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Abstract: The extended Fisher–Kolmogorov (EFK) equation is an important model for phase transi-
tions and bistable phenomena. This paper presents some fast explicit numerical schemes based on the
integrating factor Runge–Kutta method and the Fourier spectral method to solve the EFK equation.
The discrete global convergence of these new schemes is analyzed rigorously. Three numerical
examples are presented to verify the theoretical analysis and the efficiency of the proposed schemes.
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1. Introduction

The Fisher–Kolmogorov (FK) equation was first proposed by Fisher [1] and Kol-
mogorov [2] in 1937 to describe the interaction between the spread and adaptation of
biological populations. By adding a stabilizing fourth-order derivative term to the FK
equation, Collent [3] and Saarloos [4] proposed the extended FK (EFK) equation, which
is a very important mathematical and physical model and has been widely used in many
physics and engineering applications. In this paper, we consider the following EFK model
with periodic boundary conditions:{

∂tv = −κ∆2v + ∆v + g(v), (x, t) ∈ Ω× (0, T],

v(x, 0) = v0(x), x ∈ Ω,
(1)

where Ω ∈ [a, b]d, (d = 1, 2) is a bounded area and κ is a positive constant. The function
g(v) = −G′(v) and G(v) = 1

4 (v
2 − 1)2 is a double-well potential. When κ = 0 in (1),

the EFK model reduces to the classical FK model. We assume that the function g(v) exhibits
Lipschitz continuity with respect to Ω, where the Lipschitz constant L is defined as follows

max
v∈R
|g′(v)| ≤ L.

The EFK model (1) can be viewed as an L2 gradient flow associated with the follow-
ing energy

E(v) =
∫

Ω

(
κ

2
|∆v|2 + 1

2
|∇v|2 + G(v)

)
dx,

which is diminishing in time, i.e., d
dt E(v) ≤ 0.

All the above properties are determined by the inherent nature of the physical model.
Thus, in order to avoid non-physical effects in the simulations over a long period of time, it is
highly desirable to design a structure-preserving numerical scheme. There have been some
excellent results in numerical research on the EFK model, such as the spline configuration
method [5], nonlinear/linear finite difference schemes [6], and the local boundary integral
method [7]. However, these works do not consider the physical properties of the EFK
model. Recently, Sun et al. [8,9] proposed two convex splitting variable step BDF2/BDF3
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schemes for the EFK model, and the proposed schemes preserve the modified discrete
energy dissipation law.

The development of high-precision numerical schemes for PDEs of gradient-flow-type
has attracted much attention. In this direction, it is worth mentioning the integrating
factor Runge–Kutta (IFRK) method [10]. The IFRK method has demonstrated remarkable
advantages for equations with stiff linear terms. The exponential function in this method
provides the exact solution of the linear part, so the stiffness does not restrict the step
size and the solution to the nonlinear part may be approximated explicitly. As a result,
the IFRK method is often explicit [11,12]. In recent years, the IFRK method has attracted
widespread attention for solving partial differential equations. Ju et al. [13] proposed the
MBP-preserving IFRK method for semilinear parabolic equations. Li et al. [14] proposed
a class of unconditional MBP-preserving IFRK schemes for the conservative Allen–Cahn
equation. Zhang et al. [15,16] developed a class of high-order structure-preserving IFRK
methods for the Allen–Cahn equation. Then, they further [17] proposed and analyzed
a series of temporal up to fourth-order unconditionally structure-preserving single-step
methods to solve the Allen–Cahn equation, and introduced parametric IFRK (pIFRK)
schemes which can be used to construct higher-order parametric single-step methods.
To the authors’ best knowledge, there are very few works in the literature on high-precision
numerical methods for the EFK model. The objective of this paper is to develop a class
of efficient, high-order-accurate schemes for the EFK model based on the explicit IFRK
method coupled with non-decreasing abscissas (eIFRK+) [13,18].

The rest of the article is arranged as follows: In Section 2, a class of eIFRK+ schemes is
proposed for solving the EFK model, and the corresponding theoretical analysis is given in
Section 3. Numerical experiments are presented to test the performance of the proposed
numerical schemes in Section 4, and some concluding remarks are given in Section 5.

2. eIFRK+ Fourier-Spectral Schemes for EFK Model

Define a periodic spatial grid ∩h =
{
(xi, yj) =

(
a + ih, a + jh

)
, 0 ≤ i, j ≤ N − 1)

}
with h = b−a

N (N is even). All of the 2D periodic grid functions defined on ∩h are denoted
byMh.

