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Abstract: In this article, we extensively study a family of distributions using the trigonometric
function. We add an extra parameter to the sine transformation family and name it the alpha-sine-G
family of distributions. Some important functional forms and properties of the family are provided
in a general form. A specific sub-model alpha-sine Weibull of this family is also introduced using the
Weibull distribution as a parent distribution and studied deeply. The statistical properties of this new
distribution are investigated and intended parameters are estimated using the maximum likelihood,
maximum product of spacings, least square, weighted least square, and minimum distance methods.
For further justification of these estimates, a simulation experiment is carried out. Two real data
sets are analyzed to show the suggested model’s application. The suggested model performed well
compares to some existing models considered in the study.

Keywords: sine function; Weibull distribution; moments; estimation methods; hazard function

1. Introduction

Statistical distributions are commonly used to study real-world phenomena. The
theory of statistical distributions is extensively studied, as are new developments for their
application. Several families of distributions have been developed to describe various real-
world phenomena. In reality, this new development in distribution theory is a continuing
practice. Most probability distributions proposed in the literature have many parameters
to make the model more flexible. According to some authors, these estimates are difficult
to obtain using numerical resources (see [1]). For modeling real data, it is preferable to
create models with few parameters and a high degree of flexibility. To achieve this goal, a
group of researchers decided to look for new distributions using trigonometric functions.
In the last several years, researchers have been attracted to trigonometric models due to
their flexibility and mathematical tractability. Among the various trigonometric G-families,
ref. [2] defined the new class of distribution using the sine trigonometric function and
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defined the sine-exponential model as its member. The probability density function (PDF)
of this family is given by

f (x; ϕ) =
π

2
g(x; ϕ) sin

{π

2
G(x; ϕ)

}
x ∈ <, (1)

where G(x; ϕ) is the cumulative distribution function (CDF) of any baseline model and
g(x; ϕ) its PDF.

At the same time, the arctangent function defines the arc-tan-G family of distribu-
tion [3]. The authors presented the new family of distribution which was used to model
Norwegian fire insurance data. This distribution family was proposed for an underlying
Pareto distribution and a new distribution called the Pareto arctan distribution, and it was
discovered that this distribution provides a good fit when compared to other well-known
distributions. Using a similar technique of sine-G, the cosine-G family of distributions
was introduced by [4], who also introduced the cosine-Weibul distribution as a member
of cosine-G class. Similarly, [5] introduced another sine-G class and studied the sine in-
verse Weibull distribution as a particular member. Ref. [6] developed the new sine-G
family and analyzed the sine-inverse Weibull model in particular. Ref. [7] defined the
sine Kumaraswamy-G family of distributions as having two extra parameters. Ref. [8]
defined the exponentiated sine-G family and analyzed the particular distribution as the
exponentiated sine-Weibull distribution. Further arcsine-G distributions were introduced
by [9], and the arcsine exponential distribution with constant and sharp decreasing hazard
functions was defined. Another trigonometric function-related probability model intro-
duced by [10] is called the arctan generalized exponential distribution. Using the sine-G
family of distribution, [11] developed a new two-parameter model called the sine Burr XII
distribution. Hence, we noticed that the simple functions are associated with trigonometric
distribution and are mathematically tractable (see [2,5]). Further, we observed that the
sine transformation can remarkably enhance the flexibility of G(x) [7]. A new extended
cosine-G family of distributions was proposed by [12]. Truncated Cauchy power family of
distributions was studied by [13]. Truncated Cauchy power Weibull-G class of distributions
was proposed by [14]. The sine half-logistic inverse Rayleigh and sine inverse exponential
distributions were discussed in [15,16]. Due to these pleasant features, we are motivated to
conduct research on the sine transformation family.

In this study, we developed a new family of trigonometric models using the sine
function by introducing an additional scale parameter α, and we called it the alpha sine-G
family (AS-G) of distributions.

The remaining sections of this study are organized as follows. The methodology of
model development and some key functions of the family of distributions are introduced
in Section 2. Some general properties of the AS-G family of distributions (AS-D FD) are
presented in Section 3. In Section 4, a particular member of the AS-G family is introduced.
A detailed study and application of this model are presented in Section 5. We discuss
parametric estimation and simulation experiments in Sections 6 and 7. The applicability
of the suggested model is presented in Section 8. Finally, we present the conclusion in
Section 9.

2. The New Sine Family of Distributions
2.1. Methodology

To develop a new family of distributions, [17] defined a relation of G(x; ϕ), the
cumulative distribution function (CDF) of any baseline distribution and r(t), the PDF of
any arbitrary distribution, to obtain the CDF of the new family as

F(x; ϕ) =

G(x;ϕ)∫
0

r(t) dt, (2)
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where F(x; ϕ) is the CDF of the new class of distributions and ϕ is the parameter space of
baseline distribution. To develop the new sine-G family, Equation (2) can be written as

F(x; ϕ) =

π
2 G(x;ϕ)∫

0

cos(t) dt = sin
{π

2
G(x; ϕ)

}
x ∈ <. (3)

Using the structure of Equation (3), we introduce an additional parameter to Equation (3)
and the new CDF of AS-G FD can be expressed as

F(x; α, ϕ) =
sin
{

πα
2 G(x; ϕ)

}
sin
(

πα
2
) ; x ∈ <, 0 < α < 1. (4)

The PDF corresponding to Equation (4) is

f (x; α, ϕ) =
πα

2 sin
(

πα
2
) g(x; ϕ) cos

{πα

2
G(x; ϕ)

}
; x ∈ <, 0 < α < 1, (5)

where α is the scale parameter of the AS-G distribution.

