fall into any of the
three categories: low, medium or high. Conclusively, each set of parameters represents
a kind of theoretically meaningful configuration of asymmetric boundaries: XH > XL ,
XH = XL or XH < XL. The flexibility in boundary settings leads to various structures in
the buffer zones for the multirating model with asymmetric boundaries, which contributes
to identifying different types of credit migration phenomena.

(a) Low-rating region (b) Medium-rating region

(c) High-rating region (d) The whole region

Figure 1. Bond Value function in different rating regions. The surface plots the bond value in
low-, medium- and high-rating regions and in the whole region. It is assumed that, for the risk-free
interest rate r = 3%, for the asset return volatility in the low rating, σL = 40%, in the medium rating,
σM = 30% and in the high rating, σH = 20%, and for the migration boundaries for upgrades and
downgrades, XL = 0.3, XM1 = 0.2, XM2 = 0.9, XH = 0.7.
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(a) XL = 0.3, XH = 0.7 (b) XL = XH = 0.5

(c) XL = 0.6, XH = 0.4

Figure 2. Difference value function of two adjacent ratings in an overlapping region. The surfaces
show the bond value in the low rating minus that in the medium rating and the bond value in the
medium rating minus that in the high rating. The parameters of migration boundaries XL and XH

are set in three cases, and the other parameters are the same as in Figure 1.

The above numerical results are calculated by employing example parameters. We
now explain how to carry out a real parameter calibration in the model by taking the
Walt Disney Company (DIS) as an example. The calibration method we use is similar to
that of Liang and Lin [11], albeit more intricate, as we need to calibrate more migration
boundary parameters and volatility parameters than the two-rating case.

We analyze the DIS from 15 October 2001 to 12 March 2019. During this interval, the
DIS underwent four credit rating migrations on the dates highlighted in Table 2, considering
“A−” and “BBB+” as the low rating, “A” as the medium rating and “A+” as the high rating.
The thresholds for downgrades and upgrades, SM1 , SL, SH and SM2 , are the asset values
at the time when the credit rating changes, which can be approximated by the sum of
the market capitalization and the book value of the total liabilities. The face value of
debt F is represented by the average of total liabilities reported in the balanced sheet
during this interval. Thus, we can obtain the transformed thresholds, XM1 , XL, XH and
XM2 , by x = log(S/F). The asset return volatility in different ratings, σi, i = H, M, L,
can be obtained from historical equity volatility σe

i over the correspond interval using the
relationship formula σe

i = σi
St
Et

∂Et
∂St

, where Et denotes the market value of equity at time
t. For the details of this formula, we refer to [11]. Moreover, we substitute the risk-free
interest r by the ten-year Treasury yield. Table 3 presents the final parameter calibration
results, which belong to the asymmetric boundary type of XL < XH . This calibration can
provide a benchmark parameter estimation for the multirating model as a first step, and
we leave the complete empirical analysis to future research.
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Table 2. Credit ratings for DIS.

Date Rating Type

· · · · · · -
27 February 1996 A Medium rating
15 October 2001 A− Low rating
4 October 2002 BBB+ Low rating

2 June 2005 A− Low rating
5 October 2007 A Medium rating

3 May 2017 A+ High rating
12 March 2019 A Medium rating

· · · · · · -
Source: Standard & Poor’s.

Table 3. Parameters for the DIS.

SM1 SL SH SM2 F X M1 XL X H X M2 σH σM σL r

59 98 215 219 31 0.27 0.49 0.83 0.84 0.15 0.17 0.18 0.046
Unit for S and F: USD billion.

7. General Form for Multi-Credit-Rating Model

The establishment and analysis of the three-rating model show that it shares character-
istics and properties with the general multirating model. Based on this, it is not difficult to
extend the three-rating model to a general multirating form. The problem with N credit
ratings becomes 

L1Φ1 = 0, for x > X1, t > 0,
Φ1(x, 0) = min{ex, 1}, for x > X1,
Φ1(X1, t) = Φ2(X1, t), for t > 0,

...
...

LiΦi = 0, for Xi1 < x < Xi2 , t > 0,
Φi(x, 0) = min{ex, 1}, for Xi1 < x < Xi2 ,
Φi(Xi2 , t) = Φi−1(Xi2 , t), for t > 0,
Φi(Xi1 , t) = Φi+1(Xi1 , t), for t > 0,

...
...

LNΦN = 0, for x < XN , t > 0,
ΦN(x, 0) = min{ex, 1}, for x < XN ,
ΦN(XN , t) = ΦN−1(XN , t), for t > 0,

(22)

with the operator Li = ∂
∂t −

1
2 σi

2 ∂2

∂x2 − (r − 1
2 σi

2) ∂
∂x + r and Φi as the bond value in the

ith rating for i = 1, · · · ,N. Note that the difference between the operator Li defined in
Section 4 and the one defined here is that i in the former is equal to H, M, L, and i in the
latter is in the range from 1 to N.

