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Abstract: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious
respiratory illness that poses a significant threat to public health. Understanding the transmission
dynamics of MERS-CoV is crucial for effective control and prevention strategies. In this study,
we develop a precise mathematical model to capture the transmission dynamics of MERS-CoV.
We incorporate some novel parameters related to birth and mortality rates, which are essential
factors influencing the spread of the virus. We obtain epidemiological data from reliable sources to
estimate the model parameters. We compute its basic reproduction number (R0). Stability theory
is employed to analyze the local and global properties of the model, providing insights into the
system’s equilibrium states and their stability. Sensitivity analysis is conducted to identify the most
critical parameter affecting the transmission dynamics. Our findings revealed important insights
into the transmission dynamics of MERS-CoV. The stability analysis demonstrated the existence of
stable equilibrium points, indicating the long-term behavior of the epidemic. Through the evaluation
of optimal control strategies, we identify effective intervention measures to mitigate the spread of
MERS-CoV. Our simulations demonstrate the impact of time-dependent control variables, such as
supportive care and treatment, in reducing the number of infected individuals and controlling the
epidemic. The model can serve as a valuable tool for public health authorities in designing effective
control and prevention strategies, ultimately reducing the burden of MERS-CoV on global health.

Keywords: MERS-CoV model; basic reproductive number; analysis of stability; equilibria points;
optimality control; numerical analysis

1. Introduction

The first identification of the Middle East respiratory syndrome coronavirus (MERS-CoV),
a viral respiratory illness, took place in Saudi Arabia in 2012, as reported by multiple studies,
including those conducted by [1–3]. MERS-CoV is believed to have originated from an
animal source and has been identified in both humans and animals. The transmission of the
disease occurs through close contact with an infected individual, in any form. The World
Health Organization (2019) has reported a global total of 2519 laboratory-confirmed cases
of MERS-CoV infection, with 866 associated deaths. One of the largest outbreaks of MERS-
CoV occurred in South Korea in 2015.

Coronaviruses constitute a diverse family of viruses that are known to infect humans,
causing respiratory illnesses that can vary in severity from mild cold-like symptoms to se-
vere respiratory syndromes, such as severe acute respiratory syndrome (SARS). MERS-CoV
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can cause zoonotic infections in humans through direct or indirect contact with camels or
camel-related products. Additionally, human-to-human transmission has been reported,
particularly in healthcare settings [4–6]. Since 2002, three novel coronaviruses have emerged
and caused deadly zoonotic diseases in humans. The first was SARS, which emerged in
November 2002. The second was MERS, which emerged in April 2012. The most recent
and ongoing pandemic is COVID-19, which emerged in December 2019 and has affected
millions of people worldwide [7–10]. The authors in [11,12] modified a mathematical model
of COVID-19 by including the quarantine class and measured the disease transmission.
Shen et al. studied a mathematical model of COVID-19 by presenting the vaccinated
class with an optimal control analysis [13]. The authors in [14] used the data of Saudi
Arabia and investigated the transmission dynamics of COVID-19. Tsay et al. analyzed
the state estimation and optimal control for the COVID-19 outbreak model in the US [15].
Libotte et al. used the optimal strategy for vaccines in COVID-19 treatment considered for
both mono- and multi-objective optimization [16]. Using the optimal control models also
gives information about the impact of individual vaccination during an epidemic, together
with the key considerations for political and economic decision making.

MERS typically presents with symptoms such as fever, cough, and shortness of breath.
It is believed to spread through respiratory secretions, such as through coughing, from an
infected person, similar to other coronaviruses. Several studies have investigated the
potential role of camel handlers in the transmission of the virus to determine its source
of infection. To understand and predict the dynamics of infectious diseases, researchers
have developed various models based on biologically feasible parameters [17–19]. These
models are essential tools for analyzing and forecasting the spread of diseases [20]. Al-
though several case studies have explored the transmission of MERS-CoV, the literature on
its transmission dynamics is limited. Using available data, Cauchemez et al. [21] estimated
the incubation period and generation time of MERS-CoV, and calculated the reproductive
numbers for both animal-to-human and human-to-human transmission. Chowell et al. [22]
took a different approach and compared the reproductive numbers of SARS and MERS.
Assiri et al. [23] reported one of the largest outbreaks of MERS-CoV, describing the virus
as transmissible from human to human. The virus has spread globally through travel-
associated cases, with reported incidences in countries including Algeria, Austria, China,
Egypt, Italy, Netherlands, Philippines, South Korea, Thailand, the UK, and the US. Ground-
breaking research has been published by numerous esteemed researchers, delving into the
exploration of various model types, such as: SIR epidemic models [24,25], the discrete-time
prey–predator model [26], and the memristor system [27]. Several infectious disease models
have been investigated by researchers by using different approaches, which are available
in the literature, such as [28–32].

