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Abstract: This study investigates the strain and stress states in an aluminum single lap joint bonded
with a functionally graded Al2O3 micro particle reinforced adhesive layer subjected to a uniform
temperature field. Navier equations of elasticity theory were designated by considering the spatial
derivatives of Lamé constants and the coefficient of thermal expansion for local material composition.
The set of partial differential equations and mechanical boundary conditions for a two-dimensional
model was reduced to a set of linear equations by means of the central finite difference approximation
at each grid point of a discretized joint. The through-thickness Al2O3-adhesive composition was
tailored by the functional grading concept, and the mechanical and thermal properties of local
adhesive composition were predicted by Mori–Tanaka’s homogenization approach. The adherend–
adhesive interfaces exhibited sharp discontinuous thermal stresses, whereas the discontinuous nature
of thermal strains along bi-material interfaces can be moderated by the gradient power index, which
controls the through-thickness variation of particle amount in the local adhesive composition. The
free edges of the adhesive layer were also critical due to the occurrence of high normal and shear
strains and stresses. The gradient power index can influence the distribution and levels of strain and
stress components only for a sufficiently high volume fraction of particles. The grading direction of
particles in the adhesive layer was not influential because the temperature field is uniform; namely,
it can only upturn the low and high strain and stress regions so that the neat adhesive–adherend
interface and the particle-rich adhesive–adherend interface can be relocated.

Keywords: functionally graded material; Al2O3; adhesive; thermal stress; elasticity theory; finite
difference method; micro particles

1. Introduction

The adhesive bonding technique has been used successfully to join similar and differ-
ent materials. In general, adhesive joints are designed so that they can withstand static and
dynamic loadings [1,2]. However, today’s adhesives can serve at cryogenic, low, and high
temperatures. The thermal loads result in non-uniform thermal stress distributions, which
appear in a discontinuous manner in vicinities of adhesive–adherend interfaces due to in-
compatible thermal strains as a result of different mechanical and thermal properties of the
materials on both sides of bi-material interfaces [3]. A uniform or non-uniform temperature
distribution, a non-uniform material property distribution, chemical and physical changes
induced in the adhesive material during the adhesive curing process, the expansion of
adhesive with changes in moisture and temperature levels also result in thermal stresses in
adhesive joints [4,5].

In various types of mechanical loadings, the adhesive joints undergo stress concen-
trations, called edge effects, around the free edges of adhesive–adherend interfaces while
the normal and shear stresses remain uniform at low levels in a large overlap region and
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increase uniformly towards the free edges of the adhesive layer and then become peak
near these free edges. A large overlap region can also experience high stresses except for
the adhesive-free edges depending on the type of thermal loading. In order to reduce
the stress concentrations and to improve the joint strength, some joint geometry-specific
measures were considered by adjusting the stiffness of adherends around these critical
regions. However, the proposed geometrical measures to relieve these peak stresses can
cause losses in the overall stiffness and strength of adhesive joint [1,2,6].

A layered composite structure, which can be joined easily by adhesive bonding tech-
nique, can exhibit better thermal and mechanical properties to single-composite material.
Nevertheless, a thermal load can result in critical stress concentrations occurring along
bi-material interfaces due to the sharp discontinuities in the material properties [7,8]. The
concept of functionally graded materials (FGMs) is already utilized by biological interfaces
in nature in order to reduce stress concentrations along bi-material interfaces. FGMs aim
to achieve an equivalent performance to that of single-phase materials by unifying the
better properties of the constituent phases with one- or more-dimensional continuously
varying material composition; consequently, this can remove sharp discontinuity along the
bi-material interface and relieve sudden jumps in the thermal stresses along bi-material
interfaces [9–11].

Although the concept of FGMs is new, a large number of research studies have been
carried out, and this field continues to expand fast [12,13]. Today, this concept can also
be implemented to reduce stress concentrations appearing along the adherend–adhesive
interfaces of the adhesive joints serving under static, dynamic, and thermal loads, i.e., use
of functionally graded adherends and adhesives [14]. The stress distribution and peak
stress levels can be controlled by tailoring one- or two-dimensional composition variation
of adherends as well as an adhesive with one or more other constituents [14–16]. This
method is especially helpful for relieving thermal stresses due to thermal loads.

Mathematical models and solutions on the thermal residual stress analysis of adhesive
joints with functionally graded adherends have been continuously improved, and the
functionally graded adherends were reported to relieve both stress and strain distributions
and levels in the adhesive layer as well as in the adherends even though the adhesive layer
was still in a functionally ungraded state [17].

An adhesive layer with variable modulus, which requires at least the use of two
adhesives with different mechanical and thermal properties, has been proposed to relieve
high-stress concentrations at the free edges of the adhesive layer and to have more uniform
stress distributions along the overlap region [18–23]. This can be considered as a stepped
functionally graded adhesive layer; namely, a stiff adhesive in the middle portion of the
overlap region and a flexible adhesive around the free edges of the overlap region are
applied. The concept of using multi-modulus adhesives can improve the overall joint
strength and can also be implemented to the thermal stress problems of the adhesive
joints to operate at low and high temperatures [24]. Namely, a high-temperature adhesive
in the middle of the overlap region keeps the strength by transferring the entire load,
whereas a low-temperature adhesive withstands loads at low temperatures by causing the
high-temperature adhesive to undergo moderate stress levels [18,25,26].

The dual or mixed adhesive technique also brings some drawbacks. The stiff adhesive
may tend to displace the ductile adhesive under the applied pressure; therefore, the bonded
joint may be worse off than using the ductile adhesive alone in the manufacturing stage [18].
Another common method is to add various reinforcements of different scales, which are
harder, stiffer, and more strength than adhesive material, to the adhesive layer. Therefore,
the mechanical properties, electrical and thermal conductivities of adhesive material can
be improved suitably depending on its application area [27]. In general various fillers at
a specific weight/volume fraction are distributed uniformly through adhesive material,
and a homogeneous distribution of fillers is desired as possible. The stress analyses of this
reinforced adhesive layer under mechanical and thermal loadings are performed using
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its mechanical and thermal properties, which are predicted by various experimental or
continuum mechanics-based homogenization methods [28–31].