Special Case of AS-G FD. When α = 1 in the CDF of AS-G FD defined in Equation (4), it
is reduced to the sine-G family defined by [2]. Hence, the sine-G family is a special case of
AS-G FD.

2.2. Some Important Functional Forms of the New Sine Family of Distributions

In this subsection, we explicitly present some important functions that are necessary
for survival analysis, reliability theory, etc.

• Reliability function: In probability theory, the reliability function is a function that
offers the probability that a system or device will function correctly for a given amount
of time, assuming that it has not failed up to that point. Intuitively, the reliability
function offers the probability that the device or system will continue to function
beyond time x given that it has not failed up to that point. The reliability function for
AS-G FD can be expressed as

R(x; α, ϕ) = 1−
sin
{

πα
2 G(x; ϕ)

}
sin
(

πα
2
) ; x ∈ <, 0 < α < 1. (6)

• Hazard function: In probability theory, the hazard function is a function that describes
the rate at which an event occurs given that the event has not yet occurred up to a
certain time. The hazard function is often used in survival analysis to model the failure
rate of a system over time. The AS-G FD can be defined as

h(x) =
πα

2
g(x; ϕ) cos

{
πα
2 G(x; ϕ)

}
sin
(

πα
2
)
− sin

{
πα
2 G(x; ϕ)

} ; x ∈ <. (7)

• Odd function: Odd functions are a useful tool in probability theory for describing
certain types of distributions and for simplifying calculations involving them. Here,
the odd function for AS-G FD can be expressed as

O(x) =
sin
{

πα
2 G(x; ϕ)

}
sin
(

πα
2
)
− sin

{
πα
2 G(x; ϕ)

} ; x ∈ <. (8)

• Failure rate average (FRA): The failure rate average function has important applica-
tions in reliability engineering and survival analysis, where it is used to model the
behavior of systems and estimate their probability of failure over time. It can also be
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used to compare different systems’ reliability and identify the factors that affect their
failure rates.

K(x) = − 1
x

[
log
{

sin
(πα

2

)
− sin

{πα

2
G(x; ϕ)

}}
− log

{
sin
(πα

2

)}]
; x ∈ <. (9)

3. Properties of the New Sine Family of Distributions
3.1. Linear Representation

One can derive useful linear expansions using exponentiated distributions, specifically
the exponentiated-G (Exp-G) distribution with power parameter z > 0 which has the CDF:

Gz(x; ϕ) = [G(x; ϕ)]z; x ∈ <, (10)

where x ∈ <. The corresponding PDF can be expressed as

gz(x; ϕ) = zg(x; ϕ)[G(x; ϕ)](z−1), x ∈ <. (11)

These notations are used in the following discussion. Exponentiated distributions have
well-known properties for a wide range of baseline CDF G(x; ϕ) (for more information,
see [5,18,19]). The linear representations of F(x; ϕ) and f (x; ϕ) in terms of Exp-G functions
are shown in the following result. Using the Tayler expansion for trigonometric function
Sin(x), the CDF of AS-G FD can be expressed as

F∗(x; α, ϕ) =
∞

∑
j=0

∆jG2j+1(x; ϕ), (12)

where ∆j =
(−1)j( πα

2 )
2j+1

(2j+1)! sin( πα
2 )

. The PDF corresponding to Equation (12) can be calculated by

differentiating it with respect to x; we obtain

f ∗(x; α, ϕ) =
∞

∑
j=0

∆∗j G2j(x; ϕ)g(x; ϕ), (13)

where ∆∗j = ∆j(2j + 1).

3.2. Critical Points of the New Sine Family of Distributions

By solving equation f (x;α,ϕ)
dx = 0 for x, we can obtain the critical points of f (x; α, ϕ).

Let the solution of this equation be x1, which can be calculated from

sin
(πα

2
G(x1)

)
[g(x1)]

2 + cos
(πα

2
G(x1)

)
g′(x1) = 0. (14)

Similarly, the critical points for hazard function h(x) can be obtained by solving the follow-
ing equation for solution x2:{

sin
(πα

2

)
− sin

(πα

2
G(x2)

)}{
cos
(πα

2
G(x2)

)
g′(x2) +

πα

2
sin
(πα

2
G(x2)

)
[g(x2)]

2
}
= 0. (15)

3.3. Quantile Function

The quantile function is useful in statistical analysis and modeling as it provides a way
to estimate percentiles and other summary statistics of a probability distribution. Suppose
Q(p) is the smallest value of X for which the probability that X is less than or equal to that
value is at least p. The quantile function of CDF F(x; α, ϕ) of AS-G FD can be obtained as

Q(p; α, ϕ) = G−1
(

2
πα

arcsin
{

p sin
(πα

2

)})
; p ∈ (0, 1). (16)
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Using Equation (16), we can calculate the median, upper and lower quartile, quartile
deviation (QD), coefficient of QD, skewness, and kurtosis as presented in Table 1.

Table 1. Various measures based on quantiles.