The discrete Fourier transform φ̃ = Qφ and the corresponding inverse transform
φ = Q−1φ̃ are defined by [19]

φ̃pq =
h2

(b− a)2

N−1

∑
i=0

N−1

∑
j=0

φij exp
(
− i

2pπ(xi − a)
b− a

− i
2qπ(yj − a)

b− a

)
,

p, q = 0,±1,±2, · · · ,
N
2

,

(2)

φij =
N/2

∑
p=−N/2

N/2

∑
q=−N/2

φ̃pq(t) exp
(

i
2pπ(xi − a)

b− a
+ i

2qπ(yj − a)
b− a

)
,

φ̃− N
2 ,q = φ̃ N

2 ,q, φ̃p,− N
2
= φ̃p, N

2
,

(3)

respectively. We further define the operators D̂x and D̂y on M̂h = {Qφ|φ ∈ Mh} as

(D̂xφ̃)pq =
2pπi
b− a

φ̃pq, (D̂yφ̃)pq =
2qπi
b− a

φ̃pq,

and then, the Laplace operator can be approximated by

∆N = Q−1(D̂2
x + D̂2

y)Q.

Next, we give some fully discrete eIFRK+ schemes for solving the EFK equation. Let
τ = T

M and define the time node as tk = kτ (k = 0, 1, · · ·M). According to the definitions
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of discrete spatial operators presented in Section 2, the EFK model (1) is reduced to the
following nonlinear ordinary differential equations (ODEs) in time

d
dt

v(t) = LNv(t) + g(v(t)), (4)

where LN = −κ∆2
N +∆N and v(t) = {vij(t)} ∈ Mh. Let v(t) = etLN u(t), then Equation (4)

can be transformed into
d
dt

u(t) = e−tLN g
(

etLN u(t)
)

, (5)

which can be solved by the following s-stage classical RK scheme [18]
u(0) = uk,

u(i) =
i−1
∑

j=0
[ηiju(j) + τγije−t(j)

k LN g(et(j)
k LN u(j))], 1 ≤ i ≤ n,

uk+1 = u(n),

(6)

where t(j)
k = tk + djτ, dj is the abscissa at each j-th layer. ηij ≥ 0 and

i−1
∑

j=0
ηij = 1, γij is a

real constant.
Since v(j) = et(j)

k LN u(j), then (6) becomes
v(0) = vk,

v(i) =
i−1
∑

j=0
e(di−dj)τLN [ηijv(j) + τγijg(v(j))], 1 ≤ i ≤ n,

vk+1 = v(n),

(7)

where di − dj ≥ 0, d0 = 0 and dn = 1. By a simple derivation, the above scheme can be
rewritten in the following equivalent form [13]:

v(0) = vk,

v(i) = ediτLN vk + τ
i−1
∑

j=0
εije

(di−dj)τLN g(v(j)), 1 ≤ i ≤ n,

vk+1 = v(n),

(8)

where
i−1
∑

j=0
εij ≤ 1, γij = εij −

i−1
∑

s=j+1
ηisεsj.

Some specific cases of system (7) are presented, which are denoted by eIFRK+(n, q),
where q denotes the time accuracy:

eIFRK+(1,1): vk+1 = eτLN [vk + τg(vk)].
(9)

eIFRK+(2,2):

{
v(1) = eτLN [vk + τg(vk)],
vk+1 = 1

2 eτLN vk + 1
2 [v

(1) + τg(v(1))].
(10)

eIFRK+(3,3):


v(1) = 1

2 e
2τ
3 LN vk + 1

2 e
2τ
3 LN [vk + 4τ

3 g(vk)],

v(2) = 2
3 e

2τ
3 LN vk + 1

3 [v
(1) + 4τ

3 g(v(1))],
vk+1 = 59

128 eτLN vk + 15
128 eτLN [vk + 4τ

3 g(vk)] + 27
64 e

τ
3LN [v(2) + 4τ

3 g(v(2))].

(11)
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eIFRK+(4,4):



v(1)=e
τ
2LN [vk + τ

2 g(vk)],
v(2) = 1

2 e
τ
2LN [vk − τ

2 g(vk)] + 1
2 [v

(1) + τg(v(1))],
v(3) = 1

9 eτLN [vk − τg(vk)] + 2
9 e

τ
2LN [v(1) − 3τ

2 g(v(1))]
+ 2

3 e
τ
2LN [v(2) + 3τ

2 g(v(2))],
vk+1 = 1

3 e
τ
2LN [v(1) + τ

2 g(v(1))] + 1
3 e

τ
2LN v(2) + 1

3 [v
(3) + τ

2 g(v(3))].