New theoretical analyses propose the use of a continuous adhesive grading, such as
for modulus or coefficient of thermal expansion, along one or two coordinate directions of
the adhesive material, and indicate that the improved strength of adhesive joints can be
achieved by controlling stress concentrations with an existing optimum material grading
rule [14,15]. Nevertheless, the material grading distribution rules are not practical right
now for production purposes. The implementation of fused deposition modeling (3D
printing) to the adhesive joints is now promising for the production of a functionally
graded adhesive layer [32–35]. Consequently, the practice of functionally graded adhesive
is still in the development stage and needs many theoretical and experimental studies that
consider all aspects of adhesive material and adhesive joint.

In this study, the strain and stress states in an aluminum single lap joint bonded with
a through-thickness functionally graded Al2O3 micro particle reinforced adhesive layer
were investigated under a uniform temperature field (Figure 1). The spatial derivatives
of Lamé constants and the coefficient of thermal expansion of local adhesive composition
were considered in Navier equations of two-dimensional elasticity theory. The mechanical
and thermal properties of the local adhesive composition were predicted by Mori–Tanaka’s
homogenization approach. The set of partial differential equations was solved with me-
chanical boundary conditions at each grid point of a discretized joint using the central finite
difference approach. The effect of gradient power index controlling the through-thickness
volume-fraction variation of particles in the local adhesive composition was also analyzed
on the strain and stress states of the adhesive layer and adherends.

Figure 1. Boundary conditions of aluminum single-lap joint bonded with a through-thickness
functionally graded adhesive layer.

2. Local Material Properties

The local composition of a functionally graded adhesive can be tailored along one
or more spatial coordinate directions by means of a power function [9]. A continuous
variation for any local mechanical property can be achieved; consequently, this can relieve
discontinuities in thermal stresses which are encountered along the interfaces of layered
material structures due to mismatches of mechanical and thermal properties.

The local mixture of both adhesive and micro-size (Al2O3) powders at any position
through the adhesive thickness can be defined in terms of the volume fraction of (Al2O3)
particles mixed through a two-component epoxy-based adhesive between a particle-rich
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adhesive interface and a neat adhesive interface. A well-known mixture rule can be
implemented for the local composition of a particle-reinforced adhesive as

Va(y) + Vp(y) = 1, (1)

where a, p, Va(y) and Vp(y) indicate adhesive and (Al2O3) particles and their volume
fractions through the adhesive thickness. The maximum volume fraction of particles
Vmax in the vicinity of the particle-rich–adhesive interface is limited to a reasonable range
of 0.01 and 0.1 because the adhesion between adhesive and aluminum adherend can
not deteriorate. The volume fraction of (Al2O3) particles at any y—position through the
adhesive thickness can be defined as

Vp(y) =
(

ȳ
t2

)n
Vmax or Vp(y) =

(
1.0−

(
ȳ
t2

)n)
Vmax, (2)

where t2 is the adhesive thickness, ȳ = y− t2 is the position relative to the lower adhesive
interface. The power index n provides a desired variation form of the volume fraction of
particles through the adhesive thickness in a range of 0.1 and 12.0. As shown in Figure 2,
the first equation provides a composition variation from a neat lower adhesive interface to
a particle-rich upper adhesive interface, and the second one acts in the reverse sense.

(a) Al2O3 rich adhesive (PRA)→ neat adhesive (NA) (b) Neat adhesive (NA)→ Al2O3 rich adhesive (PRA)

Figure 2. The volume fraction Vp(ȳ) variations of Al2O3 particles through the thickness of a function-
ally graded adhesive layer for different gradient power index (n) values (Vmax = 0.1).

The mechanical and thermal properties of the local adhesive and particle mixture
can be predicted using the Mori–Tanaka homogenization approach [28,29]. Thus, at any
position ȳ through the adhesive thickness, the overall bulk modulus

K(ȳ) = Ka +
Vp(Kp − Ka)

1 + (1−Vp)
3(Kp−Ka)
3Ka+4Ga

, (3)

the shear modulus

G(ȳ) = Ga +
Vp(Gp − Ga)

1 + (1−Vp)
Gp−Ga
Ga+ f1

, (4)
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where

f1 =
Gp(9Kp + 8Gp)

6(Kp + 2Gp)
, (5)

the modulus of elasticity

E(ȳ) =
9KG

3K + G
, (6)

Poisson’s ratio
ν(ȳ) =

3K− 2G
2(3K + G)

(7)

For isotropic particle-reinforced composite materials Wakashima-Tsukamoto [30] and
Levin [31] propose the overall coefficient of thermal expansion in terms of the overall bulk
modulus as

α(ȳ) = αa +

(
1
K
− 1

Ka

)
αp − αa
1

Kp
− 1

Ka

(8)

3. Mathematical Model and Solution Method

Let x1 and x2 be spatial coordinate variables. In order to solve an elasticity problem,
we need to consider the fundamental equations of elasticity theory [36] as follows:

Equilibrium
∂σji

∂xi
+ Fi = 0, (9)

Strain-displacement relations

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (10)

Stress-strain relations

σij = 2µεij + λδijεnn − δij(3λ + 2µ)αT̄, (11)

where δij is kronecker delta and Lamé’s constants

λ(x2) =
υE

(1 + υ)(1− 2υ)
, (12)

µ(x2) =
E

2(1 + υ)
, (13)

the coefficient of thermal expansion α = α(x2), Poisson’s ratio υ = υ(x2), the modulus
of elasticity E = E(x2), the temperature difference T̄ = To − Tre f = constant and the
volumetric strain

εv = εnn =
∂uk
∂xk

= ε11 + ε22 + ε33 (14)

Substituting Equations (10) and (14) into Equation (11) yields

σij = µ

(
∂ui
∂xj

+
∂uj

∂xi

)
+ λδij

∂uk
∂xk
− δij(3λ + 2µ)αT̄ (15)

Finally, the substitution of Equation (15) into Equation (9) for (Fi = 0) gives

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj

∂xi

)
+ λδij

∂uk
∂xk
− δij(3λ + 2µ)αT̄

)
= 0
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After arranging the set of equations is obtained as follows

0 =
∂µ

∂xj

(
∂ui
∂xj

+
∂uj

∂xi

)
+ µ

∂2ui

∂x2
j
+ µ

∂2uj

∂xjxi
+

∂λ

∂xi

∂uk
∂xk

+ λ
∂

∂xi

(
∂uk
∂xk

)
−
(

3
∂λ

∂xi
+ 2

∂µ

∂xi

)
αT̄ − (3λ + 2µ)

∂α

∂xi
T̄

(16)