Statistical Measure Expression

Median G−1
(

2
πα

arcsin
{

0.5 sin
(πα

2

)})
Lower Quartile G−1

(
2

πα
arcsin

{
0.25 sin

(πα

2

)})
Upper Quartile G−1

(
2

πα
arcsin

{
0.75 sin

(πα

2

)})
QD

1
2

[
G−1

(
2

πα
arcsin

{
0.75 sin

(πα

2

)})
− G−1

(
2

πα
arcsin

{
0.25 sin

(πα

2

)})]

Coefficient of QD

[
G−1

(
2

πα
arcsin

{
0.75 sin

(πα

2

)})
− G−1

(
2

πα
arcsin

{
0.25 sin

(πα

2

)})]
[

G−1
(

2
πα

arcsin
{

0.75 sin
(πα

2

)})
+ G−1

(
2

πα
arcsin

{
0.25 sin

(πα

2

)})]

Skewness [20]
Q
(

3
4

; α, ϕ

)
− 2Q

(
1
2

; α, ϕ

)
+ Q

(
1
4

; α, ϕ

)
Q
(

3
4

; α, ϕ

)
−Q

(
1
4

; α, ϕ

)

Kurtosis [21]
Q
(

7
8

; α, ϕ

)
−Q

(
5
8

; α, ϕ

)
−Q

(
1
8

; α, ϕ

)
+ Q

(
3
8

; α, ϕ

)
Q
(

3
4

; α, ϕ

)
−Q

(
1
4

; α, ϕ

)

3.4. Moments

In probability theory and statistics, moments of a random variable X are numerical
quantities that measure various aspects of its probability distribution. The moments of X
are calculated using the values of X and the PDF of X. The Kth moment about the origin
can be calculated as

µ′k =

∞∫
−∞

xk f (x)dx. (17)

Now, considering the integral and summation terms exist and are interchangeable, using
the PDF defined in Equation (5), we can calculate the Kth moment as

µ′k =
∞

∑
j=0

∆∗j

∞∫
−∞

xkG2j(x; ϕ)g(x; ϕ)dx. (18)

Further, the Kth moment can also be calculated using the quantile function (for more detail,
see [22]) as

µ′k =
∞

∑
j=0

∆∗j

1∫
0

x2j{Q(x; α, ϕ)}kdx. (19)
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3.5. Moment Generating Function

Let MX(t) be the MGF of X. Using Equation (18), MGF can be defined as

MX(t) =
∞

∑
j=0

∞

∑
m=0

tm∆∗j
m!

∞∫
−∞

xkG2j(x; ϕ)g(x; ϕ)dx. (20)

Similarly, using Equation (19), MGF can be expressed as

MX(t) =
∞

∑
j=0

∞

∑
m=0

tm∆∗j
m!

1∫
0

x2j{Q(x; α, ϕ)}kdx. (21)

3.6. Mean Residual Life Function

Suppose t is the lifetime of a component or item; then, MRF can be obtained as

µMRF(t) =
1

R(t)

E(t)−
∞

∑
j=0

∆∗j

t∫
0

x G2j(x; ϕ)g(x; ϕ)dx

, (22)

where R(t) is the reliability function.

4. Alpha-Sine Weibull Distribution
Model Presentation

In this section, a particular model of AS-G FD is introduced, and we analyze this model
briefly. To define the new member, we select G(x; ϕ) as the CDF of Weibull distribution as

G(x; δ, λ) = 1− exp
[
−
( x

δ

)λ
]

; x > 0, δ, λ > 0. (23)

The PDF corresponding to CDF (23) can be written as

g(x; δ, λ) = λδ−λxλ−1 exp
[
−
( x

δ

)λ
]

; x > 0, δ, λ > 0. (24)

Substituting Equation (23) in the CDF of AS-G FD defined in Equation (4), we obtain the
new member distribution called the AS-Weibull (AS-W) distribution with CDF:

F(x; α, δ, λ) =
1

sin
(

πα
2
) sin

{
πα

2

[
1− exp

(
−
( x

δ

)λ
)]}

; x > 0, 0 < α < 1, δ, λ > 0. (25)

The PDF of the AS-W distribution can be obtained by differentiating Equation (25) and can
be expressed as

f (x; α, δ, λ) =
παλδ−λ

2 sin
(

πα
2
) xλ−1 exp

[
−
( x

δ

)λ
]

cos
{

πα

2

[
1− exp

(
−
( x

δ

)λ
)]}

. (26)

Similarly, the HRF of the AS-W distribution is given by

h(x; α, δ, λ) =
π

2
αλδ−λxλ−1 exp

[
−
( x

δ

)λ
] cos

{
πα
2

[
1− exp

(
−
( x

δ

)λ
)]}

sin
(

πα
2
)
− sin

{
πα
2

[
1− exp

(
−
( x

δ

)λ
)]} . (27)

We demonstrate the various shapes of PDF and HRF for varying two parameters keeping δ
and λ constant, respectively; Figures 1 and 2. In Figure 3, we use all three parameters with
different combinations. From all these graphical investigations, we find that the suggested
model is versatile regarding skewness and kurtosis. Both PDF and HRF can have either
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increasing or decreasing or bathtub or inverted bathtub or -j- or reverse-j-shaped curves
according to parameter values. Hence, the AS-W model is capable of fitting highly skewed
heterogeneous data sets.
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0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

 

x

H
az

ar
d 

fu
nc

tio
n

α = 0.10, λ = 0.25
α = 0.30, λ = 0.75
α = 0.35, λ = 1.50
α = 0.75, λ = 2.50
α = 0.95, λ = 8.00

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

 

x

H
az

ar
d 

fu
nc

tio
n

α = 0.10, δ = 0.9
α = 0.30, δ = 1.2
α = 0.35, δ = 1.5
α = 0.75, δ = 2.5
α = 0.95, δ = 8.0

Figure 2. The plots of HRF keeping constant δ = 1.5 (left) and λ = 1.5 (right).

