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Abstract: We used the classical Lie symmetry method to study the damped Klein–Gordon equation
(KGE) with power law non-linearity utt + α(u) ut = (uβ ux)x + f (u). We carried out a complete Lie
symmetry classification by finding forms for α(u) and f (u). This led to various cases. Corresponding
to each case, we obtained one-dimensional optimal systems of subalgebras. Using the subalgebras,
we reduced the KGE to ordinary differential equations and determined some invariant solutions.
Furthermore, we obtained conservation laws using the partial Lagrangian approach.

Keywords: non-linear damped Klein–Gordon equation; Lie symmetries; optimal systems; reductions;
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1. Introduction

The aim of this study was to perform a complete Lie point symmetry classification
of the (1 + 1)-dimensional damped Klein–Gordon equation (KGE) with power law non-
linearity:

utt + α(u) ut = (uβ ux)x + f (u), β 6= 0, (1)

where α(u) ut and uβ represent the damping and power law non-linearity terms, respec-
tively. The presence of the terms α(u) ut, (uβ ux)x, and f (u) introduces non-linearity into
the equation, making it pertinent to analyze the non-linear dynamics of the significant
system. For example, the non-linear term uβ ux can introduce phenomena like solitons
and shock waves. Equation (1) has a wide range of physical applications in quantum
mechanics, non-linear dynamics, wave propagation, and applied mathematics research. In
general, this equation presents an interplay between non-linearities and wave-like behavior,
making it all-inclusive, from quantum field theory, particle physics, quantum mechanics,
and mathematical physics to applied mathematics. The second-order partial differential
Equation (1) is an extended form of the Klein–Gordon equation:

utt = uxx + f (u), (2)

which appears in quantum mechanics and describes the motion of spinless scalar particles.
Equation (1) can be constituted as a test case in applied mathematical research for analytical
as well as numerical methods for solving PDEs. To find the Lie point symmetries of (1),
we followed the classical Lie group approach proposed by Sophus Lie in 1881. The group
symmetry method is feasible to find exact solutions, conservation laws when a Lagrangian
exists, and reductions of differential equations. This approach is efficient to deal with
linear and non-linear partial differential equations (PDEs) as well as ordinary differential
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equations (ODES). The reader is referred to the well-known books of Ovsiannikov [1],
Bluman [2,3], Olver [4], and Ibragimov [5] for detailed explanations of this versatile method.

The classical approach has been widely applied to study the group properties of
various non-linear partial differential equations, including the wave and heat equations,
see for example [1,6]. Azad et al. investigated Equation (2) by the classical Lie approach.
They performed group classification and obtained the symmetry generators for each case.
Additionally, they provided reductions and some exact solutions of the Klein–Gordon
equation [7].

This study involved finding the Lie point symmetries for all viable forms of the
arbitrary functions and deducing the optimal system of one-dimensional subalgebras
as well as the local conservation laws via the partial Lagrangian approach. Reducing
the number of independent variables of PDES and constructing conservation laws are
two important applications for identifying the solutions and physical properties of the
governing equations. We found the reductions of (1) via the optimal system of one-
dimensional subalgebras, as these provided the possible combinations of Lie symmetries
that are helpful for determining the reduced form of the original differential equation.
The two main methods for finding the optimal system include the adjoint representation
method presented by Olver [4] and the global matrix method given by Ovsiannikov [1].
In general, Lie symmetry analysis is indeed a flexible method to study diverse aspects of
differential equations, including the identification of conserved vectors and the deduction
of solitary wave solutions. Solitary waves frequently appear in different physical systems,
like plasma physics, non-linear dynamics, and water waves. Also, conservation laws are
highly important as they are used to find non-local symmetries, detect the integrability of
PDEs, and check the accuracy and existence of numerical solution methods. The conserved
currents are useful for finding the solutions of non-linear and linear differential equations
by double reduction theory. Bokhari et al. proposed the generalization of double reduction
theory to obtain an invariant solution for a non-linear system of qth order PDEs [8,9].

A number of approaches are available to find the conservation laws of differential
equations. One of these methods is the partial Lagrangian approach introduced by Ma-
homed and Kara [10], which is an efficient technique to find the conservation laws without
the existence of a typical Lagrangian. Other methods include the Noether approach [11],
which relies on the existence of a Lagrangian; the multiplier approach; and the direct
method [12].

Tian et al. proposed an effective, efficient, and direct approach to investigate symmetry-
preserving discretization for a class of generalized higher-order equations and also pro-
mulgated the open problem regarding symmetries and multipliers relating to conservation
laws [13]. Moreover, Tian et al. studied the conservation laws and solitary wave solutions
for a fourth-order non-linear generalized Boussinesq water wave equation in [14] as well
as the chiral non-linear Schrodinger equation in (2 + 1) dimensions, see [15]. The authors
also resolved the non-local symmetries and soliton–conoidal interaction solutions of the
(2 + 1)-dimensional Boussinesq equation in [16].

This paper is arranged as follows: in Section 2, we find the complete Lie point sym-
metries of the damped Klein–Gordon Equation (1) by deducing the particular forms of
unknown arbitrary functions α(u) and f (u). In Section 3, we list the optimal system of
one-dimensional subalgebras and corresponding reductions for all the cases that arose in
Section 1. The graphs of some of the exact solutions are displayed as well. In Section 4, the
conservation laws, via the partial Lagrangian approach, are presented.

2. Lie Symmetry Classification

The principal Lie point symmetries of (1) are obtained in this section. Also, for all
possible forms of smooth functions f (u) and α(u), a complete Lie group classification is
performed. For this, we take the Lie point symmetry generator as

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ ζ(t, x, u)

∂

∂u
. (3)
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According to Lie group theory, the invariance condition leading to Lie point symmetries of
(1) is

X [2]
(

utt + α(u) ut − (uβ ux)x − f (u)
)∣∣

Equation (1)=0 = 0, (4)

where X [2] is the second-order prolongation required, which is up to the order of Equation (1)
and is given by

X [2] = X + ϕi ∂

∂ui
+ ϕij ∂

∂uij
, (5)

where

ϕi = Di (ζ) − ujDi ξ j ,

ϕij = Dj (ϕi) − uji Di ξ j , i, j = 1, 2,

and Di is the total derivative operator

Di =
∂

∂xi + ui
∂

∂u
+ . . . , (x1, x2) = (t, x).

We arrive at the following determining system of PDEs, after expansion of (4) and compari-
son of the coefficients of independent partial derivatives equated to zero,

ζuu = 0, ξ1
x = 0, ξ2

t = 0, (6)

−2 β uβ−1 ζx − (2 ζxu − ξ2
xx) uβ = 0, (7)

ζ αu + ξ1
t α(u) + 2 ζtu − ξ1

tt = 0, (8)

−β (β− 1) ζ uβ−2 − β uβ−1 ζu + 2 β uβ−1 (ξ2
x − ξ1

t ) = 0, (9)

−ζ β uβ−1 + 2(ξ2
x − ξ1

t ) uβ = 0, (10)

−ζ fu + α(u) ζt + (ζu − 2 ξ1
t ) f (u) + ζtt − uβ ζxx = 0. (11)

By means of Equation (10), we easily have

ζ =
2
β
(ξ2

x − ξ1
t ) u. (12)

Invoking Equations (7) and (12), we obtain

(3 β + 4) ξ2
xx = 0. (13)

The following cases arise from Equation (13)

1. ξ2
xx = 0, β 6= − 4

3 ,
2. (3 β + 4) = 0.

Case 1: ξ2
xx = 0 and β 6= − 4

3

This implies
ξ2 = c1 x + c2.

Using (12) in (8), we obtain

2
β
(c1 − ξ1

t ) u αu + α ξ1
t − (

4
β

+ 1) ξ1
tt = 0. (14)

If α(u) is an arbitrary function of u, then

ξ1 = 0,
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which then gives from (14)
c1 = 0,

implying that ζ = 0. Hence, for arbitrary α(u), Equation (1) has a two-dimensional
principal Lie algebra, spanned by

X1 =
∂

∂x
, X2 =

∂

∂t
. (α 6= 0)

Now, for the complete classification of (1), we look for all the choices for which the principal
Lie algebra extends. For this, differentiation of (14) w.r.t. u gives

2
β
(c1 − ξ1

t ) u αuu +
( 2

β
(c1 − ξ1

t ) + ξ1
t
)

αu = 0. (15)

Two subcases arise here.

1.1. αu 6= 0,
1.2. αu = 0.

Subcase 1.1: αu 6= 0

In this case, from (15), we have

2
β
(c1 − ξ1

t ) u
αuu

αu
+

2
β
(c1 − ξ1

t ) + ξ1
t = 0. (16)

We now consider
u

αuu

αu
= k.

This gives

α =
k1

k + 1
uk+1 + k2, k1 6= 0 as αu 6= 0. (17)

Here, k1, k2 and k are constants. From this, we have two more subcases, viz.

1.1.1. k 6= −1,
1.1.2. k = −1.

Subcase 1.1.1: k 6= −1

By invoking (17) in (14) and equating the coefficients of different powers of u, we
arrive at

2 c1 (k + 1) − 2 ξ1
t (k + 1) + β ξ1

t = 0, (18)

which gives

ξ1 = − 2 (k + 1)
β− 2 (k + 1)

c1 t + c3, β 6= 2(k + 1)

provided k2 = 0, otherwise, there are two symmetry generators, X1 and X2, which form
the principal algebra. Equation (12) implies

ζ =
2

β− 2 (k + 1)
c1 u.