(12)

3. Discrete Error Estimate

In this section, the discrete error estimation of the scheme (8) is discussed. We first
give one lemma that helps to prove the discrete error estimation for the scheme.

Lemma 1 ([20]). If a matrix A is negative semi-definite, then we have ‖etA‖2 ≤ 1 for t > 0, where
‖ · ‖2 denotes the standard vector or matrix L2-norm.

Theorem 1. (Error estimate.) Assume that v0 ∈ Hp
per(Ω)={v ∈ Hp

per(Ω) andvs.is Ω −
periodic} with p > 4 and the solution to the EFK model belongs to Cq+1(0, T; Hp

per(Ω)). Un-
der the conditions of Lemma 1, then the numerical solutions {V k} ∈ Mh generated by the eIFRK+
schemes (8) with V0 = Ihv0 satisfy the following error estimate

‖V k − Ihv(tk)‖2 ≤ c̃(hp + τq). (13)

where c̃ is a positive constant depending on τ and h. Ih: Hp
per(Ω)→Mh is a sample operator as

Ih(v(x, y)) = {v(xi, yj)}.

Proof. Let Z(t) = V(t)− Ihv(x, y, t) with Z(0) = 0; the difference between Equations (1)
and (4) leads to

d
dt

Z(t) = LN Z(t) + g(V(t))− g(Ih(v)) + RN(v), (14)

where the truncated error RN(v) = L(Ihv)−LN(Ihv) satisfies‖RN‖2 ≤ chp.
Multiplying both sides of (14) by e−tLN , then we have

d
dt

(
e−tLN Z(t)

)
= e−tLN (g(V(t))− g(Ih(v)) + RN(v)). (15)

Using the eIFRK+ scheme (8), we have the following fully discrete scheme for the
above equation

Z(i) = ediτLN Zk + τ
i−1
∑

j=0
εije

(di−dj)τLN
(

g(V j)− g(Ihv(j)) + RN(v(j))
)

, 1 ≤ i ≤ n− 1,

Zk+1 = eτLN Zk + τ
n−1
∑

i=0
ρie(1−di)τLN

(
g(V j)− g(Ihv(j)) + RN(v(j))

)
+ ξk,

(16)

where
i−1
∑

j=0
εij ≤ 1,

n−1
∑

i=0
εni =

n−1
∑

i=0
ρi = 1, ξk is the truncation error satisfying ‖ξk‖2 ≤ c′τq+1.

By the Lipschitz condition for g(v), we have

‖g(V j)− g(Ihv(j))‖2 ≤ L‖V j − Ihv(j)‖2 = L‖Z(j)‖2.
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Combination of the above estimates leads to

‖Z(i)‖2 ≤ ‖ediτLN Zk‖2 + τ‖
i−1

∑
j=0

εije
(di−dj)τLN (g(V j)− g(Ihv(j)))‖2

+ τ‖
i−1

∑
j=0

εije
(di−dj)τLN RN(v(j))‖2

≤ ‖Zk‖2 + Lτ
i−1

∑
j=0
‖Z(j)‖2 + chpτ.

By using the Gronwall’s inequality, we further have

‖Z(i)‖2 ≤ eL(i+1)τ(‖Zk‖2 + chpτ). (17)

Similar to the estimation of ‖Zk+1‖2, we have

‖Zk+1‖2 ≤ ‖Zk‖2 + Lτ
n−1

∑
i=0
‖Z(i)‖2 + chpτ + ‖ξk‖2. (18)

Combining (17) with (18), we have

‖Zk+1‖2 ≤ ‖Zk‖2 + Lτ
n−1

∑
i=0

eL(i+1)τ(‖Zk‖2 + chpτ) + chpτ + ‖ξk‖2

≤ ‖Zk‖2 + LτneLnτ‖Zk‖2 + c′′hpτ + c′τq+1.

(19)

Summing the above inequality from k = 0 to m and using Gronwall’s inequality, we
obtain the desired result

‖Zm+1‖|2 ≤ eLnTeLT
(c′′hpT + c′τqT) ≤ c̃(hp + τq).

4. Numerical Experiments

We examine the accuracy and efficiency of the proposed method through three numer-
ical experiments, including convergence and diminishing energy.

Example 1. The purpose of the first numerical experiment is to verify the role of parameter κ.
Consider the 1D EFK model in Ω= [−4, 4] with the initial condition

v0(x) = − sin(πx).