Members of the coronavirus family, MERS-CoV and COVID-19 (caused by SARS-CoV-2)
have certain similarities. It is crucial to remember that these viruses are diverse from one
another and have distinctive traits and effects on human health. The following examples
demonstrate how MERS-CoV can be used to treat various illnesses, including COVID-
19. Both COVID-19 and MERS-CoV can cause serious respiratory infections in people.
However, their overall effects differ considerably in a number of ways. MERS-CoV and
COVID-19 can also be compared to influenza viruses, particularly those that cause severe
respiratory infections. Different influenza viruses (A, B, and C) are what cause the illness.
Despite the fact that some symptoms and the means of transmission are similar, influenza
viruses have unique genetic traits and often create seasonal outbreaks. However, MERS-
CoV and SARS-CoV-2 can cause pandemics or sporadic epidemics with ongoing human-to-
human transmission. Several researchers have suggested mathematical models by applying
different approaches to an infectious disease and studying its dynamics from different
angles [33–37].

As far as the novelty is concerned, we study the model presented in [38], by in-
corporating the natural birth rate and death rate due to MERS-CoV. We modified the
mathematical model for MERS-CoV transmission dynamics. This model consists of six
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groups: susceptible class S , exposed class (or high risk latent) E , symptomatic and infec-
tious class I , infectious but asymptotic class A, hospitalized class H, and recovery class
R. After constructing the model, the basic reproductive number is calculated by using the
next generation method, and the local and global stability of the equilibrium points are
determined. Lyapunov function theory is then utilized to analyze the global behavior of
the model. Furthermore, the principles of optimal control theory are employed to reduce
the number of infected persons and maximize the recovery rate within a given population.

2. Model Formulation

Here, we study the mathematical formulation of the deterministic model for MERS-CoV,
using a set of differential equations. Specifically, the model describes the dynamics of the
host population using the following system of equations:

Ṡ(t) = bN − ϕIS
N
− ϕqHS

N
− η0S ,

Ė(t) = ϕIS
N

+
ϕqHS

N
− (χ + η0)E ,

İ(t) = χξE − (ϑa + ϑ1)I − (η0 + η1)I ,

Ȧ(t) = χ(1− ξ)E − (η0 + η2)A,

Ḣ(t) = ϑaI − ϑϑH− η0H,

Ṙ(t) = ϑ1I + ϑϑH− η0R,

(1)

with initial conditions

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, H(0) ≥, R ≥0,

where the used parameters in the above system are: bN represents the rate of birth for
the host populace, while the transmission rate from human to human per unit time is
represented by ϕ. The parameter q determines the relative transmissibility of hospitalized
individuals. χ represents the rate at which individuals transition from the exposed compart-
ment E to the infectious compartment I . The proportion of individuals who progress from
E to I is given by ξ, while the remaining (1− ξ) progress to class A. The average rate at
which symptomatic persons are hospitalized is denoted by ϑa, while ϑ1 represents the rate
of recovery without hospitalization, and ϑϑ represents the rate of recovery of hospitalized
patients. The rate of natural death is represented by η0, while η1 and η2 represent deaths
due to MERS-CoV.

Assume that the total populace is represented by N(t) at time t, and satisfies N(t) =
S + E + I +A+H+R.

Adding all the equations of system (1), we have

dN
dt

= bN− η0S − η0E − (η0 + η1)I − (η0 + η2)A− η0H− η0R.

Therefore, from the above relation for biological applications, the considered system (1)
occurred in the closed set as

F =

{
(S , E , I ,A,H,R) ∈ R6

+, 0 <,S + E + I +A+H+R ≤ bN
η0

}
.

3. Basic Reproduction Number

The basic reproduction number determines whether an epidemic will appear or the
infection will die out. It represents the expected average number of new infections that will
be generated by a single infective person, both directly and indirectly, when introduced
into a fully susceptible populace. In this study, we use the approach of Driessche and



Math. Comput. Appl. 2023, 28, 98 4 of 19

Watmough [39,40] to calculate the basic reproduction number for the aforementioned
system (1).

F =


0 ϕS0

N
ϕqS0

N

0 0 0

0 0 0

, V =


χ + η0 0 0

−χξ (ϑa + ϑ1) + (η0 + η1) 0

0 −ϑa ϑϑ + η0

 (2)

to find

FV−1 =


χϕξS0(ϑϑ+η0+qϑa)I

N(χ+η0)(ϑϑ+η0)[(ϑa+ϑ1)+(η0+η1)]
ϕS0(ϑϑ+η0+qϑa)

N(ϑϑ+η0)[(ϑa+ϑ1)+(η0+η1))]
ϕS0q

N[(ϑϑ+η0)(ϑa+ϑ1)+(η0+η1)]

0 0 0

0 0 0

.