For a two-dimensional problem Equation (16) presents a set of two partial differential
equations (i = 1, 2) as

0 = 2
∂µ

∂x1

∂u1

∂x1
+

∂µ

∂x2

(
∂u1

∂x2
+

∂u2

∂x1

)
+ (λ + 2µ)

∂2u1

∂x2
1

+ (λ + µ)
∂2u2

∂x1∂x2
+ µ

∂2u1

∂x2
2
+

∂λ

∂x1

(
∂u1

∂x1
+

∂u2

∂x2

)
−
(

3
∂λ

∂x1
+ 2

∂µ

∂x1

)
αT̄ − (3λ + 2µ)

∂α

∂x1
T̄,

(17)

0 =
∂µ

∂x1

(
∂u2

∂x1
+

∂u1

∂x2

)
+ 2

∂µ

∂x2

∂u2

∂x2
+ (λ + 2µ)

∂2u2

∂x2
2

+ (λ + µ)
∂2u1

∂x1∂x2
+ µ

∂2u2

∂x2
1
+

∂λ

∂x2

(
∂u1

∂x1
+

∂u2

∂x2

)
−
(

3
∂λ

∂x2
+ 2

∂µ

∂x2

)
αT̄ − (3λ + 2µ)

∂α

∂x2
T̄

(18)

Let x = x1, y = x2, u(x, y) = u1(x1, x2) and v(x, y) = u2(x1, x2) for convenience.
Equations (17) and (18) become

0 = 2
∂µ

∂x
∂u
∂x

+
∂µ

∂y

(
∂u
∂y

+
∂v
∂x

)
+ (λ + 2µ)

∂2u
∂y

+ (λ + µ)
∂2v

∂x∂y
+ µ

∂2u
∂y2 +

∂λ

∂x

(
∂u
∂x

+
∂v
∂y

)
−
(

3
∂λ

∂x
+ 2

∂µ

∂x

)
αT̄ − (3λ + 2µ)

∂α

∂x
T̄,

(19)

0 =
∂µ

∂x

(
∂v
∂x

+
∂u
∂y

)
+ 2

∂µ

∂y
∂v
∂y

+ (λ + 2µ)
∂2v
∂y2

+ (λ + µ)
∂2u

∂x∂y
+ µ

∂2v
∂x2 +

∂λ

∂y

(
∂u
∂x

+
∂v
∂y

)
−
(

3
∂λ

∂y
+ 2

∂µ

∂y

)
αT̄ − (3λ + 2µ)

∂α

∂y
T̄

(20)

3.1. Boundary Conditions

Boundary conditions are described (Figure 1) as

T̄(x, y) = T0 constant, (21)

v = 0 at A(0, 0) and B(0, L), (22)

σxx = 0, σxy = 0 (x = 0, 0 < y < H), (23)

σxx = 0, σxy = 0 (x = L, 0 < y < H), (24)

σyy = 0, σyx = 0 (y = 0, 0 < x < L), (25)

σyy = 0, σyx = 0 (y = H, 0 < x < L), (26)
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σxx = 0, σyy = 0, σxy = 0 [A(0, 0), B(L, 0), G(0, H), F(L, H)], (27)

respectively.

3.2. Finite Difference Discretization

Let ψ = ψ(x, y) be a continuous, differentiable two-variable function and be defined
at each grid point (i, j) with spatial coordinates (xi, yi) of a two-dimensional region <
with a uniform grid distribution (Figure 3). i and j indicate positions along the coordinate
axes x and y, respectively. The first and second-order partial derivatives of the function
ψ = ψ(x, y) with respect to spatial variables x and y can be discretized by means of forward,
backward, and central difference equations.

Figure 3. Representation of grid-point distributions in the solution region < of adhesive single lap
joint (not scaled).

The central-difference operators of the first-order partial derivatives of a function
ψ = ψ(x, y) at an internal grid point (i, j) with respect to spatial variables x and y are

5x ψi,j =
∂ψ

∂x

∣∣∣∣
i,j
=

ψi+1,j − ψi−1,j

2∆x
, (28)

5y ψi,j =
∂ψ

∂y

∣∣∣∣
i,j
=

ψi,j+1 − ψi,j−1

2∆y
(29)

As the boundary conditions are applied, the central-difference operators can be modified
in a forward sense as

→
Γ x ψi,j =

∂ψ

∂x

∣∣∣∣
i,j
=
−3ψi,j + 4ψi+1,j − ψi+2,j

2∆x
, (30)

→
Γ y ψi,j =

∂ψ

∂y

∣∣∣∣
i,j
=
−3ψi,j + 4ψi,j+1 − ψi,j+2

2∆y
, (31)

or in a backward sense as

←
Γ x ψi,j =

∂ψ

∂x

∣∣∣∣
i,j
=

3ψi,j − 4ψi−1,j + ψi−2,j

2∆x
, (32)
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←
Γ y ψi,j =

∂ψ

∂y

∣∣∣∣
i,j
=

3ψi,j − 4ψi,j−1 + ψi,j−2

2∆y
(33)

The central-difference operators of the second-order partial derivatives of a function
ψ = ψ(x, y) at a internal grid point (i, j) with respect to spatial variables x and y are

5xx ψi,j =
∂2ψ

∂x2

∣∣∣∣
i,j
=

ψi+1,j − 2ψi,j + ψi−1,j

(∆x)2 , (34)

5yy ψi,j =
∂2ψ

∂y2

∣∣∣∣
i,j
=

ψi,j+1 − 2ψi,j + ψi,j−1

(∆y)2 , (35)

5xy ψi,j =
∂2ψ

∂x∂y

∣∣∣∣
i,j
=

ψi+1,j+1 − ψi+1,j−1 − ψi−1,j+1 + ψi−1,j−1

4∆x∆y
(36)

As the boundary conditions are applied, the central-difference operators can be modified
in a forward or backward sense as

→
Γ xx ψi,j =

∂2ψ

∂x2

∣∣∣∣
i,j
=
−ψi+3,j + 4ψi+2,j − 5ψi+1,j + 2ψi,j

(∆x)2 , (37)

←
Γ xx ψi,j =

∂2ψ

∂x2

∣∣∣∣
i,j
=

2ψi,j − 5ψi−1,j + 4ψi−2,j − ψi−3,j

(∆x)2 , (38)

→
Γ yy ψi,j =

∂2ψ

∂y2

∣∣∣∣
i,j
=
−ψi,j+3 + 4ψi,j+2 − 5ψi,j+1 + 2ψi,j

(∆y)2 , (39)