Correspondingly, there are N volatility values

0 < σ1 < · · · < σi < · · · < σN ,

and N − 1 pairs of asymmetric migration boundaries: one group for downgrades

0 < X{N−1}1 < · · · < Xi1 < X{i−1}1 < · · · < X1, (23)

and the other group for upgrades

XN < · · · < Xi2 < X{i−1}2 < · · · < X22 . (24)
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And asymmetric boundaries between adjacent ratings satisfy

X1 < X22 ,

Xi1 < X{i+1}2 , 2 ≤ i ≤ N − 2,

X{N−1}1 < XN .

(25)

We summarize the meaning of all symbols in the PDE problem of (22) in Table 4.

Table 4. Symbols in the PDE problem of (22).

Φi (i = 1, · · · , N) x t σi (i =
1, · · · , N)

r XN , X i2 (i =
2, · · · , N − 1)

X1, X i1 (i =
2, · · · , N − 1)

Bond value
Natural

logarithm of
asset value

Time to
maturity

Volatility of asset
return

Risk-free interest
rate Upgrade threshold Downgrade

threshold

We can see that the multirating model has various structures on the buffers, result-
ing from various order relations of the migration boundaries that only need to satisfy
inequalities (23)–(25).

Although problem (22) has more boundaries and overlapping regions than problem (7),
the existence and uniqueness of the solution can still be obtained using the previous
methods in addition to requiring more argument steps. For the uniqueness, we now need
to construct the sequence {ΦN

k , · · · , Φi,1
k , Φi,2

k , · · · , Φ1
k}

∞
k=0 via monotonic iteration. And the

argument about the uniqueness by contradiction needs to be divided into more branches
as the number of credit ratings increases.

8. Conclusions and Discussion

In this paper, we studied a multi-credit-rating migration model with asymmetric
migration boundaries. This research extends the work of Liang and Lin [11], who only
considered two credit ratings; this study thus aligns with the finer delineation of credit
ratings seen in the real world. By arranging the order of asymmetric boundaries suitably,
a model with three ratings was established in a meaningful manner. A problem in the
PDE system was derived, and the existence, uniqueness and regularity of the solution
for the problem were obtained, which verified the rationality of the model further. The
model featured two buffer zones, one for the migration between low rating and medium
rating, and the other for the migration between medium rating and high rating. Due to
various asymmetric boundary settings, these two buffers exhibited three possible positional
relationships: separated, connected and intersected, as evident in the numerical results.
The establishment and analysis of the three-rating model showed that it shared common
characteristics with the general multirating model. Consequently, we readily presented the
general form of a multirating model and asserted that the relevant theoretical results were
valid in that model as well.

Our work may lay a valuable foundation for the asymmetric fixed-boundary problem
with multiple ratings in theory. And the model has the potential for applications in practice.
For instance, firstly, the multirating model adapts to the reality that the company’s credit is
labeled with several ratings, such as from “AAA” to “C” according to Standard & Poor’s
classifications. Secondly, the asymmetric boundaries can be flexibly configured to accommo-
date various types of issuers with different risk features, primarily manifested in different
structures of the buffer zones. The Walt Disney Company, for which we calibrated parame-
ters, corresponds to one of these types. In a word, the model enhances the previous existing
models in which the credit changes between two ratings with asymmetric thresholds [11] or
multiple ratings with strict thresholds [12]. Furthermore, the asymmetry threshold model
can describe the deadband and backlashlike hysteresis in engineering, and the model we
proposed is suitable for their multistate scenarios.
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As an initial attempt, in this paper, we concentrated on the multirating form of an
asymmetric threshold model with fixed boundaries, where the asset value served as the
determinant of the credit migration. In fact, it is more reasonable to drive the migration
in credit ratings according to the liability-to-asset ratio, which produces a free boundary.
A potential avenue for future research involves extending the free-boundary model with
asymmetric thresholds in [10] to a multirating form. On the other hand, a constant interest
rate was assumed in our model, while the interest rate is a stochastic process [35–37].
Therefore, considering a multirating model with both asymmetric migration thresholds
and stochastic interest rates is worthwhile in future research.

Author Contributions: Conceptualization, J.L.; methodology, Y.L.; formal analysis, Y.L.;
writing—original draft preparation, Y.L.; writing—review and editing, J.L. and Y.L.; visualization,
Y.L.; supervision, J.L.; funding acquisition, J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (no. 12071349).