Thus, the required basic reproduction number R0 is followed by

R0 =
χϕξS0Q1

N(χ + η0)Q2Q3
.

The terms Q1, Q2, and Q3 are defined as follows:
Q1 = (ϑϑ + η0 + qϑa);
Q2 = (ϑϑ + η0);
Q3 = (ϑa + ϑ1) + (η0 + η1).
These terms correspond to the susceptible individuals at the disease-free equilib-

rium (DFE).

Analysis of Sensitivity

Here, we conduct a sensitivity analysis of some of the parameters used in the model.
This technique helps us to identify the parameters that have a significant effect on the basic
reproduction number (See Table 1 and Figure 1). We use the approach as described by
Chintis [41] to calculate the sensitivity index of R0. Specifically, the sensitivity index ∆R0

h of
a parameter h is presented by the formula ∆R0

h = ∂R0
∂k

h
R0

.

Table 1. Sensitivity indices of different parameters.

Notation Sensitivity Values Notation Sensitivity Values

χ 0.0384651 ϑ1 − 0.058565
ϑϑ −0.00000453 ϑa −0.93704
η0 −0.001464128 η1 −0.041392
ϕ 0.99999 q 0.0000476

bN 0.99999 ξ 0.000432
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(a) (b)

(c) (d)

(e)

Figure 1. Cont.
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(f) (g)

(h)

Figure 1. The graphs display the results of a sensitivity analysis on the basic reproductive number R0.
(a) R0 with η1, bN; (b) R0 with ξ, bN; (c) R0 with η1, ξ; (d) R0 with ϕ, bN; (e) R0 with η1, ϑ1; (f) R0

with ϕ, ξ; (g) R0 with ϑϑ, ξ; (h) R0 with ϑϑ, ϑa.

4. Equilibria Points

The aforementioned system (1) has two possible equilibria: one is the disease-free
equilibrium (DFE) and second one is the endemic equilibrium (EE). The DFE, denoted

by F0, is given by F0 =

(
bN
η0

, 0, 0, 0, 0, 0
)

. The EE, denoted by F1, is found by setting

“S = S∗, E = E∗, I = I∗, A = A∗, H = H∗, and R = R∗, and the LHS of the resulting
system to zero”. We obtain the following expression after simplification, S∗, E∗, I∗, A∗,H∗,
andR∗ at the EE.

S∗ = NbNQ2
ϕQ2+ϕqϑa+η0NQ2

,

E∗ = NbNQ2+ϕqϑa+NbNQ2
ϕQ2+ϕqϑa+η0NQ2

,

I∗ = (χξ)(NbNQ2+(R0−1)+NbNQ2)
Q3 ϕ+ϕqϑa+η0NQ2

,

A∗ =
χ(1−ξ)NbNQ2

2+ϕqϑa+NbNQ2
ϕQ2+ϕqϑa+η0NQ3

,

H∗ = ϑaI∗
Q2

,

R∗ = Q2I∗+Q1
Q2

.

(3)

4.1. Local Stability

We show the local asymptotic stability (LAS) of the DFE as well as the EE of the
system (1) with the help of the following theorem.
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Theorem 1. If the basic reproductive number R0 is less than 1, the DFE point is LAS.

Proof. To show the local stability of the system, about the point DFE, the Jacobian matrix
for the said system (1) is

J0 =



−η0 0 − ϕS0
N 0 ϕqS0

N 0
0 −(χ + η0)

ϕS0
N 0 ϕqS0

N 0
0 χξ −Q3 0 0 0
0 χ(1− ξ) 0 −η2 0 0
0 0 ϑa 0 −Q2 0
0 0 ϑ1 0 ϑϑ −η0


. (4)

By conducting a row operation, reducing the matrix to echelon form, the following
Jacobian matrix is obtained

−η0 0 − ϕS0
N 0 ϕqS0

N 0
0 −(χ + η0)

ϕS0
N 0 ϕqS0

N 0
0 0 A ϕqS0χξ

N 0 ϕqS0χξ
N

0 0 0 B ϕqS0χ
N 0

0 0 0 0 C 0
0 0 0 0 0 D


, (5)

A = −Q3Q2(χ + η0)−
ϕS0χξ

N
,

B = −(η0 + η2)(χ + η0)Q1 −
ϕS0χξ

N
,

C = −Q1Q2Q3(S0 + η0),

D = −η0Q3(κ + η0)−
(ϕS0χξ)

N
− [(1− R0)(N(χ + η0)Q2Q3)ϕqS0χξ].