Now, from (11), we have
f (u) = f1 u2k+3.

The principal algebra in this case extends to the three-dimensional algebra spanned by X1
and X2 in addition to

X3 = x
∂

∂x
− 2 (k + 1)

β− 2(k + 1)
t

∂

∂t
+

2
β− 2(k + 1)

u
∂

∂u
,
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provided β 6= 2(k + 1).

Subcase 1.1.1.1: β = 2(k + 1)

If β = 2(k + 1), then (18) gives c1 = 0 as k 6= −1. This implies ξ2 = c2 and

ζ = − 2
β

ξ1
t u.

By inserting this value of ζ into (8), we arrive at

(
− 2

β
u αuu + (1− 2

β
) αu

)
ξ1

t = 0.

In this case, we have

− 2
β

u αuu + (1− 2
β
) αu = 0.

However, if ξ1
t = 0, there is only the principal algebra generated by X1 and X2. After some

manipulation, we deduce

α =
k1

k + 1
uk+1, k 6= −1

and from (11), we determine

1
k + 1

[u fu + (
1

k + 1
k1 uk+1 + k2) (−

ξ1
tt

ξ1
t

u) − ξ1
ttt

ξ1
t

u − (2k + 3) f ] = 0. (19)

Differentiating w.r.t. t and u, respectively, gives

k1 uk (
ξ1

tt
ξ1

t
)t = 0,

which in turn implies
ξ1

tt
ξ1

t
= c3 as k1 6= 0.

The resultant equation yields

ξ1 = − c4

c3
+ c5 e−c3 t, c3 6= 0. (20)

From (19), we obtain

f (u) = − 1
(k + 1)2 c3 k1 uk+1 + f1 u2k+3 − 1

2(k + 1)
(k2 c3 + c2

3) u.

Here, f1 is constant. For these forms of α(u) and f (u), the principal algebra occurs, since
the determining system gives c5 = 0.

Subcase 1.1.1.1.1: If β = 2(k + 1) and c3 = 0

The infinitesimals in this case are

ξ1 = c4 t + c5, ζ = − 1
k + 1

c4 u, k 6= −1.

The algebra in this case extends the principal algebra as we also have

X3 = t
∂

∂t
− 1

(k + 1)
u

∂

∂u
,



Math. Comput. Appl. 2023, 28, 96 6 of 38

where
f (u) = f1 u2k+3 and α(u) =

k1

k + 1
uk+1.

Subcase 1.1.2: k = −1

This leads to
α(u) = k1 ln(u) + k2,

where k1 and k2 are constants. Substituting in (14) and equating the coefficients of different
powers of u, we obtain the following infinitesimals:

ξ1 = a1, ξ2 = c2 and ζ = 0.

This results in X1 and X2 only.

Subcase 1.2: αu = 0

If αu = 0, then
α = k (constant).

For this form of α(u), (14) results in

k ξ1
t − (

4
β

+ 1) ξ1
tt = 0. (21)

After some manipulations, we find

ξ1
t −

β k
4 + β

ξ1 = − β

4 + β
a1, β 6= −4.

From here, we arrive at the following two subcases.

Subcase 1.2.1: β 6= −4

In this subcase, we have

ξ1 =
1
k

a1 + a2 e
β k

4+β t, k 6= 0.

Now, (11) gives
c1 (− u fu + f ) = 0

which further leads to two subcases.

Case A: c1 = 0

This yields the following form of f

f (u) = − 4 + 2 β

(4 + β)2 k2 u + f1 u1+β.

The algebra in this case is three-dimensional, generated by

X1 =
∂

∂x
, X2 =

1
k

∂

∂t
,

X3 = e
β k

4+β t ( ∂

∂t
− 2 k

4 + β
u

∂

∂u
)
.

Case B: c1 6= 0

In this case, we deduce
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f (u) = − 4 + 2 β

(4 + β)2 k2 u,

where the infinitesimals

ξ2 = c1 x + c2, ξ1 =
1
k

a1 + a2 e
β k

4+β t,

ζ =
2
β

(
c1 −

β k
4 + β

e
β k

4+β t a2
)

u,

generate a four-dimensional Lie algebra with generator

X4 = x
∂

∂x
+

2
β

u
∂

∂u
,

together with X1, X2 and X3 from Case A.

Subcase 1.2.1.1: β 6= −4, k = 0

If k = 0 then α = 0. Therefore, (21) yields

ξ1 = c3 t + c4.

Now from (11), we obtain
f (u) = f1 u1−β k1 ,

and this gives a three-dimensional Lie algebra spanned by the principal algebra in addition
to

X3 = x
∂

∂x
+

k1

(k1 + 1)
t

∂

∂t
+

2
β(k1 + 1)

u
∂

∂u
.

Herein, f1 and k1 are constants.

Subcase 1.2.2: β = −4

For this case,

ξ1 =
1
k

a1, k 6= 0

leads to two different subcases.

Subcase 1.2.2.1: β = −4, k 6= 0

Here, we have

f (u) = f1 u.

For these forms of the functions, the principal algebra extends to three-dimensional with

X3 = x
∂

∂x
− 1

2
u

∂

∂u
,

along with X1, X2 from Case A.

Subcase 1.2.2.2: β = −4, k = 0

In this case, ξ1 is undetermined. Differentiating (11) twice with respect to u, we find

(c1 − 5 ξ1
t ) g + (c1 − ξ1

t ) u gu = 0 (22)

and by differentiation of the resulting equation w.r.t. t, we have

ξ1
tt (5 g + u gu) = 0,
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where g = fuu.
This gives rise to two subcases.

Case C: ξ1
tt = 0

One has
ξ1 = c3 t + c4,

and
f (u) = f2 u f1 .

The algebra in this case is spanned by X1, X2 and

X3 = x
∂

∂x
+

f1 − 1
( f1 + 3)

t
∂

∂t
− 2

( f1 + 3)
u

∂

∂u
.

Here, f1 and f2 are constants.

Case D: 5 g + u gu = 0

In this case, we have

g(u) = ln(g1 u−5),

and from (22), we obtain
ξ1

t = 0 = c1,

which results in X1 and X2.

Case 2: β = − 4
3 and ξ2

xx 6= 0

For this case, (12) becomes

ζ = −3
2
(ξ2

x − ξ1
t ) u. (23)

Now from (8), we have

−3
2
(ξ2

x − ξ1
t ) u αu + α ξ1

t + 2 ξ1
tt = 0 (24)

and differentiation w.r.t. u yields

(5 ξ1
t − 3 ξ2

x) αu + 3 (ξ1
t − ξ2

x) u αuu = 0. (25)

We then need to consider the following subcases:
2.1. αu = 0.
2.2. αu 6= 0,

Subcase 2.1: αu = 0

This implies
α(u) = A (constant).

which reduces (24) to
ξ1

t A + 2 ξ1
tt = 0, (26)

and admits the solution
ξ1 =

2
A

c1 + c2 e−
A
2 t, A 6= 0.

Subcase 2.1.1: A = 0

From (26),
ξ1 = c1 t + c2.
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Now from Equations (11) and (23), we obtain

3 (ξ2
x − c1) u fu + 3 u−1/3 ξ2

xxx − (3ξ2
x + c1) f = 0 (27)

and differentiating this w.r.t. u, we arrive at

−2 c1 fu − u−4/3 ξ2
xxx + (3ξ2

x − c1) u fuu = 0. (28)

For arbitrary f (u), only the principal algebra occurs. For f (u) not arbitrary, differentiating
(28) with respect to x, we find

3 ξ2
xx u7/3 fuu − ξ2

xxxx = 0. (29)

We consider
F1 = u7/3 fuu,

which gives

f (u) =
9
4

F1 u−1/3 + F2 u + F3,

and thus (29) becomes
3 ξ2

xx F1 − ξ2
xxxx = 0. (30)

Here, F1, F2 and F3 are constants. By substituting the values in (27) and comparing the
coefficients for different powers of u, we determine the following equations:

ξ2
xxx − 3 F1 ξ2

x = 0, (31)

c1 F2 = 0, (32)

(3 ξ2
x + c1) F3 = 0. (33)

From (32), we have two possibilities, c1 = 0, or F2 = 0.

Subcase 2.1.1.1: F2 6= 0 and c1 = 0

If c1 = 0, then from (33), we have

ξ2
x F2 = 0.

1. If ξ2
x = 0 and F3 6= 0, then ζ = 0 generates the principal algebra only.

2. If ξ2
x 6= 0 and F3 = 0, then from Equations (30) and (31), we deduce

ξ2 = − 1
3F1

a1 + a2 e
√

3F1x + a3 e−
√

3F1x.

The principal algebra extends to four dimensions generated by

X1 = − 1
3F1

∂

∂x
, X2 =

∂

∂t
,

X3 = e
√

3F1x( ∂

∂x
− 3
√

3F1

2
u

∂

∂u
)
,

X4 = e−
√

3F1x( ∂

∂x
+

3
√

3F1

2
u

∂

∂u
)
.

Subcase 2.1.1.2: F2 = 0 and c1 6= 0

From Equation (33), we have two choices
1. If ξ2

x 6= − 1
3 c1 and F3 = 0, the Lie algebra in this case is five-dimensional with
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X5 = t
∂

∂t
+

3
2

u
∂

∂u
,

in addition to admitting X1, X2, X3 and X4 from subcase 2.1.1.1, where f (u) = 9
4 F1 u−1/3.