Data Availability Statement: The data used in this study are available in S&P at https://www.
spglobal.com/ratings/en/, NASDAQ at https://www.nasdaq.com/, and SEC at https://www.sec.
gov/os/accessing-edgar-data.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jarrow, R.A.; Lando, D.; Turnbull, S.M. A Markov model for the term structure of credit risk spreads. Rev. Financ. Stud. 1997,

10, 481–523. [CrossRef]
2. Arvanitis, A.; Gregory, J.; Laurent, J.P. Building models for credit spreads. J. Deriv. 1999, 6, 27–43. [CrossRef]
3. Hurd, T.; Kuznetsov, A. Affine Markov chain models of multifirm credit migration. J. Credit. Risk 2007, 3, 3–29. [CrossRef]
4. Lando, D. Some elements of rating-based credit risk modeling. In Advanced Fixed-Income Valuation Tools; Wiley: Hoboken, NJ,

USA, 2000; pp. 193–215.
5. Thomas, L.C.; Allen, D.E.; Morkel-Kingsbury, N. A hidden Markov chain model for the term structure of bond credit risk spreads.

Int. Rev. Financ. Anal. 2002, 11, 311–329. [CrossRef]
6. Nguyen, H. An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models. J. Empir. Financ.

2023, 72, 103–121. [CrossRef]
7. Chen, S.N.; Hsu, P.P.; Liang, K.Y. Pricing credit-risky bonds using recovery rate uncertainty and macro-regime switching. Eur. J.

Financ. 2023, 1–17. . [CrossRef]
8. Liang, J.; Zeng, C. Corporate bonds pricing under credit rating migration and structure framework. Appl. Math. J. Chin. Univ.

2015, 30, 61–70.
9. Hu, B.; Liang, J.; Wu, Y. A free boundary problem for corporate bond with credit rating migration. J. Math. Anal. Appl. 2015,

428, 896–909. [CrossRef]
10. Chen, X.; Liang, J. A free boundary problem for corporate bond pricing and credit rating under different upgrade and downgrade

thresholds. Siam J. Financ. Math. 2021, 12, 941–966. [CrossRef]
11. Liang, J.; Lin, Y. A Bond Pricing Model with Credit Migration Risk: Different Upgrade and Downgrade Thresholds. Acta Math.

Appl. Sin. Engl. Ser. 2023, 39, 765–777. [CrossRef]
12. Wu, Y.; Liang, J. A new model and its numerical method to identify multi credit migration boundaries. Int. J. Comput. Math. 2018,

95, 1688–1702. [CrossRef]
13. Merton, R.C. On the pricing of corporate debt: The risk structure of interest rates. J. Financ. 1974, 29, 449–470.
14. Black, F.; Cox, J.C. Valuing corporate securities: Some effects of bond indenture provisions. J. Financ. 1976, 31, 351–367. [CrossRef]
15. Leland, H.E. Corporate debt value, bond covenants, and optimal capital structure. J. Financ. 1994, 49, 1213–1252. [CrossRef]
16. Longstaff, F.A.; Schwartz, E.S. A simple approach to valuing risky fixed and floating rate debt. J. Financ. 1995, 50, 789–819.

[CrossRef]
17. Leland, H.E.; Toft, K.B. Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. J. Financ.

1996, 51, 987–1019. [CrossRef]
18. Briys, E.; De Varenne, F. Valuing risky fixed rate debt: An extension. J. Financ. Quant. Anal. 1997, 32, 239–248. [CrossRef]
19. Carty, L. Moody’s Rating Migration and Credit Quality Correlation. In Moody’s Sepcial Report July. Available online: http:

//lamfin.arizona.edu/fixi/542/mrt.pdf (accessed on 6 October 2023).
20. Nickell, P.; Perraudin, W.; Varotto, S. Stability of rating transitions. J. Bank. Financ. 2000, 24, 203–227. [CrossRef]
21. Altman, E.I.; Kao, D.L. The implications of corporate bond ratings drift. Financ. Anal. J. 1992, 48, 64–75. [CrossRef]
22. Lando, D.; Skødeberg, T.M. Analyzing rating transitions and rating drift with continuous observations. J. Bank. Financ. 2002,

26, 423–444. [CrossRef]

https://www.spglobal.com/ratings/en/
https://www.spglobal.com/ratings/en/
https://www.nasdaq.com/
https://www.sec.gov/os/accessing-edgar-data
https://www.sec.gov/os/accessing-edgar-data
http://doi.org/10.1093/rfs/10.2.481
http://dx.doi.org/10.3905/jod.1999.319117
http://dx.doi.org/10.21314/JCR.2007.058
http://dx.doi.org/10.1016/S1057-5219(02)00078-9
http://dx.doi.org/10.1016/j.jempfin.2023.03.003
.
http://dx.doi.org/10.1080/1351847X.2023.2193703
http://dx.doi.org/10.1016/j.jmaa.2015.03.040
http://dx.doi.org/10.1137/20M1343592
http://dx.doi.org/10.1007/s10255-023-1082-3
http://dx.doi.org/10.1080/00207160.2017.1329529
http://dx.doi.org/10.1111/j.1540-6261.1976.tb01891.x
http://dx.doi.org/10.1111/j.1540-6261.1994.tb02452.x
http://dx.doi.org/10.1111/j.1540-6261.1995.tb04037.x
http://dx.doi.org/10.1111/j.1540-6261.1996.tb02714.x
http://dx.doi.org/10.2307/2331175
http://lamfin.arizona.edu/fixi/542/mrt.pdf
http://lamfin.arizona.edu/fixi/542/mrt.pdf
http://dx.doi.org/10.1016/S0378-4266(99)00057-6
http://dx.doi.org/10.2469/faj.v48.n3.64
http://dx.doi.org/10.1016/S0378-4266(01)00228-X