0.0 0.5 1.0 1.5

0

1

2

3

4

 

x

H
az

ar
d 

fu
nc

tio
n

α = 0.10, δ = 0.50, λ = 4.50
α = 0.30, δ = 0.75, λ = 3.75
α = 0.50, δ = 1.50, λ = 1.50
α = 0.75, δ = 0.50, λ = 1.25
α = 0.95, δ = 4.00, λ = 0.50

0.0 0.5 1.0 1.5

0

1

2

3

4

 

x

f(
x)

α = 0.10, δ = 0.50, λ = 4.50
α = 0.30, δ = 0.75, λ = 3.75
α = 0.50, δ = 1.50, λ = 2.50
α = 0.75, δ = 2.50, λ = 1.25
α = 0.95, δ = 4.00, λ = 0.80

Figure 3. The plots of PDF and HRF with a variation of all three parameters.
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5. Properties of the Alpha-Sine Weibull Distribution
5.1. Quantile Function

The QF can be used in statistical analysis and modeling to estimate probability distri-
bution percentiles and other summary statistics. The QF for the AS-W distribution can be
expressed as

Q(p; α, δ, λ) =

[
−δλ log

{
1− 2

πα
arcsin

{
p sin

(πα

2

)}}] 1
λ

; p ∈ (0, 1). (28)

Using Equation (28), we can obtain various statistical measures provided in Table 1. Also, for
generating random numbers to the distribution AS-W, we can use the following expression:

x =

[
−δλ log

{
1− 2

πα
arcsin

{
u sin

(πα

2

)}}] 1
λ

; u ∈ (0, 1). (29)

Using the formulae defined by [20,21] for skewness and kurtosis using quantiles, we
plotted the graphs of skewness and kurtosis with various combinations of parameter
values presented in Figures 4 and 5.
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Figure 4. The plots of skewness with constant α = 0.5 (left) and constant δ = 0.75 (right).
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5.2. Linear Expansion of Alpha-Sine Weibull Distribution

Using Equation (12), the expansion of the CDF defined in Equation (25) is given by

F∗(x; α, δ, λ) =
∞

∑
j=0

∆j

{
1− exp

[
−
( x

δ

)λ
]}(2j+1)

; x > 0, (30)
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where ∆j =
(−1)j( πα

2 )
2j+1

(2j+1)! sin( πα
2 )

. Further using the binomial expansion, Equation (30) can be

expressed as

F∗(x; α, δ, λ) =
∞

∑
j=0

∞

∑
m=0

∆∗jm exp
[
−m

( x
δ

)λ
]

; x > 0, (31)

where ∆∗jm = ∆j(−1)m
(

2j + 1
m

)
. The PDF corresponding to Equation (31) can be written as

f ∗(x; α, δ, λ) =
∞

∑
j=0

∞

∑
m=0

∆∗∗jmxλ−1 exp
[
−(1 + m)

( x
δ

)λ
]

; x > 0, (32)

where ∆∗∗jm = ∆j(−1)m
(

2j
m

)
λδ−λ.

5.3. Moments

The Kth moment of random variable X ∼ AS−W(α, δ, λ) can be obtained by using
the following expression:

µ′k =
∞

∑
j=0

∞

∑
m=0

∆∗∗jm
Γ
(

k+λ
λ

)
(

1+m
δλ

) k+λ
λ

. (33)

5.4. Moment Generating Function of Alpha-Sine Weibull Distribution

The MGF of AS-W for any real number t can be expressed as

MX(t) =
∞

∑
j=0

∞

∑
m=0

∞

∑
n=0

∆∗∗jm
tn

n!

Γ
(

k+λ
λ

)
(

1+m
δλ

) k+λ
λ

, (34)

where Γ(.) is the gamma function.

5.5. Mean Waiting Time Function

Let t denote the waiting time or time to failure of an item or event; then, the MWT
function can be defined as

µ(t) = t− 1
F(t; α, δ, λ)

∞

∑
j=0

∞

∑
m=0

λ−1∆∗∗jm
γ
(

1
λ , 1+m

δλ tλ
)

(
1+m

δλ

) 1
λ

, (35)

where γ(.) is the lower incomplete gamma function.

6. Estimation Methods

In this part of the work, we consider different methods for estimating the parameters
of the AS-W distribution.

6.1. Maximum Likelihood Method

Consider a simple random sample x = (x1, x2, . . . , xm) of size m following the AS-W
distribution; then, the likelihood function can be presented as



Math. Comput. Appl. 2023, 28, 83 10 of 19

L(x; α, δ, λ) =
m

∏
j=1

(
παλδ−λ

2 sin
(

πα
2
))e
−
( xj

δ

)λ(
xj
)λ−1 cos


πα

(
1− e−

( xj
δ

)λ
)

2



=

(
παλδ−λ

2 sin
(

πα
2
))m

e

(
−

m

∑
j=1

( xj

δ

)λ
)

m

∏
j=1

(
xj
)λ−1 cos


πα

(
1− e−

( xj
δ

)λ
)

2

.

(36)

Hence, the corresponding log-likelihood function is given as

log L (x; α, δ, λ) = m log(π) + m log(α) + m log(λ)−mλ log(δ)−m log(2 sin
(πα

2

)
)

−
m

∑
j=1

( xj

δ

)λ

+ (λ− 1)
m

∑
j=1

log(xj) +
m

∑
j=1

log

cos


πα

(
1− e−

( xj
δ

)λ
)

2


.

The MLEs Θ̂ = (α̂, δ̂, λ̂) of Θ = (α, δ, λ) are obtained, respectively, using numerical methods.

6.2. Maximum Product of Spacings Method

Cheng and Amin [23] present this technique as a different method to MLE. It relies on
the geometric mean of the spacings, which is

υj(α, δ, λ) = F(x(j)|α, δ, λ)− F(x(j−1)|α, δ, λ), j = 1, . . . , m + 1,

where F(t(0)|α, δ, λ) = 0 and F(t(m+1)|α, δ, λ) = 1. We can consider that
m+1

∑
j=1

υj(α, δ, λ) = 1.