According to [42], when R0 < 1, the matrices A, B, C, and D are all negative, and the
eigenvalues have negative real parts. As a result, the DFE is LAS.

Theorem 2. If R0 is greater than 1, the EE point is LAS.

Proof. Consider the Jacobian of the considered problem (1) at F1 is,

J0 =



− ϕI∗
N −

ϕH∗q
N − η0 0 − ϕS∗

N 0 − ϕqS∗
N 0

ϕI∗
N + ϕH∗q

N −(χ + η0)
ϕS∗
N 0 ϕqS∗

N 0
0 χξ Q3 0 0 0
0 χ(1− ξ) 0 −(η0 + η1) 0 0
0 0 ϑa 0 −(ϑϑ + η0) 0
0 0 ϑ1 0 ϑϑ −η0


. (6)

After performing a row operation and simplifying the resulting expressions, we obtain
the following Jacobian matrix:



− ϕI∗
N −

ϕH∗q
N − η0 0 − ϕS∗

N 0 − ϕqS∗
N 0

0 −(χ + η0)(
ϕI∗
N + ϕH∗qS∗

N + η0) − ϕS∗
N 0 − ϕqS∗

N 0
0 0 Z1 η2ξ 0 0
0 0 0 Z2 Z3 Z4
0 0 0 0 Z5 η0ϑϑ

0 0 0 0 0 Z6


, (7)
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where

Z1 = −ξQ3,

Z2 = −η2(κ + η0)(ϕI∗ + ϕqH∗ + η0)ϑ1,

Z3 = −ϑϑ ϕS∗η0χξ,

Z4 = −η0 ϕS∗χ(1− ξ),

Z5 = −Q2ϑ1 − ϑa − ϑϑ,

Z6 = −η0Q3(η2(χ + η0)(ϕI∗

+ϕqH∗ + η0)ϑ1(R0 − 1)× [(χ + η0)Q3](ϕS∗η0 ϕ(η2ξϑI)(ϑϑ + η0)ϑ1 + ϑa

+Q3(η0ξQ3(η2(χ + η0))(ϕI∗ + ϕqH∗ + η0)ϑ1

+(ϑϑ ϕS∗η0χξ)η2ξϑ1.

.

The eigenvalues are given by

ζ1 = − ϕI∗
N −

ϕH∗q
N − η0 < 0,

ζ2 = −(χ + η0)(
ϕI∗
N + ϕH∗qS∗

N + η0) < 0,

ζ3 = −ξ(ϑa + ϑ1 + η0 + η1) = Z1 < 0,

ζ4 = −η2(κ + η0)(ϕI∗ + ϕqH∗ + η0)ϑ1 = Z2,< 0,

ζ5 = −(ϑϑ + η0)ϑ1 − ϑa − ϑϑ = Z5 < 0,

ζ6 = Z6 < 0.

. (8)

As per the findings reported in [43], when R0 > 1, all of the eigenvalues have nonpos-
itive real parts, which indicates that the EE point is LAS.

4.2. Analysis of Global Stability

The next theorem presents that the said system is globally asymptotically stable (GAS)
for the DFE and EE point.

Theorem 3. The DFE of the system is GAS for R0 < 1, otherwise unstable.

Proof. We define the Lyapunov function as follows:

U(t) = k1(S − S0) + k2E + k3I + k4A+ k5H. (9)

We differentiate Equation (9) and obtain:

U′(t) = k1S ′ + k2E′ + k3I ′ + k4A′ + k5H′. (10)
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Using model (1), we obtain

U′(t) = k1[bN− ϕIS
N
− ϕqHS

N
− η0S] + k2[

ϕIS
N

+
ϕqHS

N
− (χ + η0)E ]

+ k3[χξE − (ϑa + ϑ1)I − (η0 + η1)I ] + k4[χ(1− ξ)E − (η0 + η2)A]
+ k5[ϑaI − ϑϑH− η0H].

If we choose the positive parameter values k1 = k2 = k4 = ξ, k3 = 1, and k5 = qϕρ,
and simplify, we obtain:

U′(t) = −ξη0(S − S0)− 2
ϕqHS

N
−Q1ξη0E − (η0 + η2)A

− Q3[1− R0]−Q2Q3(κ + η0)−Q2
2H.

where
S0 =

bN
η0

,

Let U′(t) be a function of time t, and let S and R0 be constants. If S > S0 and R0 < 1,
then U′(t) is negative. If S = S0, then U′(t) = 0. According to the LaSalle invariance
principle [44,45], if E = I = A = H = 0, then the set of initial conditions for which U′(t)
approaches zero as t approaches infinity is an invariant set.

