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Abstract: For positioning and anti-swing control of bridge cranes, the active learning control method
can reduce the dependence of controller design on the model and the influence of unmodeled
dynamics on the controller’s performance. By only using the real-time online input and output data
of the bridge crane system, the active learning control method consists of the finite-dimensional
approximation of the Koopman operator and the design of an active learning controller based on the
linear quadratic optimal tracking control. The effectiveness of the control strategy for positioning and
anti-swing of bridge cranes is verified through numerical simulations.

Keywords: bridge crane; active learning control; linear quadratic optimal tracking; Koopman operator

1. Introduction

Bridge cranes are widely used transportation tools mainly employed in loading and
transporting goods in the current large-scale production industry. In order to solve the
positioning and anti-swing control problems of bridge crane systems, domestic and for-
eign scholars have carried out in-depth research. In [1], the authors proposed a novel
time-varying sliding mode control of variable parameters, Tysse et al. [2] developed a
Lyapunov-based damping controller with nonlinear MPC control, Roman et al. [3] devel-
oped a hybrid data-driven fuzzy active disturbance rejection control, and Rigatos et al. [4]
developed a robust control. Although the above methods can realize the positioning and
anti-swing control of the bridge crane system, they are all model-based control methods.
The actual bridge crane system is a very complex nonlinear system, which may have
possible sources of nonlinearity that are hard to model (i.e., friction, backlash, flexible ropes,
dead zones, etc.).

Therefore, data-driven controllers which do not depend on the model of the system
itself have been studied in recent years. At present, the data-driven control method has
been developed and improved continuously, and has been recognized symbolically both at
home and abroad [5]. In [6], the authors developed a data-driven optimal PID type iterative
learning control (ILC), Chi et al. [7] developed an indirect adaptive iterative learning
control, Estakhrouiyeh et al. [8] proposed iterative feedback tuning algorithm, and Yuan and
Tang [9] proposed a novel time–space network flow formulation and approximate dynamic
programming approach. With recent advances in optimization techniques and computing
power, machine learning technology is now widely used to build data-driven models of
bridge cranes. However, deep neural networks (DNN) commonly lack interpretability,
which has recently been noted as challenging for applications with safety requirements
and remains a cutting-edge research topic. Furthermore, due to the nonlinear activation
functions, the obtained dynamic model is not easy to use for designing a linear optimal
controller such as a model predictive control and linear quadratic regulator. In recent
years, the Koopman operator has become regarded as a powerful tool for capturing the
intrinsic characteristics of nonlinear system via linear evolution in the lifted observable
space. The Koopman operator governs the evolution of scalar observables defined on
the state space of a nonlinear system, which requires a dictionary of scalar observables.
There are many possible ways to choose this dictionary; it can be comprised of polynomial
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functions, Fourier modes, radial basis functions, or other sets of functions of the full-state
observable. Therefore, the Koopman operator framework has received extensive attention
due to its global linearization capability for nonlinear dynamics identification, and plays an
important role in data-driven systems. The resulting linear representation allows for control
of the nonlinear system using tools from linear optimal control [10–12], which are often
easier and faster to implement than nonlinear methods. Beyond the computational speed
and the reduction in feedback complexity, linear representation-based control can lead to
better performance compared to controllers based on the original nonlinear system [13].
In [14], dynamic mode decomposition (DMD), a data-driven approach to obtain a finite-
dimensional approximation of the Koopman operator, was proposed. This method uses
time-shifted snapshots (measurements) of the system states to approximate the Koopman
operator in a least-squares fashion. This method can be limiting, however, and sometimes
fails to capture all the nonlinearities of the system. In [15], the authors proposed extended
DMD (EDMD), in which snapshots of nonlinear measurement functions (observables) can
be augmented with the system states to obtain a “lifted" finite-dimensional approximation
of the Koopman operator. Recently, Ref. [16] extended EDMD for controlled dynamical
systems. As a result, the Koopman operator is a promising framework for data-driven
system identification. In [17], a data-driven control approach based on the Koopman
operator was proposed for bridge cranes. However, the controller design requires a large
amount of offline input and output data of the controlled system in order to train data-
driven models.