←
Γ yy ψi,j =

∂2ψ

∂y2

∣∣∣∣
i,j
=

2ψi,j − 5ψi,j−1 + 4ψi,j−2 − ψi,j−3

(∆y)2 (40)

3.3. Internal Grid Points

Navier partial differential Equations (19) and (20) at each internal grid point, (i, j) of
coordinates (xi, yi) inside the region < (Figure 3) can be reduced to the linear difference
equations by applying the relevant difference operators to the first and second order
derivatives as follows

0 = 2
(
5xµi,j

) (
5xui,j

)
+
(
5yµi,j

)(
5yui,j +5xvi,j

)
+ (λ + 2µ)i,j

(
5xxui,j

)
+ (λ + µ)i,j

(
5xyvi,j

)
+ µi,j

(
5yyui,j

)
+
(
5xλi,j

)(
5xui,j +5yvi,j

)
−
(
35x λi,j + 25x µi,j

)
αi,jT̄i,j − (3λ + 2µ)i,j

(
5xαi,j

)
T̄i,j,

(41)

0 =
(
5xµi,j

)(
5xvi,j +5yui,j

)
+ 2
(
5yµi,j

)(
5yvi,j

)
+ (λ + 2µ)i,j

(
5yyvi,j

)
+ µi,j

(
5xxvi,j

)
+ (λ + µ)i,j

(
5xyui,j

)
+
(
5yλi,j

)(
5xui,j +5yvi,j

)
−
(
35y λi,j + 25y µi,j

)
αi,jT̄i,j − (3λ + 2µ)i,j

(
5yαi,j

)
T̄i,j

(42)

3.4. Boundary Grid Points

Boundary conditions (22)–(27) at each grid point (i, j) of coordinates (xi, yi) along the
outer boundaries of the region < (Figures 1 and 3) can be implemented by means of the
difference equations of the stress components

σxx = (λ + 2µ)
∂u
∂x

+ λ
∂v
∂y
− (3λ + 2µ)αT̄, (43)
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σyy = (λ + 2µ)
∂v
∂y

+ λ
∂u
∂x
− (3λ + 2µ)αT̄, (44)

σxy = σyx = µ

(
∂u
∂y

+
∂v
∂x

)
, (45)

as follows

1. Along the edge AG (Equation (23)):

0 = (λ + 2µ)i,j

(→
Γ x ui,j

)
+ λi,j

(
5yvi,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (46)

0 = µi,j

(
5yui,j+

→
Γ x vi,j

)
, (47)

2. Along the edge BF (Equation (24)):

0 = (λ + 2µ)i,j

(←
Γ x ui,j

)
+ λi,j

(
5yvi,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (48)

0 = µi,j

(
5yui,j+

←
Γ x vi,j

)
, (49)

3. Along the edge AB (Equation (25)):

0 = (λ + 2µ)i,j

(→
Γ y vi,j

)
+ λi,j

(
5xui,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (50)

0 = µi,j

(→
Γ y ui,j +5xvi,j

)
, (51)

4. Along the edge GF (Equation (26)):

0 = (λ + 2µ)i,j

(←
Γ y vi,j

)
+ λi,j

(
5xui,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (52)

0 = µi,j

(←
Γ y ui,j +5xvi,j

)
, (53)

5. At the corner A (Equation (27)):

0 = (λ + 2µ)i,j

(→
Γ x ui,j

)
+ λi,j

(→
Γ y vi,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (54)

0 = (λ + 2µ)i,j

(→
Γ y vi,j

)
+ λi,j

(→
Γ x ui,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (55)

0 = µi,j

(→
Γ y ui,j+

→
Γ x vi,j

)
, (56)

6. At the corner G (Equation (27)):

0 = (λ + 2µ)i,j

(→
Γ x ui,j

)
+ λi,j

(←
Γ y vi,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (57)

0 = (λ + 2µ)i,j

(←
Γ y vi,j

)
+ λi,j

(→
Γ x ui,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (58)

0 = µi,j

(←
Γ y ui,j+

→
Γ x vi,j

)
, (59)

7. At the corner B (Equation (27)):

0 = (λ + 2µ)i,j

(←
Γ x ui,j

)
+ λi,j

(→
Γ y vi,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (60)

0 = (λ + 2µ)i,j

(→
Γ y vi,j

)
+ λi,j

(←
Γ x ui,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (61)

0 = µi,j

(→
Γ y ui,j+

←
Γ x vi,j

)
, (62)
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8. At the corner F (Equation (27)):

0 = (λ + 2µ)i,j

(←
Γ x ui,j

)
+ λi,j

(←
Γ y vi,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (63)

0 = (λ + 2µ)i,j

(←
Γ y vi,j

)
+ λi,j

(←
Γ x ui,j

)
− (3λ + 2µ)i,jαi,jT̄i,j, (64)

0 = µi,j

(←
Γ y ui,j+

←
Γ x vi,j

)
(65)

3.5. Discretization of Continuity Conditions along Interfaces

The adherend and adhesive sides of interfaces are of different material properties. In
single material regions, the finite difference discretization of Navier equations and boundary
conditions can be made easily. The bi-material interfaces result in sudden changes in the
through-thickness mechanical and thermal properties of local material. Consequently, the
thermal strains and stresses become discontinuous while the total normal strains, as well
as displacement components, are continuous.

In the infinitesimal neighborhood of bi-material interfaces, twin grid points can be
defined (Figure 3), then Navier equations and boundary conditions can be discretized with
material properties of the grid points on both sides (−,+) of interfaces in sequence, and
the predicted displacement components can be equated. Thus,

u−i,j = u+
i,j, (66)

v−i,j = v+i,j (67)

3.5.1. Internal Grid Points of Interfaces

The Navier Equation (41) can be discretized with material properties of the internal
grid points on both sides (−,+) of interfaces as

0 = 2
(
5xµi,j

)−(5xui,j
)
+
(
5yµi,j

)−(5yui,j +5xvi,j
)

+ (λ + 2µ)−i,j
(
5xxui,j

)
+ (λ + µ)−i,j

(
5xyvi,j

)
+ µ−i,j

(
5yyui,j

)
+
(
5xλi,j

)−(5xui,j +5yvi,j
)

−
(
35x λi,j + 25x µi,j

)−
α−i,jT̄i,j − (3λ + 2µ)−i,j

(
5xαi,j

)−T̄i,j,

(68)

0 = 2
(
5xµi,j

)+(5xui,j
)
+
(
5yµi,j

)+(5yui,j +5xvi,j
)

+ (λ + 2µ)+i,j
(
5xxui,j

)
+ (λ + µ)+i,j

(
5xyvi,j

)
+ µ+

i,j
(
5yyui,j

)
+
(
5xλi,j

)+(5xui,j +5yvi,j
)

−
(
35x λi,j + 25x µi,j

)+
α+i,jT̄i,j − (3λ + 2µ)+i,j

(
5xαi,j

)+T̄i,j,

(69)

respectively. In Equations (68) and (69), j + 1 is replaced by j + 2, and j− 1 by j− 2 in all
finite difference operators for the grid points along the lower and upper twins of interfaces,
respectively.