Therefore, the DFE F0 is GAS.

Theorem 4. When R0 > 1, the EE point is GAS at F1, and unstable when R0 < 1.

Proof. For the GAS of the EE point, we define the Lyapunov function as:

U(t) =
1
2
[p1(S − S∗) + p2(E − E∗) + p3(I − I∗) + p4(A−A∗) + p5(H−H∗)]2, (11)

and we introduce the constants p1, p2, p3, p4, and p5, which will be chosen later. Upon differ-
entiating Equation (11), we obtain:

U′(t) = [p1(S − S∗) + p2(E − E∗) + p3(I − I∗) + p4(A−A∗)

+ p5(H−H∗)][p1(
ds
dt
) + p2(

dE
dt

) + p3(
dI
dt

) + p4(
dA
dt

) + p5(
dH
dt

)],

U′(t) = p1(S − S∗) + p2(E − E∗) + p3(I − I∗) + p4(A−A∗) + p5(H−H∗)(p1(bN− ϕIS
N
− ϕqHS

N
− η0S)

+ p2(
ϕIS

N
+

ϕqHS
N

− (χ + η0)E + p3(χξE − (ϑa + ϑ1)I − (η0 + η1)I) + p4(χ(1− ξ)E − (η0 + η2)A

+ p5(ϑaI − ϑϑH− η0H).

After some calculation, we obtain, and utilizing the values of p1, . . . p5, we obtain

U′(t) = − (ϕS∗)
N

(S − S∗)− (R0 − 1)Q1Q2 −
ϕqH∗S∗

N
[E + I +A]− (ϑaI − ϑϑ)Q2Q2

3H∗

For S = S∗ and (ϑa > ϑϑ) for R0 is greater than 1; thus, the proof is finished.

5. Results and Discussion

In this context, we substantiate our analytical discoveries through the application of the
fourth-order Runge–Kutta method [46]. We select certain parameters for illustrative purposes,
while obtaining others from published data sources [38]. The parameters employed in the
simulation are chosen with careful consideration of their biological plausibility. The ensuing
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set of parameters is utilized for the subsequent analysis. ϕ = 0.007; q = 0.003; χ = 0.005;
ξ = 0.0001; η0 = 0.0003; η1 = 0.0001; ξ = 0.002; ϑ1 = 0.001; ϑa = 0.000001; ϑϑ = 0.0007; and
bN = 0.00004. To validate the analytical findings of the proposed model concerning the
DFE, we employed the aforementioned parameter values. Subsequently, we computed
the DFE point’s coordinates and the threshold parameter R0 as (7.98337196, 0, 0, 0, 0) and
(0.043732), respectively. The simulation outcomes utilizing the aforementioned parameters
are depicted in Figures 2 and 3, thereby substantiating the analytical conclusions outlined
in the theorem. To corroborate this, we employed the linear stability analysis technique and
introduced perturbations to the initial compartmental population values. Remarkably, these
perturbed values consistently converged to the DFE, underscoring its robustness against
varying initial conditions, S(0) = 1000, E(0) = 800, I(0) = 600, A(0) = 500,H(0) = 400,
and R(0) = 300. Drawing from the theoretical interpretation of the data, a definitive
conclusion can be drawn: when the value of R0 is below 1, the disease transmission will
inevitably diminish over time. This is evidenced by the convergence of every solution
curve to a stable position, as depicted in the corresponding plots.

S i+1 − S i

l
= bN − ϕI iS i+1

N
− ϕqHiS i+1

N
− η0S i+1,

E i+1 − E i

l
=

ϕI iS i+1

N
+

ϕqHiS i+1

N
− (χ + η0)E i+1,

I i+1 − I i

l
= χξE i+1 − (ϑa + ϑ1)I i+1 − (η0 + η1)I i+1,

Ai+1 −Ai

l
= χ(1− ξ)E i+1 − (η0 + η2)Ai+1,

Hi+1 −Hi

l
= ϑaI i+1 − ϑϑHi+1 − η0Hi+1,

Ri+1 −Ri

l
= ϑ1I i+1 + ϑϑHi+1 − η0Ri+1.

Used Algorithm

Step 1: (S0, E0, I0,A0,H0,R0 = 0).
Step 2: Let i = 1, 2 . . . n− 1.

