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Abstract: This study investigates via Lie symmetry analysis the Hunter–Saxton equation, an equation
relevant to the theoretical analysis of nematic liquid crystals. We employ the multiplier method to
obtain conservation laws of the equation that arise from first-order multipliers. Conservation laws
of the equation, combined with the admitted Lie point symmetries, enable us to perform symmetry
reductions by employing the double reduction method. The method exploits the relationship between
symmetries and conservation laws to reduce both the number of variables and the order of the
equation. Five nontrivial conservation laws of the Hunter–Saxton equation are derived, four of which
are found to have associated Lie point symmetries. Applying the double reduction method to the
equation results in a set of first-order ordinary differential equations, the solutions of which represent
invariant solutions for the equation. While the double reduction method may be more complex to
implement than the classical method, since it involves finding Lie point symmetries and deriving
conservation laws, it has some advantages over the classical method of reducing PDEs. Firstly, it is
more efficient in that it can reduce the number of variables and order of the equation in a single step.
Secondly, by incorporating conservation laws, physically meaningful solutions that satisfy important
physical constraints can be obtained.

Keywords: double reduction; Hunter–Saxton equation; lie symmetry analysis; conservation law;
invariant solution

1. Introduction

In this research article, we focus on the Hunter–Saxton equation, a mathematical
model described by the partial differential equation (PDE),

(ut + uux)x = 1
2 u2

x, (1)

which arises as an Euler–Lagrange equation of a variational principle in the study of a
nonlinear wave equation for the director field of a nematic liquid crystal [1]. Equation (1)
has attracted significant attention from researchers, prompting numerous studies on it and
its derivatives. These investigations have often employed Lie symmetry analysis to explore
various properties of the equations and, in certain instances, to uncover solutions.

Nadjafikhah and Ahangari [2] determined the Lie point symmetries of the equation
and used the symmetries to find conservation laws and conduct symmetry reductions of
the equation. An optimal system of one-dimensional subalgebras of the symmetry algebra
of the Hunter–Saxton equation was also constructed. San et al. [3] investigated a modified
version of the Hunter–Saxton equation, a third-order nonlinear PDE. Their work featured
the utilization of Ibragimov’s nonlocal conservation method to derive conservation laws
for the equation. Liu and Zhao [4] undertook the study of a generalized two-component
Hunter–Saxton system of equations. They determined similarity variables and executed
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symmetry reductions for this new generalized system, leading to the discovery of some
exact solutions of the system. Yao et al. [5] tackled the periodic Hunter–Saxton equa-
tion, introducing a variable coefficient into the generalized equation. They succeeded in
finding exact solutions for specific selections of the variable coefficient by employing the
classical approach to finding invariant solutions. Johnpillai and Khalique [6] also used
Lie symmetry analysis to find exact solutions for yet another generalized version of the
Hunter–Saxton equation.

In line with the research outlined above, our study is dedicated to examining the sym-
metry reductions of the Hunter–Saxton equation, utilizing the double reduction method.
Our objectives encompass the identification of Lie point symmetries, the determination of
conservation laws through the multiplier method, and the application of the double reduc-
tion method to achieve symmetry reductions. This research serves as a valuable addition to
the existing body of work on the Hunter–Saxton equation, while also contributing insights
into the double reduction method in the search for solutions of PDEs. It must be noted that
the double reduction routine we adopt in this article is based on the generalized approach
proposed by Bokhari et al. [7], which can be used to study PDEs such as those studied
in [8–10], of dimension higher than 1 + 1.

The double reduction method, introduced by Sjöberg [11,12], is a technique for solving
PDEs based on the use of Lie symmetries and conservation laws. For a (1 + 1) PDE
of order q, the double reduction theory allows for the reduction in the PDE to an ODE
of order q − 1, provided that the PDE possesses a conservation law and an associated
symmetry. Generalizations of the double reduction method have been proposed to handle
higher-dimensional PDEs and systems of PDEs [7,13,14]. Anco and Gandarias [15] have
introduced a further generalization of the double reduction method to handle partial
differential equations (PDEs) with n ≥ 2 independent variables and a symmetry algebra of
dimension at least n− 1. In their work [15], they present an algorithm for identifying all
symmetry-invariant conservation laws that reduce to first integrals for the corresponding
ordinary differential equation (ODE) governing symmetry-invariant solutions of the PDE.