The MPS estimators of Θ = (α, δ, λ) can be solved by increasing the geometric mean of the
spacing,

ϑ(α, δ, λ|x) =
[

m+1

∏
j=1

υj(α, δ, λ)

] 1
m+1

, (37)

or similarly by increasing the natural logarithm of the product spacing function of (37)
given by

ψ(α, δ, λ|x) = 1
m + 1

m+1

∑
j=1

log υj(α, δ, λ).

6.3. Least Squares Methods

Our study proposes two variants of least squares, Ordinary Least Squares (OLS) and
Weighted Least Squares (WLS).
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The OLS estimators can be determined by minimizing

∆(α, δ, λ|x) =
m

∑
j=1

[
F(x(j)|α, δ, λ)− j

m + 1

]2

=
m

∑
j=1



sin


πα

1−e
−
( x(j)

δ

)λ


2


sin
(

πα
2
) − j

m + 1



2

.

However, the WLS estimators can be obtained by minimizing

∆W(α, δ, λ|x) =
m

∑
j=1

(m + 1)2(m + 2)
j(m− j + 1)

[
F(x(j)|α, δ, λ)− j

m + 1

]2

=
m

∑
j=1

(m + 1)2(m + 2)
j(m− j + 1)



sin


πα

1−e
−
( x(j)

δ

)λ


2


sin
(

πα
2
) − j

m + 1



2

.

6.4. Minimum Distance Methods

Various methods have been proposed based on the minimization of empirical distribu-
tion functions and estimated distribution functions. This work uses the Cramer–Von–Mises
(CV) and Anderson–Darling (AD) methods. We start with a CV estimator, and we can
derive these estimators by minimizing the following functions:

ζ(α, δ, λ|x) =
1

12m
+

m

∑
j=1

[
F(x(j); α, δ, λ)− 2j− 1

2m

]2

=
1

12m
+

m

∑
j=1



sin


πα

1−e
−
( x(j)

δ

)λ


2


sin
(

πα
2
) − 2j− 1

2m



2

,
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moreover, the AD estimators are determined by minimizing

ξ(α, δ, λ|x) = −m− 1
m

m

∑
j=1

(2j− 1)
{

log



sin


πα

1−e
−
( x(j)

δ

)λ


2


sin
(

πα
2
)



+ log



1−

sin


πα

1−e
−
(

t(m+1−j)
δ

)λ


2


sin
(

πα
2
)



}
. (38)

7. Numerical Simulation

To compare unknown parameter estimates of the (AS-W) distribution, a simulation
study is conducted with different parameters, and several sample sizes m = 30, 60, 100,
150, 200, and 500 are presented. Based on 1000 runs, we compute the average estimate (AE)
and mean square error (MSE), which are considered to be the optimality criteria.

From Tables 2–5, the following is clear from the numerical experiments:

• Based on all estimation methods, the average estimate converges to the true values,
which shows that these estimators are consistent.

• The AE tends to its initial values as the sample size increase, so we can say that our
estimates are unbiased.

• For all methods, whenever the MSEs decrease, the sample size m increases.
• The MLE estimators perform better than all the other methods considered in this

work.

Table 2. The AES and MSEs of α = 0.4, δ = 2, λ = 3.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

30 α̂ 0.4282 0.2229 0.5727 0.2056 0.4468 0.2089 0.4707 0.2165 0.3965 0.2279 0.4661 0.2144
δ̂ 2.0909 0.3833 2.2162 0.4673 2.1140 0.2179 2.1152 0.1477 2.0552 0.0475 2.1046 0.1377
λ̂ 3.1459 0.3697 2.7929 0.2730 2.9844 0.3670 3.0017 0.3144 3.2108 0.4036 3.0294 0.2770

60 α̂ 0.5516 0.0155 0.5333 0.1673 0.4501 0.1589 0.4570 0.1585 0.3957 0.1626 0.4503 0.1587
δ̂ 2.0105 0.0031 2.1136 0.0490 2.0668 0.0376 2.0637 0.0282 2.0285 0.0191 2.0594 0.0284
λ̂ 3.0861 0.0258 2.8456 0.1225 2.9515 0.1485 2.9718 0.1242 3.0802 0.1362 2.9820 0.1158

100 α̂ 0.5429 0.0129 0.5160 0.1593 0.4173 0.1547 0.4282 0.1496 0.3918 0.1458 0.4378 0.1519
δ̂ 2.0054 0.0016 2.0937 0.0366 2.0448 0.0194 2.0446 0.0189 2.0211 0.0134 2.0490 0.0206
λ̂ 3.0741 0.0222 2.8854 0.0665 2.9601 0.0819 2.9766 0.0678 3.0436 0.0701 2.9799 0.0655
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Table 2. Cont.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

150 α̂ 0.5333 0.0100 0.5197 0.1487 0.4428 0.1360 0.4476 0.1369 0.4175 0.1318 0.4463 0.1386
δ̂ 2.0021 0.0006 2.0819 0.0287 2.0388 0.0154 2.0411 0.0155 2.0230 0.0125 2.0409 0.0157
λ̂ 3.0633 0.0190 2.9047 0.0439 2.9641 0.0539 2.9732 0.0442 3.0188 0.0451 2.9764 0.0427

200 α̂ 0.5237 0.0071 0.5464 0.1465 0.4247 0.1372 0.4404 0.1344 0.4234 0.1303 0.4439 0.1322
δ̂ 2.0003 0.0001 2.0910 0.0290 2.0323 0.0129 2.0366 0.0137 2.0256 0.0121 2.0366 0.0135
λ̂ 3.0531 0.0159 2.9242 0.0342 2.9802 0.0411 2.9868 0.0325 3.0209 0.0342 2.9892 0.0327