S i+1 =
Nlb

ϕI iS i+1 + ϕqHiS i+1l + η0lN
+

S i+1

ϕI iS i+1 + ϕqHiS i+1l + η0lN
,

E i+1 =
lϕI iS i+1

N(1 + l(χ + η0))
+

lϕqHiS i+1

N(1 + l(χ + η0))
+

E i+1

(1 + l(χ + η0))
,

I i+1 =
lχξE i+1

(1 + l(ϑa + ϑ1) + (η0 + η1)l)
+

I i+1

1 + l(ϑa + ϑ1) + (η0 + η1)l
,

Ai+1 =
lχ(1− ξ)E i+1

1 + (η0 + η2)l
+

Ai+1

1 + (η0 + η2)l
,

Hi+1 =
lϑaI i+1

1 + η0l + ϑϑl
+

Hi+1

1 + ϑϑ + η0l
,

Ri+1 =
lϑ1I i+1

1 + η0l
+

lϑϑHi+1

1 + η0l
+
Ri+1

1 + η0l
.

Step 3: Let i = 1, 2, 3, . . . , n − 1, by letting “S∗(ti) = S∗, E∗(ti) = E∗, I∗(ti) = I∗,
A∗(ti) = A∗,H∗(ti) = H∗,R∗(ti) = R∗.”
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Figure 2. The time dynamics of the compartmental populations in model (1) are shown graphically
for an initial population value. (a) Class of S ; (b) class of E ; (c) class of I ; (d) class of A; (e) class ofH;
(f) class ofR.

Subsequently, we proceed to explore the system’s dynamics around the EE by as-
suming an alternate set of parameters: ϕ = 0.17, q = 0.03, χ = 0.05, ξ = 0.01, η0 = 0.03,
η1 = 0.031, ξ = 0.052, ϑ1 = 0.041, ϑa = 0.000001, ϑϑ = 0.0007, and bN = 0.004. Us-
ing these parameter values acquired earlier, we calculate the endemic equilibrium points
and the associated R0 for the model (1). When R0 > 1, the endemic equilibrium point
is determined to be (40.76549, 110.908700, 70.45321, 85.934214, 85.7659321, 120.7659321),
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with a calculated value of R0 = 7.13587. Assuming the same initial population sizes
for the compartments as in the previous analysis, the graphical results indicate that the
populations of susceptible, exposed, infected asymptomatic, hospitalized, and recovered
individuals initially undergo fluctuations before eventually stabilizing at their respective
equilibrium values. For the parameter values employed in this study, the equilibrium point
is (24.76549, 99.908700, 22.45321, 90.934214, 85.7659321, 120.7659321).
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Figure 3. The time dynamics of the compartmental populations in model (1) are shown graphically
for initial population values. (a) Class of S ; (b) class of E ; (c) class of I ; (d) class of A; (e) class ofH;
(f) class ofR.
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6. Analysis of Optimal Control

Here, we aim to establish an effective control strategy to prevent the spread of MERS
in the population. Optimal control theory is a powerful mathematical technique that can
be applied to design control schemes for a variety of infectious diseases. To achieve this,
we apply optimal control theory, as described in previous works [46–49], to establish an
appropriate control strategy. Our objective in this study is to reduce the prevalence of
MERS in the populace by increasing the number of persons who recover from the disease,
denoted asR, and decreasing the number of individuals who are infectious, denoted as I ,
and hospitalized, denoted asH, by implementing time-dependent control variables such
as treatment v1(t) and care v2(t). In model (1), we take six state variables S , E , I , A, H,
andR. Now, for the control problem, we take the two control variables, that is treatment
v1(t) and care v2(t). Hence, we have the successive optimal control problem to reduce the
objective functional

J(v1, v2) =
∫ T

0
[c1I(t) + c2H(t) +

1
2
(c3v2

1 (t) + c4v2
2 (t)]dt (12)

subject to

Ṡ(t) = bN− ϕIS
N
− ϕqHS

N
− η0S ,

Ė(t) = ϕIS
N

+
ϕqHS

N
− (χ + η0)E ,

İ(t) = χξE − (ϑa + ϑ1)I − (η0 + η1)− v1I ,

Ȧ(t) = χ(1− ξ)E − (η0 + η2)A,

Ḣ(t) = ϑaI − ϑϑH− η0H− v2H,

Ṙ(t) = ϑ1I + ϑϑH− η0R+ v1I + v2H,

(13)

with initial conditions

“S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,A(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0”.

Equation (12) includes weight constants c1, c2, c3, and c4 that correspond to the relative
importance of infected people I and hospitalized individual H in the objective function.
The parameters 1

2 c3v2
1 and 1

2 c4v2
2 represent the costs associated with self-care and treatment.

The primary objective is to evaluate the control function to achieve a specific goal.