2. If ξ2
x = − 1

3 c1 and F3 6= 0, then the Lie algebra in this case is determined by

ξ2 = − 1
3 c1 x + a1 and ζ = 2 c1 u, which gives

X3 = t
∂

∂t
− 1

3
x

∂

∂x
+ 2 u

∂

∂u
,

along with the principal algebra generators X1 and X2.

Subcase 2.1.2: A 6= 0

In this case, again from (27), we find (30), (31) and

c2 (F2 +
3
8

A2) = 0, (34)

(−6 ξ2
x + A c2 e−

A
2 t) F3 = 0. (35)

Herein, different subcases result.

Subcase 2.1.2.1: c2 = 0 and F2 6= − 3
8 A2

If c2 = 0, from (35), we have two choices
1. If ξ2

x = 0 and F3 6= 0, we obtain the principal algebra only.
2. If ξ2

x 6= 0 and F3 = 0, then the symmetry generators are

X2 =
2
A

∂

∂t
,

and X1, X3 as well as X4 from subcase 2.1.1.1 (2).

Subcase 2.1.2.2: F2 = − 3
8 A2 and c2 6= 0

In this case, we have two possibilities from (35).
1. If F3 = 0, then

f (u) =
9
4

u−1/3 F1 −
3
8

A2 u.

For this case, the principal algebra extends to five dimensions, in addition to X3, X4 from
subcase 2.1.1.1 (2) one has

X5 = e−
A
2 t ( ∂

∂t
− 3

4
A u

∂

∂u
)
.

2. If F3 6= 0, then the symmetry generators are X1 and X2 only.

Subcase 2.2: αu 6= 0

In this case, from (25), we have

α(u) =
k1

k + 1
uk+1 + k2.

Here we have two cases.

Subcase 2.2.1: k 6= −1
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If k 6= −1, then from (24), we deduce

3(k + 1) ξ2 − (3k + 5) ξ1
t = 0. (36)

After some manipulations, we have

f (u) = F2 u2k+3,

and obtain the principal algebra along with

X3 = x
∂

∂x
+

3(k + 1)
3k + 5

t
∂

∂t
− 3

3k + 5
u

∂

∂u
,

provided k 6= − 5
3 .

Subcase 2.2.1.1: k = −5/3

From (23) and (36), we find

k2 ξ1
t + 2 ξ1

tt = 0, (37)

with solution
ξ1 =

2
k2

a2 + a3 e−
1
2 k2 t,

provided k2 6= 0. Thus, from (11), we have

f (u) =
9
8

k1 k2 u1/3 − 3
16

k2
2 u + f1 u−1/3

and
α(u) = −3

2
k1 u−2/3 + k2.

These forms of functions result in

X1 =
∂

∂x
, X2 =

2
k2

∂

∂t
,

X3 = e−
1
2 k2 t ( ∂

∂t
− 3

4
k2 u

∂

∂u
)
.

Subsubcase 2.2.1.1.1: k2 = 0

In this case, Equation (37) gives

ξ1 = a2 t + a3.

And after some calculations, we arrive at

f (u) = f1 u−1/3.

The algebra in this case is spanned by the principal algebra and

X3 = t
∂

∂t
+

3
2

u
∂

∂u
.

Subcase 2.2.2: k = −1

This yields
α(u) = k1 ln(u) + k2,
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and hence from (14) we derive

ξ1 = a1, ξ2 = c2 and ζ = 0.

This results in the principal algebra only.

Case 3: β = − 4
3 and ξ2

xx = 0

This case reduces (25) to

(5 ξ1
t − 3 c1) αu + 3 (ξ1

t − c1) u αuu = 0

Again we consider two subcases.

Subcase 3.1: αu = 0

This implies
α(u) = k (constant),

which reduces (24) to
k ξ1

t + 2 ξ1
tt,

leading to two more subcases.

Subcase 3.1.1: k = 0

Following the usual steps, as we performed in the above cases, we obtain the following
form of function f

f (u) = f1 uσ/3,

which results in the principal algebra, and additionally

X3 = x
∂

∂x
+

σ − 3
σ + 1

t
∂

∂t
− 6

σ + 1
u

∂

∂u
,

provided σ 6= −1 and σ 6= 3. Here, σ is constant.
1. If σ = −1, then

f (u) = u−1/3,

which yields the principal algebra and X5 from subcase 2.1.1.2 (1).
2. If σ = 3, then

f (u) = f1 u

and for this form of function we find

X3 = x
∂

∂x
− 3

2
u

∂

∂u
,

in addition to X1 and X2.

Subcase 3.1.2: k 6= 0

After some manipulations, we obtain

f (u) = −3
4

σ− 1
(3σ− 7)

(2− σ) k2 u + f1 uσ,

with the Lie algebra in this case being two-dimensional spanned by X1 and X2.

Subcase 3.2: αu 6= 0

This case has the same Lie algebra as in Subcases 2.2.1 and 2.2.1.1.
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The above classification is summarized in Tables 1–3.

Table 1. Complete classification.

Cases Forms of α(u) Forms of f (u) Lie Symmetry Algebra

Case 1
ξ2

xx = 0, β 6= − 4
3 Arbitrary Arbitrary X1 = ∂

∂x , X2 = ∂
∂t .

Subcase 1.1: αu 6= 0

α = k1
k+1 uk+1 + k2,

k1 6= 0

1.1.1: k 6= −1

β 6= 2(k + 1) α = k1
k+1 uk+1 f (u) = f1 u2k+3 X1, X2, and

X3 = x ∂
∂x −

2 (k+1)
β−2(k+1)

t ∂
∂t +

2
β−2(k+1) u ∂

∂u

c3 6= 0, β = 2(k + 1) α = k1
k+1 uk+1

f (u) = − 1
(k+1)2 c3 k1 uk+1

− 1
2(k+1) (k2 c3 + c2

3) u +

f1 u2k+3

X1, X2 only.

c3 = 0, β = 2(k + 1) α = k1
k+1 uk+1 f (u) = f1 u2k+3 X1, X2, X3 = t ∂

∂t −
1

(k+1) u ∂
∂u

1.1.2: k = −1

k = −1 α = k1 ln(u) + k2 X1, X2 only.

Subcase 1.2: αu = 0

α = k

1.2.1: β 6= −4, k 6= 0

β 6= −4, c1 = 0 α = k f (u) = − 4+2 β

(4+β)2 k2 u + f1 u1+β X1 = ∂
∂x , X2 = 1

k
∂
∂t ,

X3 = e
β k

4+β t ( ∂
∂t −

2 k
4+β u ∂

∂u
)

β 6= −4, c1 6= 0 α = k f (u) = − 4+2 β

(4+β)2 k2 u

X1 = ∂
∂x , X2 = 1

k
∂
∂t ,

X3 = e
β k

4+β t ( ∂
∂t −

2 k
4+β u ∂

∂u
)
,

X4 = x ∂
∂x + 2

β u ∂
∂u

1.2.1.1: β 6= −4, k = 0

α = 0 f (u) = f1 u1−β k1
X1, X2, X3 =

x ∂
∂x + k1

(k1+1) t ∂
∂t + 2

β(k1+1) u ∂
∂u

1.2.2: β = −4

1.2.2.1: β = −4, k 6= 0

α = k f (u) = f1 u
X1 = ∂

∂x , X2 = 1
k

∂
∂t ,

X3 = x ∂
∂x −

1
2 u ∂

∂u

1.2.2.2: β = −4, k = 0

α = 0 f (u) = f2 u f1
X1, X2, X3 = x ∂

∂x + f1 − 1
( f1+3)

t ∂
∂t −

2
( f1+3) u ∂

∂u
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Table 2. Complete classification.

Cases Forms of α(u) Forms of f (u) Lie Symmetry Algebra

Case 2
ξ2

xx 6= 0, β = − 4
3 Arbitrary Arbitrary X1 = ∂

∂x , X2 = ∂
∂t .

Subcase 2.1: αu = 0
α = A (constant)

2.1.1: A = 0
α = 0 f (u) = 9

4 F1 u−1/3 + F2 u + F3

2.1.1.1: F2 6= 0, c1 = 0
(1) c1 = 0, F3 6= 0 α = 0 f (u) = 9

4 F1 u−1/3 + F2 u + F3 X1 = − 1
3F1

∂
∂x , X2 = ∂

∂t

(2) c1 = 0, F3 = 0 α = 0 f (u) = 9
4 F1 u−1/3 + F2 u

X1 = − 1
3F1

∂
∂x , X2 = ∂

∂t ,

X3 = e
√

3F1x( ∂
∂x −

3
√

3F1
2 u ∂

∂u
)
,

X4 = e−
√

3F1x( ∂
∂x + 3

√
3F1
2 u ∂

∂u
)

2.1.1.2: F2 = 0, c1 6= 0

F3 = 0 α = 0 f (u) = 9
4 F1 u−1/3

X1, X2, X3, X4 from subcase
2.1.1.1 (2) in addition to
X5 = t ∂

∂t + 3
2 u ∂

∂u

F3 6= 0 α = 0 f (u) = 9
4 F1 u−1/3 + F3

X1, X2, and
X3 = t ∂

∂t −
1
3 x ∂

∂x + 2 u ∂
∂u

2.1.2: A 6= 0
α = A f (u) = 9

4 F1 u−1/3 + F2 u + F3

2.1.2.1: F2 6= − 3
8 A2, c2 = 0

F3 = 0 α = A f (u) = 9
4 F1 u−1/3 + F2u X2 = 2

A
∂
∂t , X1, X3 and

X4 from subcase 2.1.1.1 (2)
F3 6= 0 α = A f (u) = 9

4 F1 u−1/3 + F2 u + F3 X1, X2 only.
2.1.2.2: F2 = − 3

8 A2, c2 6= 0

F3 = 0 α = A f (u) = 9
4 u−1/3 F1 − 3

8 A2 u
X1, X2, X3, X4 from subcase
2.1.1.1 (2) in addition to
X5 = e−

A
2 t ( ∂

∂t −
3
4 A u ∂

∂u
)