500 α̂ 0.5027 0.0008 0.4988 0.1292 0.4153 0.1220 0.4110 0.1198 0.3952 0.1173 0.4115 0.1188
δ̂ 2.0000 0.0000 2.0624 0.0207 2.0232 0.0096 2.0205 0.0095 2.0122 0.0081 2.0200 0.0094
λ̂ 3.0297 0.0089 2.9533 0.0145 2.9794 0.0166 2.9861 0.0138 3.0008 0.0137 2.9871 0.0136

Table 3. The AES and MSEs of α = 0.4, δ = 1, λ = 1.5.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

30 α̂ 0.2849 0.1535 0.4189 0.1723 0.3544 0.1660 0.3813 0.1785 0.3276 0.1644 0.3751 0.1642
δ̂ 1.0271 0.0322 1.1228 0.2186 1.0844 0.3253 1.0866 0.0735 1.0361 0.0235 1.0658 0.0312
λ̂ 1.5828 0.0631 1.4216 0.0535 1.4915 0.0732 1.5027 0.0642 1.6071 0.0870 1.5224 0.0585

60 α̂ 0.4456 0.0091 0.4559 0.1658 0.3692 0.1467 0.3912 0.1513 0.3620 0.1387 0.3953 0.1506
δ̂ 1.0211 0.0049 1.1065 0.0401 1.0575 0.0192 1.0652 0.0222 1.0406 0.0167 1.0647 0.0230
λ̂ 1.5492 0.0098 1.4396 0.0255 1.4911 0.0357 1.4999 0.0295 1.5527 0.0348 1.5045 0.0271

100 α̂ 0.4443 0.0066 0.4371 0.1590 0.3933 0.1348 0.3974 0.1376 0.3694 0.1267 0.4026 0.1380
δ̂ 1.0214 0.0032 1.0922 0.0333 1.0584 0.0173 1.0603 0.0187 1.0403 0.0139 1.0611 0.0192
λ̂ 1.5381 0.0057 1.4635 0.0143 1.4995 0.0197 1.5059 0.0160 1.5389 0.0182 1.5087 0.0157

150 α̂ 0.4456 0.0068 0.4645 0.1582 0.3779 0.1307 0.3865 0.1320 0.3649 0.1234 0.3895 0.1330
δ̂ 1.0136 0.0020 1.0971 0.0329 1.0486 0.0138 1.0509 0.0149 1.0363 0.0116 1.0520 0.0157
λ̂ 1.5297 0.0045 1.4626 0.0106 1.4918 0.0140 1.4976 0.0114 1.5198 0.0122 1.4988 0.0110

200 α̂ 0.4410 0.0061 0.4412 0.1528 0.3754 0.1280 0.3748 0.1271 0.3583 0.1200 0.3764 0.1296
δ̂ 1.0118 0.0018 1.0898 0.0296 1.0505 0.0129 1.0492 0.0137 1.0379 0.0111 1.0508 0.0146
λ̂ 1.5245 0.0037 1.4695 0.0080 1.4901 0.0101 1.4969 0.0082 1.5137 0.0086 1.4972 0.0080

500 α̂ 0.4380 0.0057 0.4484 0.1420 0.3764 0.1161 0.3778 0.1151 0.3629 0.1094 0.3789 0.1153
δ̂ 1.0012 0.0002 1.0815 0.0264 1.0413 0.0110 1.0416 0.0121 1.0330 0.0098 1.0418 0.0122
λ̂ 1.5115 0.0017 1.4802 0.0034 1.4932 0.0039 1.4960 0.0032 1.5034 0.0032 1.4964 0.0032

Table 4. The AES and MSEs of α = 0.6, δ = 2, λ = 1.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

30 α̂ 0.6597 0.0195 0.5390 0.2054 0.5081 0.1784 0.5212 0.1858 0.4882 0.1821 0.5191 0.1895
δ̂ 2.0642 0.1340 2.6170 8.4422 2.3168 2.3140 2.3242 1.8946 2.2091 2.7088 2.2942 1.1570
λ̂ 1.0537 0.0140 0.9369 0.0276 0.9900 0.0380 0.9979 0.0330 1.0665 0.0433 1.0081 0.0285

60 α̂ 0.6494 0.0099 0.5570 0.1611 0.4988 0.1622 0.5099 0.1605 0.4692 0.1636 0.5016 0.1645
δ̂ 2.0634 0.0127 2.2948 0.4264 2.1652 0.3995 2.1645 0.2667 2.0678 0.1926 2.1487 0.2479
λ̂ 1.0276 0.0055 0.9435 0.0135 0.9803 0.0164 0.9865 0.0139 1.0219 0.0152 0.9883 0.0125

100 α̂ 0.6442 0.0088 0.5808 0.1450 0.5099 0.1456 0.5104 0.1474 0.4700 0.1500 0.5034 0.1487
δ̂ 2.0510 0.0102 2.2622 0.3124 2.1219 0.2023 2.1178 0.1835 2.0400 0.1417 2.1039 0.1735
λ̂ 1.0250 0.0050 0.9625 0.0075 0.9858 0.0086 0.9913 0.0073 1.0135 0.0078 0.9944 0.0070
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Table 4. Cont.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

150 α̂ 0.6378 0.0076 0.5631 0.1385 0.4894 0.1464 0.4867 0.1480 0.4572 0.1500 0.4871 0.1483
δ̂ 2.0552 0.0110 2.2113 0.2558 2.0807 0.1505 2.0728 0.1324 2.0186 0.1090 2.0729 0.1341
λ̂ 1.0140 0.0028 0.9649 0.0054 0.9829 0.0063 0.9873 0.0051 1.0024 0.0051 0.9883 0.0050