J(v∗1 , v∗2 ) = min{J(v1, v2), v1, v2 ∈ U} (14)

dependent on control system (13), where U in Equation (14) is known as the control set and
is presented as,

“U = {(v1, v2)/vi(t) is Lebesgue measurable on [0, 1], 0 ≤ vi(t) ≤ 1, i = 1, 2}.” (15)

Before proceeding, it is important to establish the existence of control variables. Ac-
cording to Kamien and Aldila’s study [47], a solution for a state system can be found when
the controls are bounded and Lebesgue measurable, in addition to satisfying the initial
conditions. Thus, we can suppose that the considered control model can be formulated in
the manner presented below.

dφ

dt
= A φ +Bφ.
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From the above equation φ = (S , E , I ,A,H,R), where A (φ) and B(φ) denote the
linear and nonlinear bounded coefficient 3

J0 =



−η0 0 0 0 0 0
0 −(χ + η0) 0 0 0 0
0 χξ −Q3 0 0 0
0 χ(1− ξ) 0 −η2 0 0
0 0 ϑa 0 −Q2 0
0 0 ϑ1 0 ϑϑ −η0

. (16)

B(φ) =



bN− ϕIS
N − ϕqHS

N
ϕIS

N + ϕqHS
N

0
0
0
0


. (17)

Letting L(φ) = Aφ + FŒ,

|F(φ1)− F(φ2)| ≤ m1|S1 − S2|+ m2|E1 − E2|+ m3|I1 − I2|+ m4|A1 −A2|+ m5|H1 −H2|+ m6|R1 −R2|
≤ N|S1 − S2|+ |E1 − E2|+ |I1 − I2|+ |A1 −A2|+ |H1 −H2|+ |R1 −R2|.

Here, N = max(m1, m2, m3, m4, m5, m6) is a constant that is independent of the state
variables in the aforementioned system. We also express

|L(φ1)− L(φ2)| ≤ M|(φ1)− (φ2)|.

The solution for (13) exists due to the nonnegativity of the model state variables S , E ,
I , A,H, andR. Furthermore, it has been shown that the function L is Lipschitz uniformly
continuous, and where M = (N, ‖K‖) < ∞. Based on the properties mentioned earlier, we
present the following theorem to establish the existence of a solution for model (1), which
we then proceed to prove.

Theorem 5. For the control problem in Equations (12) and (13) there exists an optimal control as
v∗ = (v∗1 , v∗2 ) ∈ U.

Proof. It is evident that the control and state variables in system (1) are positive. Addition-
ally, the control variables set U is a closed and convex set, as mentioned in the problem
statement. Furthermore, the control system is bounded, implying the compactness of
the system. The integral in the objective function of the optimization problem, given
by c1I + c2H + 1

2 (c3v2
1 (t) + c4v2

2 (t)), is also convex w.r.t the control set U. This convex-
ity guarantees the existence results for optimal control for the optimal control variables
(v∗1 , v∗2 ).

6.1. Methods

Next to show the optimal solution to the control model (12) and (13), we can apply the
Lagrangian and Hamiltonian methods, described in the equation below

L(I ,H, v1, v2) = c1I + c2H+
1
2
(c3v2

1 (t) + c4v2
2 (t).

To describe the Hamiltonian (H), by utilizing the notation ϑ = (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6)
and y = (y1, y2, y3, y4, y5, y6), thus

H(x, v , ϑ) = L(x, v) + ϑZ(x, v),
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where
Z1 = bN− ϕIS

N − ϕqHS
N − η0S ,

Z2 = ϕIS
N + ϕqHS

N − (χ + η0)E ,

Z3 = χξE − (ϑa + ϑ1)I − (η0 + η1)− v1(t)I(t),

Z4 = χ(1− ξ)E − (η0 + η2)A,

Z5 = ϑaI − ϑϑH− η0H− v2(t)H(t),

Z6 = ϑ1I + ϑϑH− η0R+ v1(t)I(t) + v2(t)H(t),

(18)

Thus we apply the Pontryagin Maximum Principle [50,51] to the Hamiltonian in order
to determine the optimal solution. According to this principle, if (x∗, v∗) is an optimal
solution, then there must exist a function ϑ 3:

dx
dt

=
∂H
∂ϑ

, 0 =
∂H
∂u

,

ϑ(t)
′
= −∂H

∂x
.

H(t, x∗, v∗, ϑ)∂x = maxv1,v2,v3,v4∈[0,1]H(x∗(t), v1, v2ϑ(t)); (19)

with
ϑ(t f ) = 0, (20)

The principles outlined in Equation (19) are utilized to determine the adjoint system
(adjoint variables) and optimal control variables. Based on these principles, the following
result can be obtained.