F3 6= 0 α = A f (u) = 9
4 u−1/3 F1 − 3

8 A2 u + F3 X1, X2 only.

Subcase 2.2: αu 6= 0
2.2.1: k 6= −1

k 6= −1, k 6= − 5
3 α = k1

k+1 uk+1 + k2 f (u) = F2 u2k+3 X1, X2, X3 = x ∂
∂x + 3(k+1)

3k+5
t ∂

∂t −
3

3k+5 u ∂
∂u

k 6= −1, k = − 5
3 , k2 6= 0 α = − 3

2 k1 u−2/3 + k2
f (u) = 9

8 k1 k2 u1/3 − 3
16 k2

2 u +

f1 u−1/3

X1 = ∂
∂x , X2 = 2

k2
∂
∂t ,

X3 = e−
1
2 k2 t ( ∂

∂t −
3
4 k2 u ∂

∂u
)

k 6= −1, k = − 5
3 , k2 = 0 α = − 3

2 k1 u−2/3 f (u) = f1 u−1/3 X1, X2, X3 = t ∂
∂t + 3

2 u ∂
∂u

2.2.2: k = −1
k = −1 α(u) = k1 ln(u) + k2 X1, X2 only.

Table 3. Complete classification.

Cases Forms of α(u) Forms of f (u) Lie Symmetry Algebra

Case 3
ξ2

xx = 0, β = − 4
3 Arbitrary Arbitrary X1 = ∂

∂x , X2 = ∂
∂t

Subcase 3.1: αu = 0
α = k (constant)

3.1.1: k = 0

σ 6= −1, σ 6= 3 α = 0 f (u) = f1 uσ/3 X1, X2, X3 = x ∂
∂x + σ− 3

σ + 1
t ∂

∂t −
6

σ + 1 u ∂
∂u

σ = −1, σ 6= 3 α = 0 f (u) = f1 u−1/3 X1, X2, X3 = t ∂
∂t + 3

2 u ∂
∂u

σ 6= −1, σ = 3 α = 0 f (u) = f1 u X1, X2, X3 = x ∂
∂x −

3
2 u ∂

∂u
3.1.2: k 6= 0
σ 6= −1, σ 6= 3 α = k f (u) = − 3

4
σ−1

(3σ−7) (2− σ) k2 u + f1 uσ X1, X2 only.
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3. Optimal System of Subalgebras

To perform the reductions of (1) in an efficient way, we look for all the disjoint linear
combinations of one dimensional subalgebras, partitioned into dissimilar classes. This can
be accomplished by finding the optimal system of one dimensional subalgebra. In this
section, we find the optimal system using an adjoint action representation method due to
Olver [4] for each case discussed above.

To find the optimal system, we take a general element X ∈ Γ3, given by

X = e1 X1 + e2 X2 + e3 X3, (38)

where the adjoint action representation is defined by

Ad(eXi )Xj = Xj − ε [Xi, Xj] +
ε2

2!
[Xi, [Xi, Xj]] + . . . . . (39)

Applying (39) on the generic element (38), we obtain the following optimal system of one
dimensional subalgebras for each case:

Subcase 1.1.1:

X 1 = X3 ± X1,

X 2 = X3,

X 3 = X1 + e2 X2,

X 4 = X2.

Subcase 1.1.1.1.1:

X 1 = X3 + e1 X1,

X 2 = X1 ± X2,

X 3 = X1.

Subcase 1.2.1 (A):

X 1 = e1 X1 + X2,

X 2 = X1 + X3,

X 3 = X1.

Subcase 1.2.1 (B):

X 1 = X2 + X4,

X 2 = X3 + X4,

X 3 = X4,

X 4 = X1 + X2,

X 5 = X2,

X 6 = X1 + X3,

X 7 = X1.
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Subcase 1.2.1.1:

X 1 = X2 + X3,

X 2 = X3,

X 3 = e1 X1 + X2,

X 4 = X1.

Subcase 1.2.2.1:

X 1 = X3 + e2 X2,

X 2 = X1 + e2 X2,

X 3 = X2.
Subcase 1.2.2.2 (C):

X 1 = ±X2 + X3,

X 2 = X3,

X 3 = X1 + e2 X2,

X 4 = X2.

Subcase 2.1.1.1 (2):

X 1 = X2 + X3 +X4,

X 2 = X1 + e2 X2,

X 3 = e2 X2 + X4,

X 4 = e2 X2 + X3,

X 5 = X2.

Subcase 2.1.1.2 (1):

X 1 = X3 + X4 +X5,

X 2 = X4 + X5,

X 3 = e1 X1 + X5,

X 4 = X3 + X5,

X 5 = X5,

X 6 = X2 + X3 +X4,

X 7 = X2 + X4,

X 8 = X1 + X2,

X 9 = X1,

X 10 = X2 + e3 X3,

X 11 = X3,

X 12 = X3 + X4.
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Subcase 2.1.1.2 (2):

X 1 = X2 + X3,

X 2 = X3,

X 3 = e1 X1 + X2,

X 4 = X1.

Subcase 2.1.2.1 (2): This subcase has the same optimal system as in subcase 2.1.1.1 (2).

Subcase 2.1.2.2 (1):

X 1 = X2 + X3 +X4,

X 2 = X2 + X4,

X 3 = e1 X1 + X2 + X3,

X 4 = e1 X1 + X2,

X 5 = X3 + X4 +X5,

X 6 = X3 + X4,

X 7 = X3,

X 8 = e1 X1 + X5,

X 9 = X4 + X5,

X 10 = X5,

X 11 = e1 X1 + X4,

X 12 = X1.

Subcase 2.2.1:

X 1 = X2 + X3,

X 2 = X3,

X 3 = e1 X1 + X2,

X 4 = X1.

Subcase 2.2.1.1:

X 1 = e1 X1 + X2,

X 2 = e1 X1 + X3,

X 3 = X1.

Subcase 2.2.1.1.1: The optimal system of this subcase overlaps with the optimal system of
subcase 1.1.1.1.1; however, the symmetry generator X3 is different.
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Subcase 3.1.1:

X 1 = ±X2 + X3,

X 2 = X3,

X 3 = X1 + e2 X2,

X 4 = X2.

Subcase 3.1.1 (1):

X 1 = e1 X1 + X3,

X 2 = e1 X1 ± X2,

X 3 = X1.

Subcase 3.1.1 (2):

X 1 = e2 X2 + X3,

X 2 = X1 + e2 X2,

X 3 = X2.

3.1. Reductions to Ordinary Differential Equations

In this section, we invoke the above optimal systems to perform reductions of (1) for
each case. In some cases, we are able to find the exact invariant solutions.

3.2. Reductions for Arbitrary Functions α(u) and f (u)

We begin with χ1 = ∂
∂x . By the method of characteristics, we have

dx
1

=
dt
0

=
du
0

which yields the following invariants, t = ω and u = φ(ω). Using these similarity
variables, we determine the following reduced ODE,

φβ φ
′′
+ f (φ) + β φβ−1 φ

′2
= 0.

Now, we consider the symmetry generator χ2 = ∂
∂t and have

dx
0

=
dt
1

=
du
0

which gives x = ω and u = φ(ω). Hence, we obtain the reduced ODE

φ
′′
+ α(φ) φ

′
= f (φ).

3.3. Reductions for Subcase 1.1.1

In this case, Equation (1) takes the form

utt +
1

k + 1
k1 uk+1 ut = f1 u2k+3 + β uβ−1 u2

x + uβ uxx. (40)

For

X 1 = (x± 1)
∂

∂x
+

2 (k + 1)
β− 2(k + 1)

t
∂

∂t
+

2
β− 2(k + 1)

u
∂

∂u
,
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we find the following invariants:

ω = (x ± 1) t
β−2(k+1)

2(k+1) , u = φ t−
1

(k+1) ,

and corresponding to these, (40) reduces to

(
φβ − ρ2 ω2) φ

′′ − ω φ
′ (

κ +
1

k + 1
ρ k1 φk+1)+

β φβ−1 φ
′2 + φ

(
f1 φ2(k+1) +

k1

(k + 1)2 φk+1 − k + 2
(k + 1)2

)
= 0,

where ρ = (β−2(k+1))2

4(k+1)2 and κ = (β−2(k+1))(β−4(k+2))
4(k+1)2 .

As for X 2, the reduced ODE is the same as above. However, the similarity variables are

ω = x t
β−2(k+1)

2(k+1) , u = φ t−
1

(k+1) .

Likewise, for

X 3 =
∂

∂x
+ e2

∂

∂t
,

the similarity transformations are ω = e2 x − t and u = φ(ω). According to these
transformations, (40) takes the form

(
φβ − e2

2) φ
′′
+

1
k + 1

k1 φk+1 φ
′
+ β e2

2 φβ−1 φ
′2 + f1 φ2k+3 = 0,

and this gives the traveling wave solution. Now, for the time translation generator,

X 4 =
∂

∂t
,

we obtain
φβ φ

′′
+ β φβ−1 φ

′2 + f1 φ2k+3 = 0,

where ω = x and u = φ(ω).