Active learning in robotics has recently become a topic of interest [18–20]. Much work
has been carried out in active learning for parameter identification [21,22] as well as in
active learning for state-control mappings in reinforcement learning [19,23,24] and adaptive
control [25]. In particular, the mentioned works refer to exciting the system dynamics using
information theoretic measures [21,22,26], reward functions in reinforcement learning,
and other methods [27,28] in order to obtain the best set of measurements that resolve a
parameter or the best case mapping (either of the state control map or of the dynamics).
In this paper, we use active learning to enable the system to learn the Koopman operator
representations of a system’s own dynamic process.

In this paper, we propose a data-driven active learning control for bridge cranes. In
the proposed algorithm, the linear structure of the Koopman operator is used to enhance
Linear Quadratic Optimal Tracking (LQT) control. Then, the mode insertion gradient is
derived to improve the accuracy of the LQT controller. Furthermore, a data-driven active
learning control is designed by minimizing the mode insertion gradient.

The main contribution of this paper is the construction of a data-driven active learning
control scheme for bridge cranes. Unlike other data-driven control methods, the proposed
method does not require the data-driven model to be trained in advance, and only requires
the real-time input and output data of the bridge crane system to accurately build the
Koopman model by learning the Koopman operator. Furthermore, the Koopman model is
a linear model in the lifted space with a nonlinear mapping from the original state space,
thereby enhancing the linear quadratic optimal tracking (LQT) control. Therefore, the
influence of the unmodeled dynamics and system model parameter uncertainties can be
avoided while ensuring that the proposed method is feasible and robust.

The rest of this paper is organized as follows. Section 2 formulates the dynamics of the
bridge crane and introduces the Koopman operator theory along with its finite-dimensional
approximation. In Section 3, the data-driven active learning control approach is presented.
Section 4 exhibits the simulation results. Finally, Section 5 summarizes the conclusions of
this work.

2. Problem Formulation

In this section, we introduce the dynamics of bridge cranes along with the theory
behind the Koopman operator and its finite-dimensional approximation for nonlinear
systems with control using the EDMD algorithm.
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2.1. Bridge Crane Dynamics

In this paper, we adopt a type of bridge crane consisting of a rope, load, and trolley. Its
corresponding 2D simplified physical model is shown in Figure 1. The dynamics equation
is as follows:

(M + m)ÿ + mlθ̈ cos θ −mlθ̇2 sin θ + fµ(ẏ) = u

ml2θ̈ + ml cos θÿ + mgl sin θ = 0, (1)

where M and m represent the respective masses of the trolley and load, θ represents the
vertical direction angle of the load, g represents the gravitational acceleration, l represents
the length of a hoisting rope, which is fixed during transportation, fµ(ẏ) = µẏ represents the
friction between the trolley and the platform (where µ represents the coefficient of friction),
u is the control force (which can be linear control or nonlinear control, such as saturated
control or dead zone control), and y represents the horizontal displacement. According to
the method proposed in this paper, it is not necessary to know the dynamic characteristics
of the bridge crane. The dynamics in Equation (1) are only used for producing closed-loop
experimental data.

M 𝑢 𝑡𝑓𝜇 ሶ𝑦

𝑙𝜃 𝑡

𝑦 𝑡 𝑙𝑜𝑎𝑑

𝑚𝑔

0

X

𝑌

Figure 1. 2D model of bridge crane.

Because the dynamics of the bridge crane are unknown, we denote x = [y, ẏ, θ, θ̇]>

as the system state. Then, the dynamics Equation (1) can be described as follows:

ẋ = f (x, u), (2)

where ẋ is the rate of change of the state x and the mapping f is unknown.

2.2. Koopman Operator Theory

The Koopman operator is commonly used to capture the intrinsic characteristics
via a linear dynamical evolution for unforced nonlinear dynamics [14,15]. With a slight
change, the Koopman operator can be used to represent systems with control inputs as
well. According to [29], the generalization of the Koopman operator for model (2) relies on
an extended state variable x̄ = [x>, u>]>. In line with [29], the Koopman operator on (1)
with extended state x̄ is described as

ψ(x̄(tk+1)) = Kψ(x̄(tk)), (3)
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where K denotes the Koopman operator, which is infinitely dimensional, ψ(x̄) ∈ R is the
observable in the lifted space, and x̄(tk) and u(tk) are created to respectively store x̄(t) and
u(t) at different time instants t = tk.