200 α̂ 0.6272 0.0054 0.5662 0.1418 0.4872 0.1449 0.4817 0.1453 0.4546 0.1477 0.4877 0.1450
δ̂ 2.0500 0.0100 2.2230 0.2529 2.0804 0.1423 2.0684 0.1301 2.0218 0.1096 2.0768 0.1367
λ̂ 1.0108 0.0022 0.9718 0.0041 0.9895 0.0048 0.9929 0.0039 1.0045 0.0040 0.9931 0.0038

500 α̂ 0.608 0.0016 0.5878 0.1189 0.4732 0.1353 0.4847 0.1241 0.4688 0.1234 0.4885 0.1239
δ̂ 2.000 0.0000 2.2199 0.2269 2.0446 0.0999 2.0459 0.0965 2.0175 0.0843 2.0511 0.1001
λ̂ 1.000 0.0000 0.9808 0.0018 0.9936 0.0018 0.9949 0.0015 1.0000 0.0015 0.9949 0.0015

Table 5. The AES and MSEs of α = 0.7, δ = 3, λ = 2.5.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

30 α̂ 0.7483 0.0274 0.7345 0.1700 0.6787 0.1822 0.6691 0.1730 0.5878 0.2083 0.6681 0.1844
δ̂ 3.0782 0.0368 3.5572 3.0963 3.4365 2.7615 3.3212 1.4609 3.1723 0.7521 3.3279 1.4390
λ̂ 2.5959 0.0441 2.2631 0.2335 2.4062 0.2695 2.4325 0.2375 2.6046 0.2761 2.4583 0.2202

60 α̂ 0.7210 0.0063 0.6983 0.1259 0.6762 0.1393 0.6420 0.1358 0.5789 0.1566 0.6587 0.1363
δ̂ 3.0507 0.0152 3.2034 0.1991 3.1919 0.3088 3.1130 0.1402 3.0399 0.1163 3.1341 0.1548
λ̂ 2.5813 0.0244 2.3468 0.1024 2.4330 0.1317 2.4604 0.1028 2.5513 0.1109 2.4620 0.0987

100 α̂ 0.7054 0.0016 0.6886 0.1179 0.6692 0.1197 0.6293 0.1264 0.5736 0.1445 0.6494 0.1217
δ̂ 3.0354 0.0106 3.1517 0.1021 3.1244 0.1366 3.0739 0.0787 3.0172 0.0689 3.0901 0.0833
λ̂ 2.5756 0.0227 2.3837 0.0631 2.4531 0.0757 2.4717 0.0618 2.5291 0.0638 2.4711 0.0590

150 α̂ 0.7027 0.0008 0.6884 0.1119 0.6650 0.1186 0.6020 0.1345 0.5654 0.1444 0.6330 0.1253
δ̂ 3.0246 0.0074 3.1333 0.0846 3.1112 0.1146 3.0444 0.0621 3.0061 0.0571 3.0696 0.0679
λ̂ 2.5552 0.0166 2.3985 0.0393 2.4481 0.0500 2.4685 0.0377 2.5075 0.0375 2.4649 0.0371

200 α̂ 0.7006 0.0002 0.6686 0.1123 0.6532 0.1147 0.5924 0.1309 0.5587 0.1392 0.6294 0.1191
δ̂ 3.0168 0.0050 3.1048 0.0724 3.0849 0.0863 3.0256 0.0514 2.9926 0.0492 3.0551 0.0578
λ̂ 2.5450 0.0135 2.4154 0.0282 2.4574 0.0366 2.4756 0.0275 2.5059 0.0279 2.4706 0.0272

500 α̂ 0.7000 0.0000 0.6829 0.0887 0.6505 0.0995 0.5927 0.1110 0.5671 0.1176 0.6345 0.0976
δ̂ 3.0000 0.0000 3.0887 0.0561 3.0578 0.0586 3.0039 0.0359 2.9809 0.0339 3.0369 0.0428
λ̂ 2.5126 0.0038 2.4351 0.0132 2.4620 0.0144 2.4740 0.0107 2.4876 0.0101 2.4687 0.0112

8. Applications

In this part of the work, we provide two application datasets to show the effectiveness
and flexibility of the AS-W distribution. Different statistic measures for the two data sets
are presented in Table 6.

Table 6. Summary statistics for the selected datasets.

Datasets Minimum One Quntile Median Mean Three Quntile Maximum Skew Kurt

Dataset 1 0.070 1.170 2.490 3.494 5.840 13.300 1.152 3.890
Dataset 2 2.998 21.187 51.385 55.123 75.435 138.500 0.555 2.108

8.1. First Data Set

The first data set represents the total annual rainfall (in inches) during the month of
January from 1880 to 1916 recorded at Los Angeles Civic Center; ref. [24] provided the
values. The data are reported in Table 7.
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Table 7. The total annual rainfall.

1.33 1.43 1.01 1.62 3.15 1.05 7.72 0.2 6.03 0.25 7.83 0.25 0.88 6.29 0.94
5.84 3.23 3.7 1.26 2.64 1.17 2.49 1.62 2.1 0.14 2.57 3.85 7.02 5.04 7.27
1.53 6.7 0.07 2.01 10.35 5.42 13.3

8.2. Second DataSet

The second data set is the failure times of eight components at three different tempera-
tures, 100, 120, 140, introduced by [25]. The value data are described Table 8.

Table 8. The values of the failure times of eight components at three different temperatures.