Similarly, the Navier Equation (42) can be discretized with material properties of the
internal grid points on the both sides (−,+) of interfaces as

0 =
(
5xµi,j

)−(5xvi,j +5yui,j
)
+ 2
(
5yµi,j

)−(5yvi,j
)

+ (λ + 2µ)−i,j
(
5yyvi,j

)
+ µ−i,j

(
5xxvi,j

)
+ (λ + µ)−i,j

(
5xyui,j

)
+
(
5yλi,j

)−(5xui,j +5yvi,j
)

−
(
35y λi,j + 25y µi,j

)−
α−i,jT̄i,j − (3λ + 2µ)−i,j

(
5yαi,j

)−T̄i,j,

(70)
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0 =
(
5xµi,j

)+(5xvi,j +5yui,j
)
+ 2
(
5yµi,j

)+(5yvi,j
)

+ (λ + 2µ)+i,j
(
5yyvi,j

)
+ µ+

i,j
(
5xxvi,j

)
+ (λ + µ)+i,j

(
5xyui,j

)
+
(
5yλi,j

)+(5xui,j +5yvi,j
)

−
(
35y λi,j + 25y µi,j

)+
α+i,jT̄i,j − (3λ + 2µ)+i,j

(
5yαi,j

)+T̄i,j

(71)

The displacement components ui,j and vi,j can be calculated at each twin node in the
infinitesimal neighborhood of both interfaces.

3.5.2. Grid Points at the Free Edges of Interfaces

The boundary conditions at the grid points along the free edges AG (x = 0) and BF
(x = L) of both interfaces can be implemented with the previous approach as

1. At the free edge AG of both interfaces:

σ−xx = 0 = (λ + 2µ)−i,j

(→
Γ x ui,j

)
+ λ−i,j

(
5yvi,j

)
− (3λ + 2µ)−i,jα

−
i,jT̄i,j, (72)

σ+
xx = 0 = (λ + 2µ)+i,j

(→
Γ x ui,j

)
+ λ+

i,j
(
5yvi,j

)
− (3λ + 2µ)+i,jα

+
i,jT̄i,j, (73)

σ−xy = 0 = µ−i,j

(
5yui,j+

→
Γ x vi,j

)
, (74)

σ+
xy = 0 = µ+

i,j

(
5yui,j+

→
Γ x vi,j

)
, (75)

2. At the edge BF of both interfaces:

σ−xx = 0 = (λ + 2µ)−i,j

(←
Γ x ui,j

)
+ λ−i,j

(
5yvi,j

)
− (3λ + 2µ)−i,jα

−
i,jT̄i,j, (76)

σ+
xx = 0 = (λ + 2µ)+i,j

(←
Γ x ui,j

)
+ λ+

i,j
(
5yvi,j

)
− (3λ + 2µ)+i,jα

+
i,jT̄i,j, (77)

σ−xy = 0 = µ−i,j

(
5yui,j+

←
Γ x vi,j

)
, (78)

σ+
xy = 0 = µ+

i,j

(
5yui,j+

←
Γ x vi,j

)
(79)

3.6. Solution Method

After Navier equations and the boundary conditions are discretized in the solution
region <, unknown displacement components ui,j and vi,j at each grid point (i, j) can be
calculated by implementing a recursive error reducing method.

Let uk
i,j and vk

i,j be displacement components at an iteration index k. The finite difference
representations for Navier Equations (41)–(42) and (68)–(71) and boundary conditions (46)–
(65) and (72)–(79) can be written as

ci,juk
i,j = Fk

i,j,
di,jvk

i,j = Gk
i,j

(80)

The error levels for iteration k are calculated as

erruk
i,j = Fk

i,j −
1

ci,j
uk

i,j,

errvk
i,j = Gk

i,j −
1

di,j
vk

i,j
(81)

The displacement components for iteration k + 1 are predicted as

uk+1
i,j = uk

i,j −
erruk

i,j
ci,j

,

vk+1
i,j = vk

i,j −
errvk

i,j
di,j

(82)
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The summation of errors is calculated as

SumError = ∑m
i=1 ∑n

j=1

(
erruk

i,j + errvk
i,j

)
(83)

where m and n are division numbers of the uniform grid for the region < along the
coordinate axes x and y, respectively. The loop between (80) and (83) is repeated until
SumError is reduced to a specific error level of eps = 10−8 by equating uk+1

i,j and vk+1
i,j to

uk
i,j and vk

i,j.

4. Results and Discussion

The geometry, dimensions, and boundary conditions of an aluminum single lap joint
bonded with a functionally graded adhesive are shown in Figure 1. The joint length
L = 15 mm, aluminum adherend thickness t1 = t3 = 1.5 mm, and adhesive thickness
t2 = 0.5 mm. The displacements of the left and right lower corners are fixed only in
the y−direction, and the normal and shear stresses are considered as zero along the
free edges of the adhesive joint. A constant temperature change of ∆T = 30 ◦C is as-
sumed at all grid points. The thermal and mechanical properties of adherend, micro-
sized powder, and adhesive materials are given in Table 1. The solution domain was
discretized into a mesh grid of 631 × 150 with increments of dx = dy = 0.02381 mm along
the x- and y-directions, respectively.

Table 1. Thermal and mechanical properties of the adherend, adhesive, and micro-sized particles.