3.4. Reductions for Subcase 1.1.1.1.1

Equation (1) has the form

utt +
1

k + 1
k1 uk+1 ut = f1 u2k+3 + 2(k + 1) u2k+1 u2

x + u2(k+1) uxx. (41)

For the generator,

X 1 =
∂

∂x
+ t

∂

∂t
− 1

(k + 1)
u

∂

∂u
,

we find the following reduced form of (41):

( 1
e2

1
φ2(k+1) + 1

)
φ
′′
+ φ

′ ( 1
k + 1

k1 φk+1 − 1 +
2
e2

1
(k + 1) φ2k+1 φ

′)
+

φ
(

f1 φ2(k+1) +
k1

(k + 1)2 φk+1 − k + 2
(k + 1)2

)
= 0,

where the invariants corresponding to this generator are

ω =
1
e1

x − ln(t), u = φ t−
1

(k+1) .
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The symmetry generator

X 2 =
∂

∂x
± ∂

∂t
,

results in the ODE,

(
φ2(k+1) − 1

)
φ
′′
+ φ

′
φk+1 ( 2(k + 1) φk φ

′ − 1
k + 1

k1
)
+ f1 φ2k+3 = 0,

via the invariants ω = x ± t and u = φ(ω). Now for translation in x,

X 3 =
∂

∂x
,

we have the invariants of the form ω = t and u = φ(ω), which reduces (41) to

φ
′′
+

1
k + 1

k1 φ
′
φk+1 − f1 φ2k+3 = 0.

3.5. Reductions for Subcase 1.2.1 (A)

In this case, Equation (1) becomes

utt + k ut = − (4 + 2β)

(4 + β)2 k2 u + f1 uβ+1 + β uβ−1 u2
x + uβ uxx. (42)

The symmetry generator

X 1 =
∂

∂x
+

1
k

∂

∂t
,

yields the invariants

ω =
1
k

x − t, u = φ(ω),

which result in the following reduced form of (42):

( 1
k2 φβ − 1

)
φ
′′
+ φ

′ ( 1
k2 β φβ−1 + k

)
+ φ

(
f1 φβ − (4 + 2β)

(4 + β)2 k2 ) = 0.

Corresponding to X 2, the similarity transformations

ω = x − 1
m

em t, u = φ e
2
β m t,

give rise to the reduced ODE

(
φβ − 1

)
φ
′′
+

1
β

(
β (k + 1) + 2 (m + 1)

)
φ
′ − 4 k2

4 + β
φ + f1 φβ+1 + 2φβ−1 φ

′2 = 0,

where m = − β k
4+β . Furthermore, we have

φ
′′
+ k φ

′
+

4 k2

4 + β
φ − f1 φβ+1 = 0,

for the translational symmetry operator X 3.

3.6. Reductions for Subcase 1.2.1 (B)

Equation (1) in this case admits the following form:

utt + k ut = − (4 + 2β)

(4 + β)2 k2 u + β uβ−1 u2
x + uβ uxx. (43)
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For
X 1 = x

∂

∂x
+

1
k

∂

∂t
+

2
β

u
∂

∂u
,

the PDE (43) reduces to the ordinary differential equation

(
φβ − k2) φ

′′
+ φ

′ ( β− 4
β

φβ − k2) + φ
(
2
(2− β)

β2 φβ − (4 + 2β)

(4 + β)2

)
= 0,

by the similarity variables ω = k t − ln(x) and u = x2/β φ.
Also, X 2 leads to

(ω2 − 1) φ
′′
+ φ

′( 4k
4 + β

+ φβ ω2 + β ω2 φβ−1 φ
′)− 4

β2 φ = 0,

subject to the invariants

ω = ln(x) +
4 + β

β k
e−

β k
4+β t,

and

u = φ e−
2
β (

4+β
β k e

− βk
4+β

t
+

β k
4+β t).

For the generator

X 3 = x
∂

∂x
+

2
β

u
∂

∂u
,

the invariants
ω = t, u = x2/β φ,

result in the following reduced form of (43):

φ
′′
+ k φ

′
+

4 + 2β

(4 + β)2 k2 φ − (4 + β) φβ+1 = 0.

Now for X 4, the reduced differential equation is given by

(φβ − k2) φ
′′
+ k2 φ

′
+ β φβ−1 φ

′2 − 4 + 2β

(4 + β)2 k2 φ = 0.

Similarly, associated with the time translation symmetry X 5, (43) reduces to

φβ φ
′′
+ β φβ−1 φ

′2 − 4 + 2β

(4 + β)2 φ = 0.

Also, the symmetry generator X 6 has the invariant transformations

ω = x +
4 + β

β k
e−

β k
4+β t, u = φ e−

2k
4+β t

which transform (43) into the form

(φβ − 1) φ
′′
+ β φβ−1 φ

′2 = 0,

having the solution

φ(ω)− φ(ω)β+1

β + 1
= d1 (d1 + ω).

In the same manner, for the translation symmetry in x, we deduce the following reduction:

φ
′′
+ k φ

′
+

4 + 2β

(4 + β)2 k2 φ = 0.
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The exact invariant solution corresponding to this is

u(x, t) = d1 e−
2+β
4+β k t

+ d2 e−
2

4+β k t,

with the graphical representation.

Figure 1 shows that the solution decreases exponentially in time. The terms e−
2+β
4+β k t

and e−
2

4+β k t represent different components of the wave. As time increases, the shape and
behavior of the solution will change with these components. Both components constitute a

different decay rate of the wave. The rapid decay term e−
2+β
4+β k t causes faster damping of

the wave.

Figure 1. u(x, t) = d1 e−
2+β
4+β k t

+ d2 e−
2

4+β k t.

3.7. Reductions for Subcase 1.2.1.1

Equation (1) becomes

utt = f1 u1−β k1 + β uβ−1 u2
x + uβ uxx. (44)

The generator

X 1 = x
∂

∂x
+ (

k1

(k1 + 1)
t + 1)

∂

∂t
+

2
β(k1 + 1)

u
∂

∂u
,

having invariants

ω = x
(
k1 t + (k1 + 1)

)− k1+1
k1 ,

u = φ
(
k1 t + (k1 + 1)

) 2
β k1

transforms (44) into

(
(k1 + 1)2 ω2 − φβ

)
φ
′′
+

2
β2 (2− β (2k1 + 1)) (k1 + 1)2 ω φ

′ − β φβ−1 φ
′2 +

4− 2β k1

β2 φ − f1 φ1−β k1 = 0.

Similarly, X 2 leads to

( (k1 + 1)2

k2
1

ω2 − φβ
)

φ
′′
+

2
β2 k4 (2− β (2k1 + 1)) (k1 + 1)2 ω φ

′ − β φβ−1 φ
′2 +

4− 2β k1

β2 k2 φ − f1 φ1−β k1 = 0

where the similarity variables are

ω = x t−
k1+1

k1 ,

u = φ t
2

β k1
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Moreover, the Lie generator X 3 gives the following reduced form of (44):

(φβ − e2
1) φ

′′
+ β φβ−1 φ

′2 + f1 φ1−β k1 = 0.

Now, for X 4, we have
φ
′′ − f1 φ1−β k1 = 0,

by means of the invariants ω = t and u = φ(ω), which yields the following exact invariant
solution

φ(ω)2 ( 2 f1 φ(ω)2−βk1

d1 (2−βk1)
+ 1
)

F1
( 1

2 , 1
2−β k1

; 1 + 1
2−β k1

;− 2 f1 φ(ω)2−βk1

d1(2−β k1)

)2

2 f1 φ(ω)2−β k1

2−βk1
+ d1

= (d2 + ω)2.

3.8. Reductions for Subcase 1.2.2.1

Equation (1) in this case is

utt + k ut = f1 u − 4 u−5 u2
x + u−4 uxx. (45)

The Lie generator X 1 has the similarity variables

ω = ln(x) − k
e2

t, u = φ x−1/2,

that reduce (45) to the form

(φ−4 − k2

e2
2
) φ
′′ − 4 φ−5 φ

′2 + 3 φ−4 φ
′
+

k2

e2
2

φ
′ − 1

4
φ−3 + f1 φ = 0.

Now for X 2, we have

(φ−4 − k2

e2
2
) φ
′′ − 4 φ−5 φ

′2 +
k2

e2
2

φ
′
+ f1 φ = 0.

via the similarity variables

ω = x − k
e2

t, u = φ.

Also, for the translation in time

X 3 =
1
k

∂

∂t
,

(45) becomes
φ−4 φ

′′ − 4 φ−5 φ
′2 + f1 φ = 0.

3.9. Reductions for Subcase 1.2.2.2 (C)

Equation (1) for this case is

utt = f2 u f1 − 4 u−5 u2
x + u−4 uxx. (46)

X 1 with the similarity variables

ω = x
(
( f1 − 1) t ± ( f1 + 3)

)− f1+3
f1−1 ,

u = φ
(
( f1 − 1) t ± ( f1 + 3)

)− 2
f1−1 ,

converts (46) to the ODE as

((3 + f1)
2 ω2 − φ−4) φ

′′
+ 2(3 + f1)

2 φ
′
ω + 4 φ−5 φ

′2 + 2 ( f1 + 1) φ − f2 φ f1 = 0.
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For X 2, we derive the following similarity transformations:

ω = x t−
f1+3
f1−1 ,

u = φ t−
2

f1−1 ,

which transforms (46) into

(
(3 + f1)

2

( f1 − 1)2 ω2 − φ−4) φ
′′
+ 2

(3 + f1)
2

( f1 − 1)2 φ
′
ω + 4 φ−5 φ

′2 + 2 ( f1 + 1) φ − f2 φ f1 = 0.