For a continuous and sufficiently smooth dynamics, it is possible to find the continuous-
time infinitesimal generator of the Koopman operator, denoted as G. Similar to (3), G
induces a linear dynamical system in continuous time:

ψ̇(x̄(t)) = Gψ(x̄(t)). (4)

Please refer to [29] for more details on the definition of the Koopman operator.
A finite-dimensional approximation ofK is of interest for controller design. As the state

is of infinite dimension, we adopt Ψ(x̄(tk)) = [Ψ(x(tk))
>, u(tk)

>]> = [ψ1(x(tk)), ψ2(x(tk)),
. . . , ψL(x(tk)), u(tk)

>]> as a group of observables for the practical calculation, where L is
the number of observable functions on x, i.e., ψi(x). The main idea behind computing
the Koopman approximation for a continuous-time system with EDMD consists of three
steps. First, select the observable functions as basis functions, e.g., polynomial functions
or radial basis functions (RBF) [30]. Second, compute a finite-dimensional approximation
of the Koopman operator for discrete time system by the least-squares method. To this
end, compute the finite-dimensional approximation of the continuous-time infinitesimal
generator G.

To obtain an approximate Koopman operator K̃, we adopt the least-squares method
shown in [14]. This minimization takes the following form:

K̃∗ = arg min
K̃

M−1

∑
k=0

1
2
‖Ψ(x̄(tk+1))− K̃Ψ(x̄(tk))‖2, (5)

where Ψ(x̄(tk)) = [Ψ(x(tk))
>, u(tk)

>]>, M is the number of measurements, and each
measurement is a set consisting of an initial state x(tk), final state x(tk+1), and the actuation
applied at the same instants u(tk) and u(tk+1), respectively.

The above expression has a closed-form solution provided by

K̃∗ = VW†, (6)

where † denotes the Moore–Penrose pseudoinverse and

V =
1
M

M−1

∑
k=0

Ψ(x̄(tk+1))Ψ(x̄(tk))
>, (7a)

W =
1
M

M−1

∑
k=0

Ψ(x̄(tk))Ψ(x̄(tk))
>. (7b)

Lastly, it is possible to switch between the continuous-time and discrete-time operators via
G̃ = ln(K̃)/ts [31], where ts is the time between measurements x(tk) and x(tk+1). Thus,
the differential equation for the observables Ψ is

Ψ̇(x̄) = G̃Ψ(x̄), (8)

where Ψ̇ is the rate of the observable function.
Due to Ψ(x̄(t)) = [Ψ(x(t))>, u(t)>]>, this notation allows us to rewrite (8) as[

Ψ̇(x(t))
u̇(t)

]
=

[
A B
· ·

][
Ψ(x(t))

u(t)

]
(9)

where A and B are sub-matrices of G̃ that describe the dynamics of the observables Ψ(x(t))
that depend only on the states and change only when G̃ is updated. Note that the term
(·) in (9) refers to terms that evolve the observations on control u; these are ignored here,
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as there is no ambiguity in their evolution because they are determined by the controller.
Thus, the Koopman model can be written as

ż(t) = fz(z, u) = Az(t) + Bu(t), (10a)

x(t) = Cz(t), (10b)

z(0) = Ψ(x(0)). (10c)

Because the state x is often selected as part of the observables Ψ, we adopt C =
[
In×n, 0n×L−n

]
as the matrix to project z to the original state x.

This model trades the nonlinearity of an n-dimensional ODE (1) for a nonlinear “lifting”
(10c) of the initial condition x(t0) to higher-dimensional (L � n) Koopman-invariant
coordinates (10a) such that the original state can be linearly reconstructed via (10b). To
achieve active learning, it is necessary to update the Koopman operator using the real-time
input and output data of system. Therefore, we write a recursive least-squares update [25]
which adaptively updates G̃ as more data are acquired; these matrices then vary in response
to how the incoming state measurements change the solution to (5).

3. Control

This section presents the controller framework, as shown in Figure 2. The proposed
controller can achieve positioning and anti-swing control of the bridge crane, and the design
of controller does not depend on the model of the system itself. Unlike other data-driven
control methods, the proposed controller does not require the data-driven model to be
trained in advance, and only requires real-time input and output data of the bridge crane
system to accurately build the Koopman model by learning the Koopman operator.