We choose N = 256 and τ = 0.01. Figure 1 shows the numerical results using scheme
eIFRK+(4,4) at different times t = 0, 0.05, 0.1, 0.15, 0.2. It is observed that the dynamic evolution of
κ = 0 is almost identical to that of κ = 10−4. However, when κ = 0.1, the solution rapidly evolves
from the initial state to zeros, which illustrates that the coefficient κ in the EFK model is a stable
parameter.

Example 2. To show the temporal accuracy and convergence of the proposed schemes, we consider
the 2D EFK model in Ω= [−16, 16]2 with κ = 0.01 and the initial condition

v0(x, y) = 0.1− 0.2 cos
(

π(x− 12)
16

)
sin
(

π(y− 12)
16

)
+ 0.1cos2

(
π(x + 10)

32

)
sin2

(
π(y + 3)

32

)
− 0.2sin2

(πx
8

)
cos
(

π(y− 6)
8

)
.
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We adopt the uniform 1024× 1024 spatial mesh, which is sufficiently fine so that the errors
caused by the spatial approximation can be ignored. The error between two different time steps τ and
τ
2 is calculated. The computational results are presented in Table 1. One may see that the numerical
orders of time accuracy are close to the optimal order.

-4 -3 -2 -1 0 1 2 3 4
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-0.8
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-0.4

-0.2

0

0.2

0.4
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u

T=0 T=0.05 T=0.1 T=0.15 T=0.2

(a)
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(c)

Figure 1. Numerical solutions with different κ values for Example 1. (a) κ = 0; (b) κ = 10−4;
(c) κ = 0.1.

Table 1. Temporal errors and convergence orders at T = 1 with κ = 0.01 and N = 1024 for Example 2.

eIFRK+ M Errmax Rate ErrL2 Rate

(1, 1) 16 3.9212× 10−3 - 1.9491×10−2 -
32 1.9980× 10−3 0.9728 9.8542 0.9840
64 1.0086× 10−3 0.9862 4.9540×10−3 0.9921

128 5.0671× 10−4 0.9931 2.4837× 10−3 0.9961

(2, 2) 16 1.2908× 10−4 - 6.5886× 10−4 -
32 3.3107× 10−5 1.9630 1.6909× 10−4 1.9622
64 8.3832× 10−6 1.9816 4.2826× 10−5 1.9812

128 2.1092× 10−6 1.9908 1.0776× 10−5 1.9906

(3, 3) 16 1.4809× 10−6 - 5.0559× 10−6 -
32 1.8992× 10−7 2.9631 6.5053× 10−7 2.9583
64 2.4046× 10−8 2.9815 8.2502× 10−8 2.9791

128 3.0251× 10−9 2.9907 1.0388× 10−8 2.9896

(4, 4) 16 3.1132× 10−8 - 1.6382× 10−7 -
32 1.9696× 10−9 3.9824 1.0359× 10−8 3.9830
64 1.2395× 10−10 3.9901 6.5125× 10−10 3.9915

128 7.7799× 10−12 3.9939 4.0823× 10−11 3.9958

Example 3. Consider the EFK model in Ω= [−1, 1]2 with the initial condition

v0(x, y)= −1 + tanh

(
0.4−

√
x2 + y2

ε
√

2

)
− tanh

(
0.3−

√
x2 + y2

ε
√

2

)
.

We choose ε = 5h√
2tanh−1(0.9)

, N = 256, τ = 0.01 and different κ, Figure 2 shows the
evolutions of the snapshots and the energies of the numerical solutions obtained by the eIFRK+(4,4)
scheme. It can be seen that the evolution speed of the numerical solution is largely clipped with the
increase in κ, and the energy obtained from the energy image gradually reaches a steady state with
decreasing time.



Math. Comput. Appl. 2023, 28, 110 7 of 8

(a) (b) (c) (d) (e)
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Figure 2. The numerical solution u at different times for Example 3. Top: κ = 10−4. Bottom: κ = 0.004.
(a) T = 0; (b) T = 0.004; (c) T = 0.012; (d) T = 0.02; (e) T = 0.028; (f) E(v); (g) T = 0; (h) T = 0.004;
(i) T = 0.012; (j) T = 0.016; (k) T = 0.02; (l) E(v).

5. Conclusions

Based on the explicit IFRK method coupled with nondecreasing abscissas, we have ob-
tained a class of fast and effective numerical schemes for the EFK model. The optimal error
estimates of the fully discrete schemes have been analyzed. Three numerical experiments
were carried out to test the accuracy and applicability of the proposed schemes.
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