Also, for the traveling wave symmetry generator X 3, we obtain the following reduction

( φ−4 e2
2 − 1) φ

′′ − 4 φ−5 φ
′2 + f2 φ f1 = 0.

Similarly, for X 4, we obtain the reduction of (46) as

φ−4 φ
′′ − 4 φ−5 φ

′2 + f2 φ f1 = 0.

3.10. Reductions for Subcase 2.1.1.1 (2)

In this case, (1) can be written as

utt =
9
4

F1 u−1/3 + F2 u − 4
3

u−7/3 u2
x + u−4/3 uxx. (47)

The symmetry generator X 1 reduces (47) to

( φ−4/3 − 1) φ
′′
+ F2 φ − 9

4
F1 φ−1/3 − 4

3
φ−7/3 φ

′2 = 0,

where the similarity variables for this symmetry generator are

ω = t − 1√
3F1

tan−1(sinh
√

3F1 x),

and
u = φ (cosh

√
3F1 x)−3/2.

Likewise, X 2 has similarity variables ω = 3F1 e2 x + t and u = φ, which transform (47) into

(9F2
1 e2

2 φ−4/3 − 1) φ
′′
+ F2 φ +

9
4

F1 φ−1/3 − 12F2
1 e2

2 φ−7/3 φ
′2 = 0.

Now we consider X 3, which has the respective invariants of the form

ω = t − 1√
3F1

e
√

3F1x, u = φ e
3
√

3F1
2 x,

and for these invariants we arrive at the following reduced differential equation:

( φ−4/3 e2
2 − 1) φ

′′
+ F2 φ − 4

3
e2

2 φ−7/3 φ
′2 = 0.

Now for X 4 we find

ω = t +
1√
3F1

e−
√

3F1x, u = φ e−
3
√

3F1
2 x,
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which results in the same reduced differential equation given above. The reduced ODE for
X 5 is

φ−4/3 φ
′′
+ F2 φ − 4

3
φ−7/3 φ

′2 +
9
4

F1 φ−1/3 = 0.

3.11. Reductions for Subcase 2.1.1.2 (1)

In this case, (1) takes the form

utt =
9
4

F1 u−1/3 − 4
3

u−7/3 u2
x + u−4/3 uxx. (48)

The symmetry generator X 1 reduces (48) to

( φ−4/3 − 1) φ
′′
+ F2 φ − 9

4
F1 φ−1/3 − 4

3
φ−7/3 φ

′2 − 3
4

φ1/3 = 0,

where the similarity variables for this symmetry generator are

ω = − 1√
3F1

tan−1(e
√

3F1x) + ln(t),

and
u =

√
3F1(e

√
3F1x − e−

√
3F1x) + φ t3/2.

For X 2, the invariants are given by

ω = ln(t) − 1√
3F1

e
√

3F1x, u = φ e
3
2 (
√

3F1x + 1√
3F1

e
√

3F1x)

that yields

(φ−4/3 + ω2) φ
′′
+ φ−4/3 φ

′ − 4
3

φ−7/3 φ
′2 − 3

4
φ1/3 = 0. (49)

Now for X 3, the invariants

ω = ln(t) +
3F1

e1
x, u = φ t3/2,

reduce (48) to

( φ−4/3 − e2
1) φ

′′ − 2 e2
1 φ
′ − 3

4
e2

1 φ − 4
3

φ−7/3 φ
′2 +

9
4

F1 e2
1 φ−1/3 = 0.

The reduction of (48) for X 4 is the same as given in (49), with respect to the following
invariants:

ω = ln(t) +
1√
3F1

e−
√

3F1x, u = φ e
− 3

2 (
√

3F1x + 1√
3F1

e−
√

3F1x)
.

The reduced differential equation for X 5 is

( φ−4/3 − ω2) φ
′′ − 3

4
φ − 4

3
φ−7/3 φ

′2 +
9
4

F1 φ−1/3 = 0,

subject to ω = x t and u = φ t3/2.
In a like manner, for X 6, the reduction of (48) is given by

( φ−4/3 − 1) φ
′′ − 9

4
F1 φ−1/3 − 4

3
φ−7/3 φ

′2 = 0,
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where the similarity variables for this symmetry generator are

ω = t − 1√
3F1

tan−1(sinh
√

3F1 x),

and
u = φ (cosh

√
3F1 x)−3/2.

Also, the Lie symmetry X 7 with respective invariants

ω = t − 1√
3F1

e
√

3F1x, u = φ e
3
√

3F1
2 x,

gives the reduction

( φ−4/3 − 1) φ
′′ − 4

3
φ−7/3 φ

′2 = 0.

Similarly, for X 8, the reduced form is

(9F2
1 φ−4/3 − 1) φ

′′
+

9
4

F1 φ−1/3 − 12F2
1 φ−7/3 φ

′2 = 0.

The reduced ODE for X 9 is
φ
′′ − 9

4
F1 φ−1/3 = 0.

Associated to X 10, the reduced form of (48) is given by

( φ−4/3 − e2
3) φ

′′ − 4
3

φ−7/3 φ
′2 = 0,

via the invariants

ω = e3 t +
1√
3F1

e−
√

3F1x, u = φ e−
3
√

3F1
2 x.

Similarly, for X 11, we arrive at the reduced form

φ
′′
= 0,

subject to the invariants

ω = t, u = φ e−
3
√

3F1
2 x.

The corresponding invariant solution is

u(x, t) = (d1 + d2 t) e−
3
√

3F1
2 x.

Graphically, this shows exponential decay.
Figure 2 shows exponential decay in the amplitude of the wave. As x increases, the

amplitude of the wave swiftly diminishes. In other words, the wave spreads linearly with
time t and then diminishes exponentially as we move along the x-axis in the positive

direction due to the term e−
3
√

3F1
2 x. This solution illustrates the behavior of the wave that

spreads and grows linearly with time while also decays in amplitude with spatial distance.
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Figure 2. u(x, t) = (d1 + d2 t) e−
3
√

3F1
2 x.

The similarity variables

ω = t, u = φ (cosh
√

3F1 x)−3/2,

associated with X 12 gives the following reduction of (48):

φ
′′
+

9
4

F1 φ−1/3 = 0.

3.12. Reductions for Subcase 2.1.1.2 (2)

Here, (1) becomes

utt = F3 −
4
3

u−7/3 u2
x + u−4/3 uxx. (50)

We begin with X 1 for which the invariants

ω = x3 − (t + 1),

and
u = φ (t + 1)2,

reduce (50) to the differential equation

(9 ω4/3 φ−4/3 − ω2) φ
′′
+ φ

′
(6 ω1/3 φ−4/3 − 4ω − 12ω4/3 φ−7/3 φ

′
) − 2 φ + F3 = 0.

For X 2, we obtain the same reduced ODE, as given above. However, the similarity transfor-
mations for this symmetry generator are

ω = x3 − t, u = φ t2.

Similarly, for X 3, the invariants ω = x − e1 t and u = φ(ω), results in the reduction

(φ−4/3 − e2
1) φ

′′ − ω4/3 φ−7/3 φ
′2 − F3 = 0.

The reduced differential equation for the translational symmetry X 4 is

φ
′′ − F3 = 0,

subject to ω = t and u = φ . This results in the following exact solution of (50)

u(x, t) = d1 + d2 t +
1
2

t2 F3,
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and the graphical illustration of this solution is shown below.
Figure 3 shows the quadratic behavior of the solution that increases with time.

Figure 3. u(x, t) = d1 + d2 t + 1
2 t2 F3.

3.13. Reductions for Subcase 2.1.2.1 (2)

In this case, (1) can be written as

utt + A ut =
9
4

F1 u−1/3 + F2 u − 4
3

u−7/3 u2
x + u−4/3 uxx. (51)

The Lie symmetry generator X 1 reduces (51) to

( φ−4/3 − 1) φ
′′ − A φ

′
+ F2 φ − 9

4
F1 φ−1/3 − 4

3
φ−7/3 φ

′2 = 0,

where the similarity variables for this symmetry generator are

ω = t − 1√
3F1

tan−1(sinh
√

3F1 x),

and
u = φ (cosh

√
3F1 x)−3/2.

The reduction of (51) for X 2 is

(12F2
1 e2

2 φ−4/3 − A2) φ
′′ − A φ

′
+ F2 φ +

9
4

F1 φ−1/3 − 12F2
1 e2

2 φ−7/3 φ
′2 = 0.

Corresponding to X 3, the invariants

ω = t − 1√
3F1

e
√

3F1x, u = φ e
3
√

3F1
2 x,

lead to the following reduced differential equation

(e2
2 φ−4/3 − 1) φ

′′ − A φ
′
+ F2 φ − 4

3
e2

2 φ−7/3 φ
′2 = 0.

Also, X 4, yields the following invariants:

ω = t +
1√
3F1

e−
√

3F1x, u = φ e−
3
√

3F1
2 x,

and by using these invariants we deduce the same reduced differential equation as
given above.
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The reduction of (51) associated to X 5 is

φ−4/3 φ
′′
+ F2 φ − 4

3
φ−7/3 φ

′2 +
9
4

F1 φ−1/3 = 0.