Moreover, Anco and Gandarias [15] propose an improved formulation for assessing the
symmetry invariance of conservation laws by utilizing multipliers. This refined formulation
enables the direct derivation of symmetry-invariant conservation laws, eliminating the
need to first obtain conservation laws and subsequently verify their invariance.

The subsequent sections of this paper are structured as follows: Section 2 provides
an overview of the necessary preliminaries and outlines the fundamental principles of
the double reduction theorem. In Section 3, we calculate the Lie point symmetries and
conservation laws for the Hunter–Saxton equation, determining which conservation laws
are associated with symmetries. Section 4 focuses on executing symmetry reductions for
the Hunter–Saxton equation. Finally, in Section 5, we present our concluding remarks.

2. Fundamentals of the Double Reduction Theorem

In this section, we present the double reduction routine for a qth-order (q ≥ 1) partial
differential equation with n independent variables x = (x1, x2, . . . , xn) and one dependent
variable u = u(x), namely

F(x, u, u(1), u(2), . . . , u(q)) = 0, (2)

where u(q) denotes the collection
{

uq
}

of qth-order partial derivatives. In this connection,
we first present the following well-known definitions and results (see, e.g., [7,16–19]).

1. The total derivative operator with respect to xi is

Di =
∂

∂xi + ui
∂

∂u
+ uij

∂

∂uj
+ · · · , i = 1, 2, . . . , n, (3)

where ui denotes the derivative of u with respect to xi. Similarly, uij denotes the
derivative of u with respect to xi and xj.
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2. An n-tuple T =
(
T1, T2, . . . , Tn), i = 1, 2, . . . , n, such that

DiTi = 0 (4)

holds for all solutions of (2) is known as a conservation law of (2).
3. Multiplier Λ for Equation (2) is a non-singular function on the solution space of (2)

with the property
DiTi = ΛE (5)

for arbitrary function u
(

x1, x2, . . . , xn).
4. The determining equations for multipliers are obtained by taking the variational

derivative
δ

δu
(ΛE) = 0, (6)

where the Euler operator δ/δu is defined by

δ

δu
=

∂

∂u
− Di

∂

∂ui
+ Dij

∂

∂uij
− Dijk

∂

∂uijk
+ · · · . (7)

5. A Lie symmetry of (2) with infinitesimal generator X = ξi∂xi + η∂u is said to be
associated with a conserved law (4) if the symmetry and the conservation law satisfy
the relations [16][

Ti, X
]
= X

(
Ti
)
+ TiDjξ

j − T jDjξ
i, i = 1, . . . , n. (8)

Suppose that the PDE (2) admits a Lie point symmetry with infinitesimal generator
X = ξi∂xi + η∂u that is associated with a conservation law DiTi = 0. The following steps
constitute the routine of the double reduction method:

I. Find similarity variables x̃i, i = 1, 2, . . . , n and w,

x̃i = x̃i

(
x1, x2, . . . , xn

)
, i = 1, 2, . . . , n

w(x̃1, . . . , x̃n−1) = ω
(

x1, x2, . . . , xn
)

u,

such that in these variables X =
∂

∂x̃n
.

II. Find inverse canonical coordinates

xi = xi(x̃1, x̃2, . . . , x̃n), i = 1, 2, . . . , n

u
(

x1, x2, . . . , xn
)

= ψ(x̃1, x̃2, . . . , x̃n)w.

III. Write partial derivatives of u in terms of the similarity variables.
IV. Construct matrices A and A−1 as follows:

A =


D̃1x1 D̃1x2 . . . D̃1xn
D̃2x1 D̃2x2 . . . D̃2xn

...
...

...
...

D̃nx1 D̃nx2 . . . D̃nxn

, A−1 =


D1 x̃1 D1 x̃2 . . . D1 x̃n
D2 x̃1 D2 x̃2 . . . D2 x̃n

...
...

...
...