Units Aluminium Al2O3 Epoxy

Modulus of elasticity E MPa 68,900.0 379,211.0 4391.43
Poisson’s ratio υ 0.33 0.19 0.34
Coefficient of thermal expansion α 1/m·K 23.58 × 10−6 7.6 × 10−6 40.47 × 10−6

Shear modulus G MPa 26,000.0 150,000.0 1638.6
Bulk modulus K MPa 67,549.0 203,876.9 4574.4

The composition of functionally graded adhesive consists of (Al2O3) micro-particles
and two-component epoxy-based adhesive mixed at specific volume fractions. The volume
fraction of micro-particles Vp through the thickness of the adhesive layer is tailored by
obeying a power rule including a gradient power index n (Equation (2)). Two grading
directions are also considered, thus, the variations of volume fraction of particles through
the adhesive thickness between a particle-rich adhesive around the lower interface and
a neat adhesive around the upper interface (PRA→NA, Figure 2a), and between a neat
adhesive around the lower interface and a particle-rich adhesive around the upper inter-
face (NA→PRA, Figure 2b), respectively. The volume fraction of particles Vp around the
particle-rich adhesive interface is limited by the maximum volume fraction of particles as
Vmax = 0.01, 0.1, 0.3 because the adhesion between adhesive and aluminum adherend has
not deteriorated. The volume fraction of particles Vp can have a desired through-thickness
form with the power index n = 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 4.0, 8.0 and 12.0 (Figure 2).

Consequently, this study aims to determine the effects of the gradient power index
n, maximum volume fraction Vmax, and grading direction through the adhesive thickness
on the adhesive strain and stress distributions induced by a uniform temperature change
through the adhesive joint and on reliving their critical levels. The thermal stress analyses
were carried out for various maximum volume fractions of particles and power index
values. The strain and stress components exhibited almost similar distributions except
for their levels of low-volume fractions of particles. The left and right free edges of the
adhesive layer appeared as symmetrical stress and strain concentration regions. Therefore,
the distributions of strain and stress components will be discussed via their contour plots.

Figures 4–6 show the effects of the power index (n) and the maximum volume fraction
of particles (Vmax) on the distributions of strain εij(x, y) and stress σij(x, y) components
around the left free ends of both lower and upper interfaces of a functionally graded
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adhesive layer. The normal strain εxx concentrates around the lower and upper adhesive
interfaces, propagates towards the overlapping center, and decreases uniformly (Figure 4).
A graded variation of normal strain appears, especially in the vicinity of both interfaces. The
free edges of the adhesive layer undergo higher normal strain levels than two adherends
because the overall coefficient of thermal expansion of adhesive composition is larger than
those of aluminum adherends. Similar symmetrical distributions also appear around the
right-hand sides of both interfaces. The general form of distributions is not affected by the
power index n for a low maximum volume fraction (Vmax = 0.01), while its effect becomes
more apparent for a through-thickness quite particle-rich composition (Vmax = 0.3). The
normal strain levels decrease as the adhesive is enriched by particles through the adhesive
thickness (n = 1.0→ 12). Thus, the higher strain levels occur around the free end of the
upper interface and in the vicinity of this interface. The normal strain decreases slightly
through the adhesive thickness towards the vicinity of the lower interface. The normal
strain distribution exhibits a dependency on the through-thickness variation of particles
in the adhesive composition. The normal stress σxx concentrates in the vicinity of both
interfaces and exhibits discontinuous distributions at different levels on the adherend and
adhesive sides of interfaces (Figure 4). The normal stress levels in the adhesive layer are
rather lower than in the adherends because aluminum adherends are of higher modulus
than the adhesive composition. The normal stress distribution and levels remain similar
for a low maximum volume fraction of particles (0.01), and the effect of the power index is
negligible. The power index has a more apparent effect on the normal stress distributions
and levels for a high volume fraction of particles (0.3). Namely, the higher stress levels
occur on the adherend side in the vicinity of the neat adhesive–upper adherend interface in
comparison with those around the particle-rich adhesive–lower adherend interface as the
adhesive is enriched by particles through its thickness.

Vmax = 0.01 Vmax = 0.3
εxx(x, y) σxx(x, y) εxx(x, y) σxx(x, y)

n
=

0.
1

n
=

1.
0

n
=

12
.0

Figure 4. Effects of the gradient power index (n) and the maximum volume fraction of particles
(Vmax) on the normal strain εxx(x, y) and stress σxx(x, y) distributions around the left free-end of the
PRA→ NA functionally graded adhesive layer and interfaces.
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Vmax = 0.01 Vmax = 0.3
εyy(x, y) σyy(x, y) εyy(x, y) σyy(x, y)

n
=

0.
1

n
=

1.
0

n
=

12
.0

Figure 5. Effects of the gradient power index (n) and the maximum volume fraction of particles
(Vmax) on the normal strain εyy(x, y) and stress σyy(x, y) distributions around the left free-end of the
PRA→ NA functionally graded adhesive layer and interfaces.

The normal strain εyy exhibits similar distributions; thus, the concentration zones
appear around the free edges of the adhesive layer and both adhesive interfaces, and
then continuously relieve through the adherend and adhesive regions neighboring to the
interfaces towards the center of overlap region (Figure 5). Especially, the concentration
regions around the free ends of the adhesive layer expand through the adhesive thickness
towards the center of the overlap region. The normal strain decreases along a symmetrical
diffusing band-form region on the adherend sides of two interfaces. The normal strain
levels are higher in the adhesive layer because the adhesive layer is of a larger overall
coefficient of thermal expansion. The distribution manner and levels of the normal strain
εyy around the free edges of the adhesive layer, and both interfaces are not affected notably
by the power index for a low maximum volume fraction of particles (0.01). The power index
becomes more effective on the normal strain distributions and levels for a high volume
fraction of particles (0.3). Namely, the strain concentration zone at the adhesive-free edge
gets narrower towards the free end of the upper neat adhesive–adherend interface, and
occurs in the vicinity of this interface towards the center of the overlap region. In addition,
the diffusing zone in the upper adherend becomes more apparent in comparison with
those in the lower adherend as the adhesive is enriched by particles through its thickness.
The normal stress σyy exhibits concentration zones with discontinuous distributions in
the vicinity of both interfaces and different levels on the adherend and adhesive sides
of interfaces (Figure 5). The normal stress levels in the adhesive layer are rather lower,
whereas the adherend regions neighboring both interfaces undergo higher stress levels
diffusing towards the center of the overlap region and through adherend thickness. The
normal stress distribution and levels remain similar, and the effect of the power index is
negligible for a low maximum volume fraction of particles (0.01). However, the power
index affects evidently the normal stress distributions and levels only for a high volume
fraction of particles (0.3). The higher tensile stress levels occur on the adherend side in the



Math. Comput. Appl. 2023, 28, 82 15 of 27

vicinity of the neat adhesive–upper adherend interface, whereas the higher compressive
stress levels occur on the adherend side in the vicinity of the particle-rich adhesive–lower
adherend interface. The high-stress levels relieve considerably in these concentration zones
as the adhesive is enriched by particles through its thickness.