3.14. Reductions for Subcase 2.1.2.2 (1)

In this case, (1) is

utt + A ut =
9
4

F1 u−1/3 − 3
16

A2 u − 4
3

u−7/3 u2
x + u−4/3 uxx. (52)

The symmetry generator X 1 reduces (52) to the ODE

( φ−4/3 − 1) φ
′′ − A φ

′ − 4
3

φ−7/3 φ
′2 +

9
4

F1 φ−1/3 − 3
16

A2 φ = 0,

where the similarity variables used are

ω = t − 1√
3F1

tan−1(sinh
√

3F1 x),

and
u = φ (cosh

√
3F1 x)−3/2.

Now, X 2 has the similarity variables

ω = t − 1√
3F1

e
√

3F1x, u = φ e
3
√

3F1
2 x,

and by using these invariants, we arrive at

( φ−4/3 − 1) φ
′′ − A φ

′ − 4
3

φ−7/3 φ
′2 − 3

16
A2 φ = 0.

The similarity transformations

ω =
1

e1
√

3F1
ln |e1 e−

√
3F1x + 1| + t,

and
u = φ | e−

√
3F1x + e1|

−3/2
,

associated with X 3 transforms (52) into

( φ−4/3 − 1) φ
′′ − A φ

′ − 4
3

φ−7/3 φ
′2 +

9
4

e2
1 F1 φ−1/3 − 3

16
A2 φ = 0.

Also, for X 4, we have reduction

( φ−4/3 − e2
1) φ

′′
+ A e1 φ

′ − 3
16

A2 φ − 4
3

φ−7/3 φ
′2 +

9
4

F1 φ−1/3 = 0.

Similarly, for X 6 the similarity variables

ω = t, u = φ (cosh
√

3F1 x)−3/2,

reduce (52) to

φ
′′
+ A φ

′
+

9
4

F1 φ−1/3 +
3

16
A2 φ = 0.
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For X 7, we obtain the reduction of (52)

φ
′′
+ A φ

′
+

3
16

A2 φ = 0,

subject to

ω = t, u = φ e−
3
√

3F1
2 x.

This reduced differential equation yields the following exact solution of (52):

u(x, t) = e−
3
√

3F1
2 x (d1 e−

3A
4 t + d2 e−

A
4 t).

Graphically, we have the following representation.
Figure 4 shows the diminishing behavior of the wave in both space and time. The

combination of the exponential terms creates a solution that represents temporal and spatial
decay. The graphs shows exponential decay as we move away from the origin. Moreover,
the presence of the damping term A causes faster decay. The wave initially starts with the
smaller amplitude and oscillations, but decays exponentially as it moves in both space and
time. It can be seen from graphs that the wave decays with the increase in time and its
oscillations become smaller and smaller.

Figure 4. u(x, t) = e−
3
√

3F1
2 x (d1 e−

3A
4 t + d2 e−

A
4 t).

The similarity variables

ω = x − 2
A

e
A
2 t, u = φ e−

3A
4 t,

associated with X 8 give

( φ−4/3 − 1) φ
′′ − 4

3
φ−7/3 φ

′2 +
9
4

F1 φ−1/3 = 0.
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For X 10, the similarity variables

ω = x, u = φ e−
3A
4 t,

reduce (52) to the ODE

φ−4/3 φ
′′ − 4

3
φ−7/3 φ

′2 +
9
4

F1 φ−1/3 = 0.

The symmetry generator X 11 results in the reduction

φ−4/3 φ
′′
+ A φ

′ − 9
4

F1 e2
1 φ−1/3 +

3
16

A2 φ = 0,

subject to
ω = t, u = φ (e−

√
3F1x + e1)

−3/2.

In a like manner, X 12 yields

φ
′′
+ A φ

′ − 9
4

F1 φ−1/3 +
3

16
A2 φ = 0.

3.15. Reductions for Subcase 2.2.1

Equation (1) in this respect takes the form

utt +
1

k + 1
k1 uk+1 ut = F2 u2k+3 − 4

3
u−7/3 u2

x + u−4/3 uxx. (53)

For generator X 1, we obtain the reduced form of (53),

(
φ−4/3 − (3k + 5)2 ω2) φ

′′
+ (3k + 5)ω φ

′ ( 1
k + 1

k1 φk+1 − 3(3k + 5) (6k + 11)
)
−

4
3

φ−7/3 φ
′2 + F2 φ2k+3 − (9k + 18)φ +

3
k + 2

k1 φk+2 = 0,

where the invariants associated with this generator are

ω = x
(
(3(k + 1) t + (3k + 5)

)− 3k+5
3(k+1) ,

u = φ
(
3(k + 1) t + (3k + 5)

)− 1
k+1 .

Corresponding to X 2, the invariants are

ω = x t−
3k+5

3(k+1) , u = φ t−
1

k+1 ,

which yield the ODE

(
φ−4/3 − (3k + 5)2

(3k + 3)2 ω2) φ
′′
+

(3k + 5)
(3k + 3)

ω φ
′ ( 1

k + 1
k1 φk+1 − (3k + 5)

(3k + 3)
(6k + 8)

)
−

4
3

φ−7/3 φ
′2 + F2 φ2k+3 − (k + 2)

(k + 1)2 φ +
1

k + 1
k1 φk+2 = 0.

Now, we consider X 3, which reduce (53) to the ODE

(φ−4/3 − e2
1) φ

′′
+

k1

k + 1
e1 φk+1 φ

′ − 4
3

φ−7/3 φ
′2 + F2 φ2k+3 = 0,
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and this gives the traveling wave solution.
The symmetry generator X 4 gives the reduction

φ
′′
+

k1

k + 1
φk+1 φ

′ − F2 φ2k+3 = 0.

3.16. Reductions for Subcase 2.2.1.1

Equation (1) in this case becomes

utt + (− 3
2

k1 u−2/3 + k2) ut =
9
8

k1 k2 u1/3 − 3
16

k2
2 u + f1 u−1/3 − 4

3
u−7/3 u2

x + u−4/3 uxx. (54)

The similarity variables associated with X 1 are

ω = x − k2

2
e1 t, u = φ(ω).

Using these, we reduce (54) to the ODE

(
φ−4/3 −

k2
2

4
e2

1
)

φ
′′
+ φ

′ ( k2
2

2
e1 −

3
4

e1 k1 k2 φ−2/3)−
4
3

φ−7/3 φ
′2 + f1 φ−1/3 +

9
8

k1 k2 φ1/3 − 3
16

k2
2 φ = 0.

Similarly, for X 2, we obtain

(
φ−4/3 − 1

)
φ
′′ − 3

2
k1 φ−2/3 φ

′ − 4
3

φ−7/3 φ
′2 + f1 φ−1/3 = 0,

with respect to the invariants

ω = x − 2
k2

e
k2
2 t, u = φ e−

3k2
4 t.

Now, we take X 3, which reduces (54) to

φ
′′ − 3

2
k1 φ−2/3 φ

′
+ k2 φ

′
+

3
16

k2
2 φ − 9

8
k1 k2 φ1/3 − f1 φ−1/3 = 0.

3.17. Reductions for Subcase 2.2.1.1.1

In this case, we have following form of Equation (1):

utt −
3
2

k1 u−2/3 ut = f1 u−1/3 − 4
3

u−7/3 u2
x + u−4/3 uxx. (55)

Analogous to X 1, the reduced ODE is

( 1
e2

1
φ−4/3 − 1

)
φ
′′
+ φ

′ (3
2

k1 φ−2/3 − 2
)
− 4

3e2
1

φ−7/3 φ
′2 + f1 φ−1/3 +

9
4

k1φ1/3 − 3
4

φ = 0,

with respect to the similarity variables

ω = ln(t) − 1
e1

x, u = φ t3/2.

Similarly, for X 2, we have

(
φ−4/3 − 1

)
φ
′′ − 3

2
k1 φ−2/3 φ

′ − 4
3

φ−7/3 φ
′2 + f1 φ−1/3 = 0,



Math. Comput. Appl. 2023, 28, 96 33 of 38

with respect to the invariants

ω = x − 2
k2

e
k2
2 t, u = φ e−

3k2
4 t.

Now consider X 3, which reduces (55) to the ordinary differential equation

φ
′′ − 3

2
k1 φ−2/3 φ

′ − f1 φ−1/3 = 0.

3.18. Reductions for Subcase 3.1.1

In this case, we have

utt = f1 uσ/3 − 4
3

u−7/3 u2
x + u−4/3 uxx. (56)

The Lie symmetry X 1 with the respective invariants

ω = x
(
(σ− 3) t ± (σ + 1)

)− σ+1
(σ−3) ,

u = φ
(
(σ− 3) t ± (σ + 1)

)− 6
(σ−3) ,

transforms (56) into ODE(
φ−4/3 − (σ + 1)2 ω2) φ

′′ − 2(σ + 1)(σ + 5)ω φ
′ −

4
3

φ−7/3 φ
′2 + f1 φσ/3 − 6 (σ + 3) φ = 0.

For X 2, we have

(
φ−4/3 − (σ + 1)2

(σ− 3)2 ω2) φ
′′ − 2(σ + 1)

(σ− 3)2 (σ + 5)ω φ
′ −

4
3

φ−7/3 φ
′2 + f1 φσ/3 − 6

(σ + 3)
(σ− 3)2 φ = 0.