Dn x̃1 Dn x̃2 . . . Dn x̃n

.
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V. Write components Ti of the conserved vector in terms of the similarity variables as
follows: 

T̃1

T̃2

...
T̃n

 = J
(

A−1
)T


T1

T2

...
Tn

, (9)

where J = det(A). Note that T1, . . . , Tn in (9) are easily expressed in terms of the
similarity variables in light of II and III.

VI. The reduced conservation law becomes

D1T̃1 + D2T̃2 + · · ·+ Dn−1T̃n−1 = 0. (10)

3. Symmetries and Conservation Laws of the Hunter–Saxton Equation

The Hunter–Saxton Equation (1) is a (1 + 1) PDE with two independent variables
x = (x1, x2) = (t, x) and one dependent variable u = u(t, x). It admits the following four
symmetries:

X1 = x
∂

∂x
+ u

∂

∂u
X2 =

∂

∂t

X3 = t
∂

∂t
+ x

∂

∂x
X4 = t2 ∂

∂t
+ 2tx

∂

∂x
+ 2x

∂

∂u
.

(11)

The symmetries are easily computed using MathLie, the symmetry-finding package for
Mathematica [20] developed by G. Baumann [21]. We use the multiplier approach to derive
conservation laws for the Hunter–Saxton Equation (1). We seek first-order multipliers

Λ = Λ(x, t, u, ux, ut) (12)

of (1), for which the determining equation according to (6) is

δ

δu

[
Λ
(
(ut + uux)x −

1
2

ux2
)]

= 0, (13)

where the standard Euler operator δ/δu, as defined in (7), is

δ

δu
=

∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
+ D2

t
∂

∂utt
+ D2

x
∂

∂uxx
+ DxDt

∂

∂utx
− · · · , (14)

and total derivative operators Dt and Dx using (3) are

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ utx

∂

∂ut
+ · · · .

The determining equation for the multiplier Λ after expansion takes the following form:

Ω0 + uttΩ1 + utxΩ2 + (utx)
2Ω3 + uxxΩ4 + uxxuttΩ5 = 0, (15)
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where

Ω0 = uxΛtu −
1
2

u2
xΛtut + Λtx −

1
2

u3
xΛuux −

1
2

u2
xutΛuut + uu2

xΛuu + uxutΛuu

+ 2uuxΛxu + utΛxu + uΛxx −
1
2

u2
xΛxux +

3u2
xΛu

2
+ uxΛx,

Ω1 = uxΛuut −
1
2

u2
xΛutut + Λxut ,

Ω2 = 2uuxΛuut + 2uΛxut − u2
xΛutux + 2Λu,

Ω3 = uΛutut −Λutux ,

Ω4 = Λtux − uΛtut + utΛuux + uΛxux + uuxΛuux − uutΛuut −
1
2

u2
xΛuxux

+ 2uΛu − uxΛux − utΛut + Λ,

Ω5 = Λutux − uΛutut .

The multiplier determining Equation (15) splits with respect to different combinations of
the derivatives uxx, utx and utt yielding an overdetermined linear system of equations for
the multiplier. The system of equations was solved using Mathematica [20] to obtain

Λ = ut

(
δ2 + δ3t− δ1t2

2

)
+ uxx(δ3 − δ1t) + δ1x + δ4ux +

δ5

u2
x

, (16)

where δi, i = 1, 2, . . . , 5, are arbitrary constants. From (5) and (16), we obtain[
(ut + uux)x −

1
2

ux2
][

ut

(
δ2 + δ3t− δ1t2

2

)
+ uxx(δ3 − δ1t)

+ δ1x + δ4ux +
δ5

u2
x

]
= DtTt + DxTx, (17)

where

Tt = u2
x

(
u
(

δ1t2

4
− δ2

2
− δ3t

2

)
+ x
(

δ3

2
− δ1t

2

)
+

δ4

2

)
− δ5

ux
+ φ2(x)

+ ux(δ1x− δ1tu + φ1(u)),

Tx = u2
t

(
δ2

2
+

δ3t
2
− δ1t2

4

)
+ uu2

x

(
x
(

δ3

2
− δ1t

2

)
+

δ4

2

)
− δ5u

ux
+

3δ5x
2

+ ux

(
uut

(
δ2 + δ3t− δ1t2

2

)
+ δ1ux

)
+ ut(δ1tu− φ1(u)) + φ3(t)

for arbitrary functions u(t, x). When u(t, x) is a solution of Equation (1), the left hand side
of (17) vanishes and we obtain conservation laws of the Hunter–Saxton Equation (1) for
which the conserved vectors