Math. Comput. Appl. 2024, 29, 7 16 of 16

23. Albanese, C.; Chen, O.X. Implied migration rates from credit barrier models. J. Bank. Financ. 2006, 30, 607–626. [CrossRef]
24. Wu, Y.; Liang, J.; Hu, B. A free boundary problem for defaultable corporate bond with credit rating migration risk and its

asymptotic behavior. Discret. Contin. Dyn.-Syst. 2020, 25, 1043. [CrossRef]
25. Li, Y.; Zhang, Z.; Hu, B. Convergence Rate of an Explicit Finite Difference Scheme for a Credit Rating Migration Problem. Siam J.

Numer. Anal. 2018, 56, 2430–2460. [CrossRef]
26. Lin, Y.; Liang, J. Empirical validation of the credit rating migration model for estimating the migration boundary. J. Risk Model

Valid. 2021, 15, 2. [CrossRef]
27. Wang, Z.; Liu, Z.; Jiang, T.; Huang, Z. Asymptotic traveling wave for a pricing model with multiple credit rating migration risk.

Commun. Math. Sci. 2019, 17, 1975–2004. [CrossRef]
28. Yin, H.M.; Liang, J.; Wu, Y. On a new corporate bond pricing model with potential credit rating change and stochastic interest

rate. J. Risk Financ. Manag. 2018, 11, 87. [CrossRef]
29. Liang, J.; Yin, H.M.; Chen, X.; Wu, Y. On a corporate bond pricing model with credit rating migration risks and stochastic interest

rate. Quanti. Financ. Econ. 2017, 1, 300–319. [CrossRef]
30. Liang, J.; Lin, Y. A traveling wave with a buffer zone for asymptotic behavior of an asymmetric fixed credit migration model.

Math. Methods Appl. Sci. 2023, 46, 7353–7367. [CrossRef]
31. Frei, C.; Wunsch, M. Moment estimators for autocorrelated time series and their application to default correlations. J. Credit. Risk

2018, 14, 1–29. [CrossRef]
32. Basson, L.; Van Vuuren, G. Through-the-cycle to Point-in-time Probabilities of Default Conversion: Inconsistencies in the Vasicek

Approach. Int. J. Econ. Financ. Issues 2023, 13, 42. [CrossRef]
33. Dixit, R.K.; Pindyck, R.S. Investment under Uncertainty; Princeton University Press: Princeton, NJ, USA, 2012.
34. Hu, B. Blow-Up Theories for Semilinear Parabolic Equations; Springer: Berlin/Heidelberg, Germany, 2011.
35. Wei, C. Least squares estimation for a class of uncertain Vasicek model and its application to interest rates. In Statistical Papers;

Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–19.
36. Ögetbil, O.; Hientzsch, B. Extensions of Dupire formula: Stochastic interest rates and stochastic local volatility. Siam J. Financ.

Math. 2023, 14, 452–474. [CrossRef]
37. Ascione, G.; Mehrdoust, F.; Orlando, G.; Samimi, O. Foreign exchange options on Heston-CIR model under Lévy process

framework. Appl. Math. Comput. 2023, 446, 127851. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jbankfin.2005.04.011
http://dx.doi.org/10.3934/dcdsb.2019207
http://dx.doi.org/10.1137/17M1151833
http://dx.doi.org/10.21314/JRMV.2021.002
http://dx.doi.org/10.4310/CMS.2019.v17.n7.a9
http://dx.doi.org/10.3390/jrfm11040087
http://dx.doi.org/10.3934/QFE.2017.3.300
http://dx.doi.org/10.1002/mma.8974
http://dx.doi.org/10.21314/JCR.2017.231
http://dx.doi.org/10.32479/ijefi.15079
http://dx.doi.org/10.1137/21M1390906
http://dx.doi.org/10.1016/j.amc.2023.127851

	Introduction
	Literature Review 
	Model
	Assumption
	Cash Flow
	PDE Problem

	Existence
	Monotonic Sequences
	Existence

	Uniqueness
	Numerical Results
	General Form for Multi-Credit-Rating Model
	Conclusions and Discussion
	References