Theorem 6. Suppose S∗, E∗, I∗, A∗, H∗, and R∗ represent the optimal state solutions for the
system, obtained using the combined optimal control variables (v∗1 , v∗2 ) that were derived through
the numerical solution of the optimality system. The optimal control problem is defined by the
objective function (12) and the control system (13). Then ∃ adjoint variables ϑ1(t), ϑ2(t), ϑ3(t),
and ϑ4(t), ϑ5(t), ϑ6(t) satisfy

ϑ
′
1(t) = −A1 + (ϑ2 − ϑ1)ϕI∗ + (ϑ2 − ϑ1)ϕqH∗ − η0ϑ1,

ϑ
′
2(t) = −A2 + (ϑ4 − ϑ2)ϕN∗ + (χ + η0)ϑ2 − ϑ1v∗1 − ϑ3ξ,

ϑ
′
3(t) = −A3 + (ϑ2 − ϑ1)ϕS∗ + (ϑ5 − ϑ3)ϑa + (ϑ6 − ϑ3)ϑ1 + (ϑ6 − ϑ3)v1(t)− v1ϑ3, (21)

ϑ
′
4(t) = −A4 + (v2 − u0)ϑ4,

ϑ5
′(t) = −A5 − (ϑ2 − ϑ1)ϕqS∗ + (ϑ6 − ϑ5)ϑϑ − (u0 + v2)ϑ5,

ϑ6
′(t) = −A6 + u0ϑ6,

with boundary conditions.
Additionally, the optimal control parameters v1(t) and v2(t) are obtained through numerical

solutions of the optimality problem and are presented below.

v∗1 (t) = max{min{ (ϑ6 − ϑ3)I∗
B1

, 1}, 0}, (22)

v∗2 (t) = max{min{ (ϑ6 − ϑ5)H∗
B2

, 1}, 0}. (23)

Proof. The adjoint problem described by Equation (21) is obtained through the uses of the
Pontryagin Maximum Principle given by Equation (19), while the transversal conditions
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arise from ϑ(T) = 0. The set of optimal functions v∗1 , v
′
2 is obtained using ∂H

∂u . In the
following section, we present numerical solutions to the optimality system in order to
provide a clearer understanding for the reader, as opposed to relying solely on analytical
results. The optimality problem is expressed by several components, including the control
problem (13), the adjoint model (21), the boundary (terminal) conditions, and the optimal
control functions. By solving these components numerically, we can gain valuable insights
into the behavior of the system and assess its performance.

6.2. Results and Discussion for Optimal Control

We utilize the Runge–Kutta method of order four to solve the optimal control sys-
tem (13), in order to investigate the effects of self-care and treatment. To find the solution
of the state system (12) with initial conditions in the time interval [0, 50], we employ the
forward Runge–Kutta procedure. Similarly, the backward Runge–Kutta technique is used
to solve the adjoint system (21) in the same interval with the assistance of the transver-
sality condition. Below are the parameters that we used for the simulation: bN = 0.0071;
ϕ = 0.00041; q = 0.0000123; χ = 0.0000123; ξ = 0.0000123; ϑ1 = 0.003907997; ϑa = 0.98;
ϑϑ = 0.0000404720925; q = 0.017816; ρ = 0.00007; and η0 = 0.00997. The weight con-
stants c1, c2, c3, and c4 were chosen based on biological feasibility. Specifically, we set
c1 = 0.6610000, c2 = 0.54450, c3 = 0.0090030, c4 = 0.44440. The results obtained from the
simulations are presented in Figures 4 and 5.

Figures 4 and 5 show the variations in the number of all compartments with and
without control measures implemented.
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Figure 4. The visual representations demonstrate the changes in the compartmental population over
time, comparing the scenarios with and without control measures implemented. (a) Susceptible
populace; (b) exposed populace; (c) infected population; (d) asymptomatic population.
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Figure 5. The visual representations demonstrate the changes in the compartmental population over
time, comparing the scenarios with and without control measures implemented. (a) Hospitalized
population; (b) recovered population.

7. Conclusions

The objective of this study is to developed a more realistic mathematical model that
captures the transmission dynamics of the MERS-CoV. This is accomplished by introducing
new parameters for the birth and death rates in the host populace. The threshold number
R0 is a measure used to estimate the potential spread of a disease within a populace, and it
can be calculated from a model to quantify the transmissibility of MERS-CoV. The model is
analyzed using stability theory to identify conditions for local and global stability, and the
most sensitive parameter is determined through a sensitivity analysis of R0. An optimal
control problem is formulated with the goal of minimizing the number of infected persons
and maximizing the number of recoveries in the population. The effectiveness of the
approach is verified through numerical simulations, which demonstrate the stability of
the results.
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