(
T1

i , T2
i
)
, i = 1, 2, . . . , 5, are given by

T1
1 = ux

(
ux− 1

2
t2uut

)
− t2u2

t
4
− 1

2
tuu2

xx + ut(tu− φ1(u)) + φ3(t),

T2
1 = u2

x

(
t2u
4
− tx

2

)
+ ux(x− tu + φ1(u)) + φ2(x),

T1
2 = φ3(t) + uuxut − utφ1(u) +

u2
t

2
,

T2
2 = uxφ1(u) + φ2(x)− uu2

x
2

,
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T1
3 = tuuxut +

tu2
t

2
+ φ3(t) +

1
2

uu2
xx− utφ1(u),

T2
3 = u2

x

(
x
2
− tu

2

)
+ uxφ1(u) + φ2(x),

T1
4 = φ3(t)− utφ1(u) +

uu2
x

2
,

T2
4 = φ2(x) + uxφ1(u) +

u2
x

2
,

T1
5 = φ3(t)− utφ1(u)−

u
ux

+
3x
2

,

T2
5 = φ2(x) + uxφ1(u)−

1
ux

.

According to (8), symmetry X is associated with conservation law DtTt + DxTx = 0 if
the following formula is satisfied:

X
(

Tt

Tx

)
−
(

Dtξ
t Dxξt

Dtξ
x Dxξx

)(
Tt

Tx

)
+
(

Dtξ
t + Dxξx)( Tt

Tx

)
= 0. (18)

It turns out that the association of symmetries and conservation laws of (1) is obtained in
the following cases:

κ1(X1 + 2X3) + κ2X2 →
{

T1
2 =

u2
t

2 −
δ1ut

u + uuxut

T2
2 = δ1ux

u + δ3
x −

uu2
x

2

,

κ1(X1 + X3) + κ2X2 →
{

T1
4 = uu2

x
2 −

δ1ut
u

T2
4 = δ1ux

u + δ3
x + u2

x
2

,

κ1

(
X1 −

X3

2

)
+ κ2X2 →

{
T1

5 = δ2
2κ2−κ1t −

δ1ut
u −

u
ux

+ 3x
2

T2
5 = δ1ux

u + δ3
x −

1
ux

,

X3 →
{

T1
3 = δ1

t + tuuxut +
tu2

t
2 + 1

2 uu2
xx− utφ1(u)

T2
3 = δ2

x + u2
x
( x

2 −
tu
2
)
+ uxφ1(u)

.

It is important to observe that among the five computed conservation laws, we identi-
fied associated Lie point symmetries for only four. Notably, the conservation law T1 lacks
any associated Lie point symmetry of the Hunter–Saxton equation.

4. Double Reduction of the Hunter–Saxton Equation
4.1. Double Reduction of (1) by 〈κ1(X1 + 2X3) + κ2X2〉

We transform the generator Z = κ1(X1 + 2X3) + κ2X2 to its canonical form Y =
0 ∂

∂r +
∂
∂s + 0 ∂

∂w . Therefore, canonical coordinates r = r(t, x), s = s(t, x) and w = w(t, x, u)
must be found such that Z(r) = 0, Z(s) = 1 and Z(w) = 0. While the coordinates r and w
are obtained from invariants of Z, the coordinate s may be determined by inspection. More
systematically, it can be obtained from an invariant J = v− s(x, y) of the extended operator
Z + ∂v, where v is an auxiliary variable [19]. We obtain

r =
x

(2κ1t + κ2)3/2 , s =
ln x
3κ1

, w =
u√

2κ1t + κ2
, κ1 6= 0, (19)

where w = w(r). Inverse canonical coordinates follow from (19) and are given by

t =
e2κ1s − κ2r2/3

2κ1r2/3 , x = e3κ1s, u =
weκ1s

r1/3 . (20)
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Computing A and
(

A−1)T , we obtain

A =

(
Drt Drx
Dst Dsx

)
=

 − e2κ1s

3κ1r5/3 0

e2κ1s

r2/3 3e3κ1sκ1


and (

A−1
)T

=

(
Dtr Dxr
Dts Dxs

)
=

(
−3e−2κ1sκ1r5/3 e−3κ1sr

0 e−3κ1s

3κ1

)
.