Actuator SensorsBridge crane

Active learning
control

Koopman 
model

x

( )xΨ
u Linear quadratic optimal 

tracking control
lqtu

Desired trajectories

( )refxΨ

Figure 2. Control block diagram.

3.1. Objective Function Design

The active learning controller allows the bridge crane to guide itself towards the
important regions of the state space while tracking the trajectory, thereby improving data
collection and the quality of the learned Koopman model. Therefore, we consider a general
objective function of the form

J1 =
∫ >

0
`learn(z(t), u(t)) + `task(z(t), u(t))dt + `final(z(T)), (11)

where z(t) is the value of the function observables at time t subject to the Koopman model
in (10), starting from initial condition z(0) = Ψ(x(0)) and with u(t) as the input at time t, T
the prediction horizons, `task designed to accurately evaluate the proximity to the desired
trajectory, `learn designed to evaluate the accuracy of the learned Koopman model, and
`final the terminal cost.
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In this work, we use the Fisher information [32] to generate an information measure
in `learn. The Fisher information is a way of measuring how much information a random
variable has with respect to a set of parameters. We can compute the Fisher information
matrix F over the parameters that compose the approximate continuous-time operator G̃,
with the elements in row a and column b of the Fisher information matrix being

Fa,b =
∂ fz

∂G̃a,b

>
Σ−1 ∂ fz

∂G̃a,b
, (12)

where G̃a,b represents the elements in row a and column b of the approximate continuous-
time operator G̃ and Σ is the noise covariance matrix. Because the Fisher information F
defined here is positive semi-definite, we use the trace of the Fisher information matrix F
as the T-optimality measure J(G̃) [33]. Thus, the T-optimality measure is defined as

J(G̃) = tr(F), (13)

where tr(·) represents the trace of the matrix.
Therefore, the learning cost `learn is defined as

`learn(z(t), u(t)) =
σ

J(G̃) + ε
, (14)

where ε � 1 is a small number to prevent singular solutions due to the positive semi-
definite Fisher information matrix, σ is the information weight, and J is computed using
the evaluation of G̃ at the current time.

Remark 1. Typically, the information weight σ is time-varying and should be set to gradually
decrease during the learning process [20]. For instance, we can set σ(t) = σ0(1− 0.01)t, with σ0
being an initial information weight.

At the same time, in order to match the desired trajectory, the running cost `task is
defined as

`task(z(t), u(t)) = ‖z(t)− zref(t)‖Q̄ + ‖u(t)‖R̄, (15)

where Q̄ represents the lifted state cost matrix provided by [Q 0; 0 0], with Q penalizing
the system states and R̄ the control cost matrix, zref = Ψ(xref), and the desired trajectory of
the Koopman model (10) obtained by lifting the desired trajectory of the original system (1)
using observables Ψ.

The terminal cost is defined as

`final(z(T)) = z(T)Q f z(T), (16)

where Q f represents terminal cost matrix and z(T) is the value of the function observables
at time T subject to the Koopman model in (10) starting from initial condition z(0).

3.2. Linear Quadratic Optimal Tracking

Next, we design a linear quadratic regulator (LQR) in the lifted states in order to track
the reference trajectories using a linear predictor.

Consider the Koopman model (10). To track reference trajectories xref, we design an
LQT controller that minimizes a running cost (15) and terminal cost (16) in a receding-
horizon fashion. At the current time, we lift the original state x(0) to find z(0) using the
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observables Ψ(·); the optimal control ulqt(0) can be obtained by solving the following
optimization problem:

min
ulqt

∫ >
0

`task(z(t), ulqt(t))dt + `final(z(T)) (17a)

subject to

ż(t) = Az(t) + Bulqt(t), (17b)

z(0) = Ψ(x(0)). (17c)

Because the running cost (15) is quadratic and the constraints are linear, the solution can be
found by solving the algebraic Riccati equation.