Now X 3 reduces (56) to the differential equation

(
φ−4/3 e2

2 − 1
)

φ
′′ − 4

3
φ−7/3 φ

′2 + f1 φσ/3 = 0.

Also, for the translation in time X 4, we obtain

φ−4/3 φ
′′ − 4

3
φ−7/3 φ

′2 + f1 φσ/3 = 0.

3.19. Reductions for Subcase 3.1.1 (1)

Equation (1) in this subcase is

utt = f1 u−1/3 − 4
3

u−7/3 u2
x + u−4/3 uxx. (57)

Corresponding to X 1, the reduction of (57) is given by

( 1
e2

1
φ−4/3 − 1

)
φ
′′ − 2 φ

′ − 4
3e2

1
φ−7/3 φ

′2 + f1 φ−1/3 − 3
4

φ = 0.

For X 2, we have
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(
φ−4/3 − e2

1
)

φ
′′ − 4

3
φ−7/3 φ

′2 + f1 φ−1/3 = 0.

Also, for translation in x, that is, X 3, we obtain

φ
′′ − f1 φ−1/3 = 0.

This leads to the following exact solution:(
3 d1

√
f1

3
√

φ(ω) − d3/2
1

√
9 f1 φ(ω)2/3

d1
+ 3 sinh−1 (√3 f1

3
√

φ(ω)√
d1

)
+ 9 f 3/2

1 φ(ω)
)2

36 f 3
1 (d1 + 3 f1 φ(ω)2/3)

= (d2 + ω)2

3.20. Reductions for Subcase 3.1.1 (2)

Equation (1) in this case is

utt = f1 u − 4
3

u−7/3 u2
x + u−4/3 uxx. (58)

The symmetry generator X 1 yields the reduction of (58)

(
φ−4/3 − 1

e2
2

)
φ
′′ − 2 φ

′ − 4
3

φ−7/3 φ
′2 + f1 φ +

3
4

φ−1/3 = 0.

Similarly for X 2, we obtain

(
φ−4/3 e2

2 − 1
)

φ
′′ − 4

3
φ−7/3 φ

′2 + f1 φ = 0.

Also, for the translation in time, X 3, we find

φ−4/3 φ
′′ − 4

3
φ−7/3 φ

′2 + f1 φ = 0.

4. Conservation Laws

Conservation laws, central to symmetry analysis, arise as a result of Noether’s theorem,
which connects continuous symmetries and conserved quantities of a system. In the
framework of Noether’s theorem, a conservation law is a divergence expression, indicating
that certain physical quantities remain conserved due to the symmetries embedded in
a system described by differential equations. The study of these conserved quantities,
inter alia, are useful for double reduction, linearization of PDEs and determining nonlocal
symmetries of differential equations.

In this study, we find conservation laws via the partial Lagrangian approach due to
Mahomed and Kara [10]. A partial Lagrangian of Equation (1) is of the form

L =
1
2

u2
t −

1
2

uβ u2
x +

∫
f (u) du, (59)

where
∂L
∂u

= α(u) ut −
1
2

β uβ−1 u2
x.

The operator in Equation (3) associated with the Lagrangian (59) is called the partial
Noether operator of Equation (1) if the condition below is satisfied, viz.

χ[1] L + (Dt ξ1 + Dx ξ2)L = W ∂L
∂u

+ Dt B1 + Dx B2, (60)

where,
W = ϕ − ξ1 ut − ξ2 ux,



Math. Comput. Appl. 2023, 28, 96 35 of 38

B1 & B2 are gauge terms depending on (x, t, u). From Equation (60), we arrive at the
following set of determining equations:

ξ1 = 0, ξ2 = 0, ζu = 0, (61)

ζx uβ + B2
u = 0, (62)

ζt − ζ α(u) − B1
u = 0, (63)

ζ f (u) − B1
t − B2

x = 0. (64)

From Equation (61), we have
ζ = A(t, x). (65)

Also, Equation (63) gives

B1 = At u− A
∫

α(u) du + G(t, x). (66)

Moreover, from Equation (62), we determine

B2 = − 1
β + 1

Ax uβ+1 + F (t, x), (67)

with the conserved vectors arising as

T t = B1 − A ut,

T x = B2 + A uβ ux,

subject to the condition

A f (u) = Att u − At

∫
α(u) du + Gt −

1
β + 1

Axx uβ+1 + Fx. (68)

Now we consider different cases for arbitrary α(u) and f (u).

Case 1: If f (u), α(u), uβ+1 and u are not related, then

A = 0,

H1
x +H2

t = 0.

So, no operators are obtained in this case.

Case 2: If f (u) = 0.

Subcase 2.1: If α(u) is arbitrary function of u provided α(u) 6= uβ, the conserved vectors
in this case are

T t = −(A1 + A2 x)
∫

α(u) du + G − (A1 + A2 x) ut,

T x = − 1
β + 1

A2 uβ+1 + F + (A1 + A2 x) uβux.

Here, A1 and A2 are the constants.

So, we end up having the following conserved vectors:

(T t
1 , T x

1 ) =

(
−
∫

α(u) du + G − ut , uβux + F
)

,

(T t
2 , T x

2 ) =

(
−x

∫
α(u) du + G − x ut , x uβ ux + F − 1

β + 1
uβ+1

)
.
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Subcase 2.2: If α(u) = uβ, the conserved vectors in this case are

T t = −2A3u−
(
A1 + A2 x +A3(−2t + x2)

)
(

1
β + 1

uβ+1 + ut) + G,

T x = − 1
β + 1

(A2 + 2A3x) uβ+1 + F +
(
A1 + A2 x +A3(−2t + x2)

)
uβux.

Herein A1, A2 and A3 are constants.

Subcase 2.3: If α(u) = α is constant, the conserved vectors are

T t = −(A1 + A2 x)
∫

α(u) du + G − (A1 + A2 x) ut,

T x = − 1
β + 1

A2 uβ+1 + F + (A1 + A2 x) uβux,

where A1 and A2 are constants.

Case 3: If f (u) = f1 + f2 u and α(u) is not linear in u, then

A = 0,

H1
x +H2

t = 0.

No operators arise in this case.

Case 4: If f (u) = f1 + f2 uβ+1 and α(u) is not linear in u, then

For f2 > 0, the following components are obtained:

T t = −(A1 cos
√

f2(β + 1) x + A2 sin
√

f2(β + 1) x) (
∫

α(u) du + ut) + G,

T x = (A1 sin
√

f2(β + 1) x − A2 cos
√

f2(β + 1) x) [
1

β + 1

√
f2(β + 1)uβ+1+

f1√
f2(β + 1)

] + (A1 cos
√

f2(β + 1) x + A2 sin
√

f2(β + 1) x) uβux,

where A1 and A2 are constants. Now, for f2 < 0, we deduce the following components of
conserved quantities:

T t = −(A1 e
√

f2(β+1) x + A2 e−
√

f2(β+1) x) (
∫

α(u) du + ut) + G,

T x = A1 e
√

f2(β+1) x [− √ f2(β + 1)
β + 1

uβ+1 +
f1√

f2(β + 1)
+ ux uβ

]
+

A2 e−
√

f2(β+1) x [√ f2(β + 1)
β + 1

uβ+1 − f1√
f2(β + 1)

+ ux uβ
]
,

whereA1 andA2 are constants. Hence, for constantsA1 andA2, there are two independent
conserved quantities, i.e., T1 = (T t

1 , T x
1 ) and T2 = (T t

2 , T x
2 ) for (A1 = 1 , A2 = 0) and

(A2 = 1, A1 = 0 ), respectively.

Case 5: If f (u) = k1
∫

α(u) du.

In this case, we determine the conserved components as

T t = −A1
(
k1 u + (1− k1 t) (

∫
α(u) du + ut)

)
+ G,

T x = A1(1− k1 t) uβ ux + F .

Case 6: If α(u) = α is constant.
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Here, we have different subcases.

Subcase 6.1: If f (u) = f is a constant, the conserved vectors in this case are

T t = −(A1 + A2 x)
∫

α(u) du + G − (A1 + A2 x) ut,

T x = − 1
β + 1

A2 uβ+1 + F + (A1 + A2 x) uβux,

where A1 and A2 are constants.

Subcase 6.2: If f (u) = k1uβ+1, the conserved vectors are

T t = − cos
√

k1(β + 1)x
[
A3(αu + ut) +A1

eαt

α

]
− sin

√
k1(β + 1)x

[
A4(αu + ut) +A2

eαt

α

]
+ G,

T x = cos
√

k1(β + 1)x
[√k1(β + 1)

β + 1
(A4 +A2

eαt

α
) uβ+1 + (A3 +A1

eαt

α
) uβ ux

]
+

sin
√

k1(β + 1)x
[√k1(β + 1)

β + 1
(A3 +A1

eαt

α
) uβ+1 + (A4 +A2

eαt

α
) uβ ux

]
+ F .

5. Conclusions

The complete Lie point symmetry classification of (1) was performed for the arbitrary
smooth functions α(u) and f (u). All possible choices for the extension of the principal Lie
symmetry algebra were covered. The optimal system of one dimensional subalgebras was
obtained for each case as arising from the symmetry Lie group classification. Reductions for
all the cases were performed using the Lie subalgebras. Also, exact invariant solutions and
their graphs were presented in some cases. Moreover, we have also studied the conservation
laws via the partial Lagrangian approach. All the possible cases were discussed in order to
find the conserved vectors of (1).
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