Vmax = 0.01 Vmax = 0.3
εxy(x, y) σxy(x, y) εxy(x, y) σxy(x, y)

n
=

0.
1

n
=

1.
0

n
=

12
.0

Figure 6. Effects of the gradient power index (n) and the maximum volume fraction of particles
(Vmax) on the shear strain εxy(x, y) and stress σxy(x, y) distributions around the left free-end of the
PRA→ NA functionally graded adhesive layer and interfaces.

The shear strain εxy concentrates in the neighborhood of both interfaces except their
free edges (Figure 6). A narrow concentration zone initiates at a small distance from the
free ends of both interfaces and expands through the adherend and adhesive thicknesses.
The shear deformations occur symmetrically but in opposite directions along the lower and
upper interfaces. The power index has a negligible effect on both distribution manner and
levels of the shear strain εxy around the free edges of the adhesive layer and both interfaces
for a low maximum volume fraction of particles (0.01), whereas this effect becomes apparent
on the shear strain distributions and levels for a high volume fraction of particles (0.3). Thus,
the symmetrical concentration zones near both interfaces degenerate, and the shear strain
levels around the neat adhesive–upper adherend interface reach partly higher levels, and
the shear strain levels decrease as the through-thickness adhesive composition is enriched
by particles. The neat adhesive interface forces the neighboring zones of both adhesive and
adherend to more deformation in shear due to its tendency to a larger thermal expansion.
The shear stress σxy concentrations occur in the neighborhood of both interfaces except their
free edges and exhibit a discontinuous distribution along both interfaces (Figure 6). The
adherend side experiences higher shear stresses than those on the adhesive side. The shear
strain and stress distributions are conformable. The effect of the power index becomes
apparent on the shear stress σxy distributions and levels in the regions near both interfaces
only for a high volume fraction of particles (0.3). The symmetrical concentration zones near
both interfaces become smaller towards the free ends of both interfaces, and the shear stress
levels decrease as the through-thickness adhesive composition is enriched by particles.
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The shear stress is also as critical as the normal stresses. In general, a ductile adhesive
composition is expected to tend to damage in shear.

In case an adhesive single lap joint is subjected to a uniform temperature distribution,
the strain and stress components concentrate in the neighborhood of adherend–adhesive
interfaces and around their free edges. They also decrease uniformly along the interfaces
towards the center of the overlap region. The normal and shear strain components exhibit
grading distributions along both bi-material interfaces, whereas the normal and shear
stresses are of a discontinuous nature. Since the adhesive material is generally assumed to
be a material of lower strength than adherends; hereafter, the evaluation of normal/shear
strain and stress distributions around the free edges of the adhesive layer is in evidence as
a more convenient way.

Figures 7–9 show the effects of both gradient power index (n) and maximum volume
fraction of particles (Vmax) on the distributions of strain εij(x, y) and stress σij(x, y) compo-
nents around the left free end of a functionally graded adhesive layer. The normal strain
εxx distributions are symmetrical with respect to the adhesive mid-line (Figure 7) for a low
maximum volume fraction of particles (0.01). The high normal strain levels occur in a large
adhesive zone in the vicinity of adhesive mid-line from at a small distance from the free
ends of both interfaces and decrease uniformly towards the center of the overlap region.
The power index exhibits a negligible effect on the normal strain distribution and levels for
a low maximum volume fraction of particles. Increasing the maximum volume fractions
of particles makes the effect of the power index to become more apparent. As the power
index is increased, namely, the through-thickness adhesive composition is enriched by
particles, the symmetrical distribution of normal strain disappears, and the concentration
region contracts towards the neat adhesive–upper adherend interface. This indicates a
reduced overall thermal expansion of remaining adhesive regions enriched by particles.
The normal stress σxx acts in compression and is negligible near the adhesive-free ends. It
increases through a limited expanding adhesive region towards the center of the overlap
region in a symmetrical manner with respect to the adhesive mid-line (Figure 7) for a low
maximum volume fraction of particles. In addition, the adhesive regions near the interfaces
experience higher compressive stress levels. As the local adhesive composition through
the adhesive thickness is enriched by particles, the power index has a negligible effect
on the normal stress distribution and levels. However, a high maximum volume fraction
of particles reveals the effect of the power index. The normal stress distribution is not
symmetrical anymore with respect to the adhesive mid-line, and a larger adhesive region
undergoes lower stress levels. The adhesive regions near the neat adhesive–adherend
interface experience still higher compressive stress levels while the stress levels decrease
apparently in the adhesive regions near the lower particle-rich adhesive–adherend interface
with increasing power index.

The normal strain εyy distributions are also symmetrical with respect to the adhesive
mid-line and concentrate around the free ends of the adhesive layer, lower and upper
interfaces. It decreases uniformly towards the center of the overlap region (Figure 8). The
remaining adhesive regions undergo lower normal strain levels. For a low maximum
volume fraction of particles, the power index is of a small effect on the normal strain
distribution and levels. The symmetrical distribution with respect to the adhesive mid-line
disappears, and the high strain concentration zones distribute from the adhesive mid-line
towards the free end of neat adhesive–upper adherend interface for a high maximum
volume fraction of particles (0.3). The power index affects also the through-thickness
variation of normal strain; thus, the normal strain levels are formed depending on the
variation of volume fraction of particles through the adhesive thickness, and the strain
concentration zone contracts around the free end of the neat adhesive–upper adherend
interface. The adhesive zones near the neat adhesive–upper adherend interface experience
higher normal strain levels and decrease uniformly towards the particle-rich adhesive–
lower adherend interface. The normal stress σyy distributions (Figure 8) also conform with
those of the normal strain εyy. The adhesive layer undergoes compressive stresses except
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for the adhesive-free edge. Symmetrical distribution of normal stress appears with respect
to the adhesive mid-line for a low maximum volume fraction of particles. The power
index has a negligible effect on both normal stress distribution and levels. However, the
lower normal stress zones around the adhesive free end contract around the free end of
the neat adhesive–upper adherend interface as the local adhesive composition through
the adhesive thickness is enriched by particles for a higher maximum volume fraction of
particles (0.3). The power index is more effective on the normal stress distribution and
levels. The remaining adhesive regions undergo compressive stresses, which increase
uniformly towards the free end of the particle-rich adhesive–lower adherend interface,
while the normal stress levels increase slightly because Al2O3 particles with high modulus
improve the overall modulus of the local adhesive composition.