The LQT controller takes the form

ulqt(t) = −K(t)z(t) + s(t), (18)

where K(t) = R̄−1B>P(t), the matrix P(t), and the tracking compensation term s(t) can be
satisfied via backwards integration of the Riccati differential equation

Ṗ(t) = −Q̄ + P(t)BR̄−1B>P(t)− P(t)A− A>P(t), (19a)

ṡ(t) = −A>s + P(t)BR̄−1B>s(t) + Q̄zre f , (19b)

from the final conditions

P(T) = Q f , (20a)

s(T) = −Q f zref(T). (20b)

3.3. Active Learning Controller

When the amount of data obtained by the controller is small, there is a significant
gap between the learned Koopman model and the infinite-dimensional Koopman operator
model. Therefore, the LQT controller (18) designed based on the Koopman model cannot
ensure that the trolley reaches the target position, and may even deviate far from the
target position.

In light of Equation (11), we want to synthesize a controller that can ensure that the
trolley reaches the target position while allowing for improvements in the information
measure used for active learning. To achieve this, we design an active learning controller by
minimizing the objective function J1 (11) based on the LQT controller. For this, we need to
know how sensitive the objective function J1 (11) is to switching between the LQT control
ulqt and the active learning control ual at time τ for a time duration λ.

The sensitivity of switching from ulqt to ual for all τ ∈ [0, T] for an infinitesimally small
λ (known as the mode insertion gradient [34]) is provided by

∂J1

∂λ
|τ,λ=0 = ρ(τ)>( f2 − f1), (21)

where z(t) is a solution to the Koopman model (10) under control u(t) = ulqt(t) (18),
f1 = fz(z(τ), ulqt(τ)), f2 = fz(z(τ), ual(τ)), and

ρ̇(t) =− ∂`learn
∂z

− ∂`task
∂z
−

∂ulqt

∂z

>
(

∂`learn
∂u

+
∂`task

∂u
)− (

∂ fz

∂z
+

∂ fz

∂u
∂ulqt

∂z
)ρ(t) (22)

subject to the terminal condition ρ(T) = 0.
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By minimizing the mode insertion gradient within the predicted time period t ∈ [0, T],
we are able to obtain the desired active learning controller ual(t). Therefore, we can write
an unconstrained optimization problem using a secondary objective function

J2 =
∫ >

0

∂J1

∂λ
|τ=t,λ=0 +

1
2
‖ual(t)− ulqt(t)‖2

R̂dt, (23)

where R̂ ∈ Rm×m bounds the gap between ual(t) and ulqt(t) and where ∂J1
∂λ |τ=t,λ=0 is

evaluated at τ = t.

Proposition 1. The active learning controller ual(t) that minimizes (23) is

ual(t) = −R̂−1B>ρ(t) + ulqt(t). (24)

Proof. Because (23) is separable in time, we take the derivative of (23) with respect to ual(t)
at each point in t, which provides the following expression:

∂

∂ual
J2 =

∫ T

0

∂

∂ual
(ρ(τ)>( f2 − f1)

+
1
2
(ual(t)− ulqt(t))R̂(ual(t)− ulqt(t)))dt

=
∫ T

0
B>ρ(t) + R̂(ual(t)− ulqt(t))dt.

The resulting equation can be obtained as follows:∫ T

0
B>ρ(t) + R̂(ual(t)− ulqt(t))dt = 0. (25)

Finally, solving for ual(t) in (25) results in the solution

ual(t) = −R̂−1B>ρ(t) + ulqt(t). (26)

The active learning control ual(t) at time t = 0 is taken as the actual control acting
on the controlled system (1) at the current moment. The approximate continuous-time
operator G̃ is updated by obtaining the real-time input and output states of the bridge crane.
The Koopman model (3) is reconstructed using the updated continuous-time operator in
the next control cycle for optimization and finding a solution. The above process is repeated
to complete rolling optimization within the control time domain and realize active learning
control for the bridge crane.

Remark 2. The system parameters of the bridge crane system may change; for instance, there
may be changes in the friction coefficient caused by the weather or other factors, changes in load
quality, changes in rope length, etc. Traditional data-driven algorithms are based on offline data
used to train models in advance. When the parameters change, these trained models may no longer
be a good match, resulting in unsatisfactory control performance. On the other hand, the active
learning approach is based on online data, which continues to be applicable even when the system
parameters change.

The steps in the proposed active learning control methodology are as follows.

Step 1. Define a set of observable functions; given an initial approximate continuous-time
operator, construct the Koopman model.