14.712 32.644 61.979 65.521 105.50 114.60 120.40
138.50 8.610 11.741 54.535 55.047 58.928 63.391
105.18 113.02 2.998 5.016 15.628 23.040 27.851
37.843 38.050 48.226

The AS-W distribution is fitted to these two datasets and compared with the following:

• Sine-inverse Weibull [4]:

F(x, α, θ) = sin
{π

2
e(−αx−θ)

}
.

f (x; α, θ) =
π

2
αθx−θ−1e(−αx−θ) cos

{π

2
e(−αx−θ)

}
x > 0, α, θ > 0.

• The inverse Weibull distribution [26]:

F(x, τ, θ) = e−(
θ
x )

τ

.

f (x; τ, θ) = f (x) =
τ(θ/x)τe−(θ/x)τ

x
x > 0, τ, θ > 0.

• Weighted generalized quasi Lindley distribution (WGQLD) [27]:

F(x, α, θ) = 1−

24 + 6α2[2 + xθ(2 + xθ)]
+6α[6 + xθ(6 + xθ(3 + xθ))]
+xθ[24 + xθ(12 + xθ(4 + xθ))]

12(1 + α)(2 + α)
e−θx.

f (x; α, θ) =
θ3x2 ·

(
θ2x2 + 6αθx + 6α2)e−θx

12(α + 1)(α + 2)
x > 0, α, θ > 0.

• Sine Burr XII distribution [11]:

F(x) = sin

{
π

2

[
1− 1

(1 + xa)b

]}
: a, b, x > 0.

f (x) =
π

2
abxa+1

(1 + xa)b+1 cos

{
π

2

[
1− 1

(1 + xa)b

]}
, a, b, x > 0.

The MLEs, SEs and corresponding log-likelihood l(.) values for AS-G FD model
for both datasets are provided in Table 9. For the decision about the best fitting of the
competing model, we computed several criteria measures such as the Akaike information
criteria (AIc), the consistent Akaike information criteria (CAIc), the Bayesian information
criteria (BIc), and the Hannan–Quinn information criteria (HQIc).
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Table 9. The MLEs, SEs and corresponding log-likelihood l(.) values for the AS-G FD model.

Datasets Estimate SE l(x; ·)
Dataset 1 α̂ = 0.0003 1.1977 −83.265

λ̂ = 1.0495 0.1381
δ̂ = 3.55905 0.5862

Dataset 2 α̂ = 0.002 1.083 −119.119
λ̂ = 59.518 9.820
δ̂ = 1.300 0.216

From the results given in Tables 10 and 11, we noted that the AS-W model provides
a better fit with the minimum value of AIC, AICc, BIC, HQIC, and KS and the largest
p-values compared with other models considered in this work. Figures 6 and 7 support
this assertion. Box plot and TTT plot along with the PP-Plot for the two real data sets are,
respectively, presented in Figures 8 and 9.

Table 10. The goodness of fit tests for Dataset 1.

Model AIC AICc BIC HQIC K-S p-Value

AS-W 172.5304 173.2577 177.3632 174.2342 0.0907 0.9212
Sine-inverse Weibull 184.3137 184.6666 187.5355 185.4495 0.15862 0.3096
Inverse Weibull 190.8537 191.2066 194.0755 191.9896 0.1897 0.1394
WGQLD 206.7907 207.1436 210.0125 207.9265 0.2682 0.0097
Sine Burr XII 181.3963 181.7493 184.6181 182.5322 0.1423 0.4417

Table 11. The goodness of fit tests for Dataset 2.

Model AIC AICc BIC HQIC K-S p-Value

AS-W 244.239 245.439 247.7732 245.1767 0.1271 0.7875
Sine-inverse Weibull 251.187 251.7585 253.5431 251.8121 0.1546 0.5622
Inverse Weibull 255.0592 255.6306 257.4153 255.6843 0.1778 0.3884
WGQLD 252.8124 253.3839 255.1686 253.4375 0.1950 0.2824
Sine Burr XII 284.8518 285.4232 287.2079 285.4768 0.3609 0.0026
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Figure 6. Plots of estimated probability density functions and cumulative distribution functions for
Dataset 1.
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Figure 8. Box, TTT, and PP plots for the first real data set.
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Figure 9. Box, TTT, and PP plots for the second real data set.

9. Conclusions

We intensely study a new family of distributions with a trigonometric function. We
introduce an extra parameter to the sine transformation family and name it the alpha-
sine-G family of distributions. Some important functional forms and properties of the
family are provided in a general form. A specific three-parameter sub-model alpha-sine
Weibull of this family is also introduced using Weibull distribution as a parent distribution;
it is studied deeply. The statistical properties of this new distribution are investigated.
From the graphical investigations of the PDF and HRF shapes, we find that the suggested
model is versatile regarding skewness and kurtosis. Both the PDF and HRF can have
either increasing or decreasing or bathtub or inverted bathtub or -j- or reverse-j-shaped
curves according to the parameter values. Hence, the AS-W model is also capable of fitting
highly skewed heterogeneous data sets. We obtain the estimates of AS-W parameters using
several methods, including MLE, MPS, OLS, WLS, CV, and AD. A simulation experiment is
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carried out to justify these estimates further and finds that AEs nearly converge to the true
values of the parameter, and MSEs are approaching zero as the sample size increases. We
study two real data applications and demonstrate that the AS-W distribution is consistently
the best model among all its competitors. Hence, we expect that the suggested family of
distributions can be used to generate new flexible models for modeling real data, even
heterogeneous data from different fields of application. For future works, many authors can
use the new suggested family of distributions to generate new continuous statistical models,
such as alpha-sine-power Lomax, alpha-sine-power Topp Leone and alpha-sine-power
Lindley distributions.
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