The partial derivatives of u from (20) are given by

ut = κ1
3
√

re−κ1s(w− 3rwr), ux = r2/3wre−2κ1s,

utx = −κ1r4/3e−4κ1s(3rwrr + 2wr),

uxx = r5/3wrre−5κ1s.

(21)

The reduced conserved form is given by(
Tr

2
Ts

2

)
= J
(

A−1
)T
(

Tt
2

Tx
2

)
, (22)

where J = det(A) = − e5κ1s

r5/3 . By substituting (20) and (21) into (22), we obtain

Tr
2 = δ1κ1 + 3δ3κ1 + 3κ2

1rwwr −
9
2

κ2
1r2w2

r −
κ2

1w2

2
+

3
2

κ1rww2
r − κ1w2wr,

Ts
2 = wr

(
κ1w− δ1

w
− w2

3r

)
+

δ1

3r
− κ1w2

6r
+ w2

r

(
w− 3κ1r

2

)
,

(23)

where the reduced conserved form satisfies

DrTr
2 = 0. (24)

From (23) and (24), we have

3κ2
1rwwr −

9
2

κ2
1r2w2

r −
κ2

1w2

2
+

3
2

κ1rww2
r − κ1w2wr = k,

where k is an arbitrary constant.

4.2. Double Reduction of (1) by 〈κ1(X1 + X3) + κ2X2〉
Canonical coordinates determined from 〈κ1(X1 + X3) + κ2X2〉 are

r =
x

(κ1t + κ2)2 , s =
ln x
2κ1

, w =
u√
x

, κ1 6= 0, (25)

where w = w(r), and the inverse canonical coordinates are given by

t = −κ2
√

r− eκ1s

κ1
√

r
, x = e2κ1s u = weκ1s. (26)

Therefore, the partial derivatives of u from (26) are given by

ut = −2κ1r3/2wr, ux =
1
2

e−κ1s(2rwr + w),

utx = −e−2κ1sκ1r3/2(2rwrr + 3wr,

uxx = −1
4

e−3κ1s(w− 4r(rwrr + wr)).

(27)
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As for A and
(

A−1)T , we obtain

A =

(
Drt Drx
Dst Dsx

)
=

(
− eκ1s

2κ1r3/2 0
eκ1s
√

r 2e2κ1sκ1

)
,

and (
A−1

)T
=

(
Dtr Dxr
Dts Dxs

)
=

(
−2e−κ1sκ1r3/2 e−2κ1sr

0 e−2κ1s

2κ1

)
.

Therefore, from (
Tr

4
Ts

4

)
= J
(

A−1
)T
(

Tt
4

Tx
4

)
, (28)

where J = det(A) = − e3κ1s

r3/2 , we obtain

Tr
4 = δ1κ1 + 2δ3κ1 + κ1r2w2

r + κ1rwwr +
κ1w2

4
− 1

2
r3/2ww2

r −
w3

8
√

r
− 1

2
√

rw2wr,

Ts
4 = − δ1wr

w
− w3

16κ1r3/2 −
w2wr

4κ1
√

r
−
√

rww2
r

4κ1
.

(29)

From the reduced conservation law DrTr
4 = 0, we obtain

κ1r2w2
r + κ1rwwr +

κ1w2

4
− 1

2
r3/2ww2

r −
w3

8
√

r
− 1

2
√

rw2wr = k,

where k is an arbitrary constant.

4.3. Double Reduction of (1) by
〈

κ1

(
X1 − X3

2

)
+ κ2X2

〉
Canonical coordinates determined from

〈
κ1

(
X1 − X3

2

)
+ κ2X2

〉
are

r = x(2κ2 − κ1t), s =
2 ln x

κ1
, w =

u
x2 , κ1 6= 0, (30)

where w = w(r), and the inverse canonical coordinates are given by

t =
2κ2 − re−

1
2 κ1s

κ1
, x = e

κ1s
2 , u = weκ1s (31)

Therefore, the partial derivatives of u from (31) are given by

ut = −κ1wre
3κ1s

2 , ux = e
κ1s
2 (rwr + 2w),

utx = −κ1eκ1s(rwrr + 3wr),

uxx = r(rwrr + 4wr) + 2w.