Step 2. Pre-set the desired trajectory and lift it using the observable function.
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Step 3. Design the linear quadratic optimal tracking controller based on the Koopman
model and the desired trajectory.

Step 4. Consider both the learning and running costs, design an active learning controller
based on the linear quadratic optimal tracking controller.

Step 5. Apply the active learning controller to the bridge crane at the current time and
obtain the output after the control is applied.

Step 6. Update the approximate continuous-time operator using the online input and
output data.

Step 7. Reconstruct the Koopman model using the updated continuous-time operator and
repeat Steps 3–7.

4. Simulation

In order to verify the effectiveness of the proposed active learning method, simulations
were conducted in the Python environment. According to the motion characteristics of the
bridge crane, the constraints for the system during the simulation tests were as follows:
the horizontal displacement constraint of trolley was [0, 2] m; the velocity constraint of
the trolley was [−5, 5] m/s; the swing angle constraint of the load was [−90, 90] deg; and
the control input constraint was [−25, 25] N. The physical parameters of the bridge crane
and the parameters of the active learning controller are provided in Table 1. We denote
ξ := [y, θ, ẏ, θ̇, sin(y), sin(θ), sin(ẏ), sin(θ̇), cos(y), cos(θ), cos(ẏ), cos(θ̇)]> ∈ R12, and the
observable in the lifted space is chosen as Ψ(x) = [ξ1, . . . , ξ12, ξ1ξ2, . . . , ξ11ξ12]

> ∈ R78.

Table 1. The parameters of the bridge crane and active learning controller.

Parameters Value

Mass of trolley M (kg) 5
Mass of load m (kg) 10

Gravitational acceleration g (m/s2) 9.8
Length of hoisting rope l (m) 1

Friction coefficient µ 0.2
Predicted horizons T (s) 0.1
Sampling interval ts (s) 0.01

Dimension of the Koopman model L 78

State penalty weight matrix Q


12000 0 0 0

0 1200 0 0
0 0 3000 0
0 0 0 500


Control weight matrix R̄ 1

Initial information weight σ 200
Regularization weight R̂ 100

Terminal cost Q f 0

4.1. Performance Evaluation for Active Learning Controller without Training in Advance

To assess the effectiveness of the proposed method, the active learning controller
was applied to the bridge crane system (1) for the first time without training in advance.
Instead of obtaining historical data to train the Koopman model in advance, we used
random initialization. Considering a control without any nonlinear characteristic, we ran
the simulation for t = 60 s with a sampling rate of ts, as shown in Figure 3.

At first, the desired position of the trolley was set as yref = 0.50 m. Due to the lack of
prior training, in the first 15 s the controller needs to learn the Koopman operator in order
to establish the Koopman model. Therefore, the trolley does not immediately reach the
desired position, and the load swing angle is large. After the controller learns the Koopman
operator and establishes the model, the trolley immediately moves to the desired position
of 0.5 m while ensuring that there is no load swing. At t = 40 s, the desired position of the
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trolley is set as yref = 1.50 m. Due to the controller having learned an accurate Koopman
model, the trolley quickly reaches the desired position and the load swing remain small.

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

y 
(m

)

(a) Trolley displacement

Trolley position
Target position

0 10 20 30 40 50 60
Time (s)

10

5

0

5

10

 (d
eg

)

(b) Load swing angle

0 10 20 30 40 50 60
Time (s)

20

0

20

u 
(N

)

(c) Control input

Figure 3. Simulation results without training in advance.

4.2. Comparative Study

For the purpose of better verifying the performance of the proposed method, two
other control methods, namely, conventional sliding mode control (CSMC) [1] and PID [35],
were selected to compare the control effect on the bridge crane system. The expressions of
the two controllers used for comparison are provided below.

4.2.1. CSMC Controller

u(t) = (M + m sin(θ(t))2)[−Ksp(t)− ηsgn(sp(t))− c1ẏ(t)− c2θ̇(t)

+ µẏ(t)−mg sin(θ(t)) cos(θ(t))−ml ˙θ(t)
2

sin(θ(t))
M+m∗sin(θ(t))2 + g sin(θ(t))

l ]
(27)

where c1, c2, c3 denote the sliding constants, η, K represents the gain of sliding mode surface,
and sp is the position of the sliding mode surface, which is defined as follows:

sp(t) = ẏ(t) + c1(y(t)− yref(t)) + c2θ(t) (28)

where yref is the desired horizontal displacement trajectory of y.

4.2.2. PID Controller

u(t) = kyp(y(t)− yref(t)) + kyi
∫ t

0 (y(τ)− yref(τ))dτ + k1dẏ(t)
+kθpθ(t) + kθi

∫ t
0 θ(τ)dτ + kθd θ̇(t),

(29)

where kyp, kyi, kyd, kθp, kθi, kθd represent the control gains.



Math. Comput. Appl. 2023, 28, 101 11 of 16

The parameters of the CSMC controller and PID controller used in the experiments
are provided in Table 2. Figure 4 presents the performance curves of all three controllers.
It can be seen that the CSMC controller requires less crane operating positioning time
and has payload swing compared to the PID controller. With our active learning control,
the system can reach the desired position quickly with tolerable oscillations, while with
CSMC the system reaches the desired position somewhat slower and with more limited
oscillations. Note that CSMC is a model-based controller designed based on the model’s
knowledge, which means that the design of the CSMC controller requires a known system
model and accurate parameters. On the other hand, our approach uses a data-driven
approach. The active learning control can achieve similar control effects when the system
model is unknown; in this case, the absence of accurate system parameters means that the
system has better robustness when using the proposed approach.

Table 2. Parameters of the CSMC and PID controllers.

Controller Parameters Value

CSMC controller

c1 0.3
c2 10
η 0.001
K 10

PID controller

kyp 4
kyi 0.001
kyd 25
kθp −0.1
kθi 0.1
kθd −1
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)
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PID
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Active Learning Control
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(c) Control input

PID
CSMC
Active Learning Control

Figure 4. Results of the comparative experiment using three different control methods.
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4.3. Robustness Study

To further validate the robustness of the bridge crane system when using the proposed
approach, the following three groups of simulation experiments were set up based on
different working conditions, such as the payload, rope length, and friction coefficient
changes in engineering applications.

4.3.1. Simulation Group 1

Simulation experiments were conducted with the system parameter settings in Table 1
remaining the same except for the payload mass. In these experiments, the mass of the
payload m was selected as 10 kg, 15 kg, and 20 kg.

Figure 5 refers to the variation curves of various state quantities of the bridge crane
system with the active learning controller under different payload mass conditions.
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(a) Trolley displacement

m = 10 kg
m = 15 kg
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0

 (d
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(b) Load swing angle

m = 10 kg
m = 15 kg
m = 20 kg

0 5 10 15 20 25 30
Time (s)

2

0

2

4

u 
(N

)

(c) Control input

m = 10 kg
m = 15 kg
m = 20 kg

Figure 5. Simulation results with different payload masses.

4.3.2. Simulation Group 2

To assess the influence of changes in the rope length on the bridge crane system, the
rope length was changed while keeping the other controller parameters consistent. The
rope length l was selected as 1.0 m, 1.5 m, and 2.0 m. The simulation results are shown in
Figure 6.

It is shown that when the rope length changes while keeping the controller parameters
unchanged, the proposed method achieves better positioning control and a relatively small
maximum load swing angle.
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Figure 6. Simulation results with different lengths of hoisting rope.

4.3.3. Simulation Group 3

This group describes the changes in the control effect in the whole process with the
active learning controller and under different track friction conditions. The other system
parameter settings remained the same, while the friction coefficient between the crane and
the track was adopted as µ = 0.02, 0.2, and 1. The results are shown in Figure 7.
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Figure 7. Simulation results with different friction coefficients.
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With a changing friction coefficient, the sensitivity of the system is even lower. From
Figure 7a,b, it can be seen that the control performance curves of the system under the
three friction coefficients are essentially superimposed on one another.

In summary, these three simulation experiments verify that the active learning controller
is less sensitive than others to changes in model parameters, specifically, the load mass, rope
length, and friction coefficient, and that the proposed system has strong robustness.

4.4. Performance with Dead Zone

Due to the location of the transmission device between the gear and the track, a dead
zone characteristic may exist in the bridge crane system. Therefore, in this subsection we
consider the controller in a scenario with a dead zone, as follows:

u =


ur − r ur > r

0 −r ≤ ur ≤ r

ur + r ur < −r

(30)

where ur(t) = ual(t) represents the control input calculated by the active learning controller
and r is the dead zone parameter, which reflects the level of the dead zone.