(32)

Therefore,

A =

(
Drt Drx
Dst Dsx

)
=

 − e−
1
2 κ1s

κ1
0

1
2 e−

1
2 κ1sr 1

2 e
κ1s
2 κ1


and (

A−1
)T

=

(
Dtr Dxr
Dts Dxs

)
=

 −e
κ1s
2 κ1 e−

1
2 κ1sr

0 2e−
1
2 κ1s

κ1

.
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Therefore, from (
Tr

5
Ts

5

)
= J
(

A−1
)T
(

Tt
5

Tx
5

)
, (33)

where J = det(A) = − 1
2 , we obtain

Tr
5 =

2κ1(2δ1rwr + 4δ1w + δ3rwr + 2δ3w− 1)− 2δ2(rwr + 2w)− r(3rwr + 4w)

4rwr + 8w
,

Ts
5 = −2δ1κ1r2w2

r + 4δ1κ1rwwr + 2δ2rwwr + 4δ2w2 + 3r2wwr + 4rw2

2κ1r2wwr + 4κ1rw2 .
(34)

From the reduced conservation law DrTr
5 = 0, we obtain

2κ1(2δ1rwr + 4δ1w + δ3rwr + 2δ3w− 1)− 2δ2(rwr + 2w)− r(3rwr + 4w)

4rwr + 8w
= k,

where k is an arbitrary constant.

4.4. Double Reduction of (1) by 〈X3〉
Canonical coordinates determined from X3 are

r =
x
t

, s = ln x w = u, (35)

where w = w(r), and the inverse canonical coordinates are given by

t =
es

r
, x = es u = w. (36)

Therefore, the partial derivatives of u from (36) are given by

ut = −r2e−swr, ux = re−swr,

utx = −r2e−2s(rwrr + wr),

uxx = r2e−2swrr.

(37)

As for A and
(

A−1)T , we obtain

A =

(
Drt Drx
Dst Dsx

)
=

(
− es

r2 0
es

r es

)
,

and (
A−1

)T
=

(
Dtr Dxr
Dts Dxs

)
=

(
−e−sr2 e−sr

0 e−s

)
.

Therefore, from (
Tr

3
Ts

3

)
= J
(

A−1
)T
(

Tt
3

Tx
3

)
, (38)

where J = det(A) = − e2s

r2 , we obtain

Tr
3 = δ2 − δ1,

Ts
3 =

1
2

w2
r (w− r)− δ1

r
− wrφ1(w).

(39)

It is remarkable that in this case, because Tr
3 in (39) is simply a constant, the reduced

conservation law DrTr
3 = 0 does not result in an ODE that can be solved for w. Therefore,

no invariant solution arises via the double reduction method from the association of X3
and the conservation law T3.
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5. Concluding Remarks

In this paper, a study of the Hunter–Saxton equation using Lie symmetry analysis
was presented. Symmetry reductions of the equation were carried out by employing the
generalized approach to double reduction theory proposed by Bokhari et al. [7]. By utilizing
the multiplier method, nontrivial conservation laws for the Hunter–Saxton equation were
derived. These conservation laws, along with the Lie point symmetries of the equation,
were employed to perform symmetry reductions via the double reduction method.

Through the analysis, a set of first-order ODEs was obtained, whose solutions represent
invariant solutions for the Hunter–Saxton equation. Out of the five nontrivial conservation
laws constructed, it was observed that only four had associated Lie point symmetries
according to the definition provided by Kara and Mahomed [16]. The conservation law T1
did not have any linear combination of symmetries associated with it. Additionally, it is
noteworthy that despite the conservation law T3 having an associated Lie point symmetry,
X3, the application of the double reduction method in this case did not yield a symmetry
reduction of the Hunter–Saxton equation. This outcome could be attributed to the “collapse”
of the first integral, which was expected to represent a reduced ODE for the PDE but instead
resulted in a constant value.
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