Simulation experiments were conducted with the same system parameter settings
provided in Table 1. We performed numerical simulations to assess the capability of the
proposed active learning control in a scenario with the dead zone characteristic under
different dead zone parameters. The dead zone parameter r was selected as 0.1, 0.5, 1, and
2. The desired position of trolley was set as yref = 0.5 m. Figure 8 presents the simulation
results of the bridge crane system with the active learning controller and input dead zone
parameters. Figure 8a,b shows that when r = 0.1, i.e., the dead zone characteristic is
not significant, the bridge crane system can quickly reach the desired position with a
steady-state error of only 0.008 m and with only smooth and minor swinging of the rope.
As the value of the dead zone parameter r increases, the steady-state error between the
real position and the desired position gradually increases and the swinging of the rope
grows more prominent. Due to the existence of the dead zone characteristic, the nonlinear
controller u in (30) is applied to the system instead of the desired active learning control
input ur shown in Figure 8c. Therefore, the larger the dead zone parameter, the worse the
control effect becomes.
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Figure 8. Simulation results with different dead zone parameters.
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5. Conclusions

In this paper, we have proposed an active learning control for bridge cranes without the
need for training in advance. In the proposed approach, the Koopman operator is used to
enhance the control effect of the bridge crane system. Using only the real-time online input
and output data of the bridge crane system, the active learning control method consists
of finite-dimensional approximation of Koopman operator and the design of an active
learning controller based on linear quadratic optimal tracking control. The effectiveness
of this method has been verified through numerical simulations. The proposed control
method has a simple structure, good tracking performance, and strong robustness for
bridge cranes.
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30. Arbabi, H.; Korda, M.; Mezić, I. A Data-Driven Koopman Model Predictive Control Framework for Nonlinear Partial Differential
Equations. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 7–19 December 2018;
pp. 6409–6414. [CrossRef]

31. Antsaklis, P.J.; Michel, A.N. A Linear System; Springer: New York, NY, USA, 2006.
32. Pukelsheim, F. Optimal Design of Experiments; SIAM: Philadelphia, PA, USA, 2006.
33. Nahi, N.E.; Napjus, G.A. Design of optimal probing signals for vector parameter estimation. In Proceedings of the 1971 IEEE

Conference on Decision and Control (CDC), Miami Beach, FL, USA, 15–17 December 1971; pp. 162–168. [CrossRef]
34. Egerstedt, M.; Wardi, Y.; Delmotte, F. Optimal control of switching times in switched dynamical systems. In Proceedings of the

42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), Maui, HI, USA, 9–12 December 2003;
pp. 2138–2143. [CrossRef]

35. Sun, Z.; Ling, Y.; Tang, X.; Zhou, Y.; Sun, Z.X. Designing and application of type-2 fuzzy PID control for overhead crane systems.
Int. J. Intell. Robot. 2021, 5, 10–22. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1109/TRO.2019.2923880
http://dx.doi.org/10.1109/TASE.2016.2594147
http://dx.doi.org/10.1109/TRO.2014.2345918
http://www.ncbi.nlm.nih.gov/pubmed/25598763
http://dx.doi.org/10.1109/TRO.2015.2419431
http://dx.doi.org/10.1007/s00034-015-0190-6
http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/TRO.2016.2583062
http://dx.doi.org/10.1109/TRO.2016.2558190
http://dx.doi.org/10.1016/j.automatica.2018.03.046
http://dx.doi.org/10.1109/CDC.2018.8619720
http://dx.doi.org/10.1109/CDC.1971.270969
http://dx.doi.org/10.1109/CDC.2003.1272934
http://dx.doi.org/10.1007/s41315-020-00157-w

	Introduction
	Problem Formulation
	Bridge Crane Dynamics
	Koopman Operator Theory

	Control
	Objective Function Design
	Linear Quadratic Optimal Tracking
	Active Learning Controller

	Simulation
	Performance Evaluation for Active Learning Controller without Training in Advance
	Comparative Study
	CSMC Controller
	PID Controller

	Robustness Study
	Simulation Group 1
	Simulation Group 2
	Simulation Group 3

	Performance with Dead Zone

	Conclusions
	References