Vmax = 0.01 Vmax = 0.3
εxx(x, y) σxx(x, y) εxx(x, y) σxx(x, y)

n
=

0.
1

n
=

1.
0

n
=

12
.0

Figure 7. Effects of the gradient power index (n) and the maximum volume fraction of particles
(Vmax) on the normal strain εxx(x, y) and stress σxx(x, y) distributions around the left free-end of the
PRA→ NA functionally graded adhesive layer.

The shear strain εxy is of a symmetrical distribution with respect to the adhesive mid-
line, which concentrates on the free ends of the lower and upper interfaces and expands
uniformly through the adhesive regions near both interfaces towards the adhesive mid-line
and the center of overlap region (Figure 9). The shear strain acts in opposite directions
in the upper and lower adhesive portions. The remaining adhesive regions towards the
center of the overlap region undergo negligible shear strain distributions. For a low
maximum volume fraction of particles, the power index has a negligible effect on the shear
strain distribution and levels, whereas a higher maximum volume fraction of particles
(0.3) affects both shear strain distribution and levels. Namely, as the through-thickness
adhesive composition is enriched by particles, the symmetrical distribution of shear strain
degenerates fully, the high shear strain region in the adhesive upper portion contracts a
narrower adhesive region near the upper neat adhesive–adherend interface and expands
along the neighborhood of this interface towards the center of the overlap region. The
shear strain levels also decrease uniformly, and its distribution is formed according to the
variation of particle volume fraction through the adhesive thickness. The shear stress σxy
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exhibits a symmetrical distribution with respect to the adhesive mid-line, concentrates
around the free ends of the lower and upper interfaces, and high shear stress regions
expand through the adhesive thickness uniformly towards the adhesive mid-line (Figure 9).
The shear stress acts in opposite directions in the upper and lower adhesive portions. A
large of the remaining overlap region experiences negligible shear stress levels. The shear
stress distributions are less critical than those of two normal stress components. For a low
maximum volume fraction of particles (0.01), the power index has a negligible effect on the
shear stress distribution and levels. A higher maximum volume fraction of particles results
in the effect of the power index becoming more apparent in the shear stress distribution and
levels. Namely, the symmetrical shear stress distribution disappears, and the shear stresses
in the particle-rich adhesive regions become more apparent. As the adhesive composition
is enriched by particles, the shear stress levels decrease uniformly.

Vmax = 0.01 Vmax = 0.3
εyy(x, y) σyy(x, y) εyy(x, y) σyy(x, y)
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0

n
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12
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Figure 8. Effects of the gradient power index (n) and the maximum volume fraction of particles
(Vmax) on the normal strain εyy(x, y) and stress σyy(x, y) distributions around the left free-end of the
PRA→ NA functionally graded adhesive layer.

The free ends of the adhesive layer and the vicinities of the two interfaces appear as
critical adhesive regions due to the high normal and shear strains. Therefore, the probable
initiation of damage can be expected in these regions. The through-thickness distribution
and levels of strain and stress components are also formed depending on the variation of
particle volume fraction through the adhesive thickness. However, the effect of the power
index becomes negligible, especially for a lower maximum volume fraction of particles. In
order to determine the effects of the maximum volume fraction of particles Vmax limiting the
number of particles in the local adhesive composition and the power index n tailoring the
variation of volume fraction of particles Vp through the adhesive thickness the variations
of stress and strain components were evaluated along the upper aluminum adherend and
lower aluminum adherend–adhesive interfaces (adhesive sides) and the adhesive mid-
line. A grading direction was designated from the particle-rich adhesive–lower adherend
interface to the neat adhesive–upper adherend interface.
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Vmax = 0.01 Vmax = 0.3
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Figure 9. Effects of the gradient power index (n) and the maximum volume fraction of particles
(Vmax) on the shear strain εxy(x, y) and stress σxy(x, y) distributions around the left free-end of the
PRA→ NA functionally graded adhesive layer.

The normal strain εxx increases uniformly from low levels in the center of the overlap
region towards the free edges of the adhesive layer and becomes peak near the free edges
(Figure 10). Similar variations appear along the lower and upper interfaces and the adhesive
mid-line for all power index values. The normal strain levels are lower along both interfaces
than those along the adhesive mid-line. The normal stress σxx acts in compression and
remains at high levels in a large overlap region and decreases towards the free edges
of the adhesive layer, and then reaches zero levels (Figure 10). The effect of the power
index becomes apparent on the normal strain and stress levels only for a high maximum
volume fraction of particles, namely, the normal strain variations along the interfaces
and adhesive mid-line are similar, but their levels decrease with increasing power index.
The neat adhesive–upper adherend interface experiences higher normal stresses than
the particle-rich adhesive–lower adherend interface. The power index affects normal
stress levels rather than variation forms. The normal stress levels increase partly with
increasing power index (enriched adhesive composition by particles) and decrease through
the adhesive thickness from the neat adhesive–upper adherend interface to the particle-rich
adhesive–lower adherend interface.

The normal strain εyy exhibits almost high levels in a large overlap region and de-
creases towards the free edges of the adhesive layer and then reaches peak levels suddenly
at the free edges (Figure 11). Even though a similar behavior is observed along both in-
terfaces and adhesive mid-line, the variation form remains similar, but the normal strain
levels along the interfaces are partly higher. For a higher maximum volume fraction of
particles (0.3), enriching the adhesive composition by particles results in apparent changes
in normal strain levels rather than their variation forms, especially along the adhesive
mid-line and the particle-rich adhesive–lower adherend interface. The normal strain εyy
is more critical in a large overlap region in comparison to the adhesive-free edges. The
normal stress σyy acts in compression and exhibits similar variations along the lower and
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upper interfaces and the adhesive mid-line, stays uniform at higher levels in a large overlap
region and decreases uniformly towards the adhesive-free edges (Figure 11). The power
index exhibits a negligible effect on the normal stress variations and levels for a low maxi-
mum volume fraction of particles. However, its influence becomes evident in the variation
form and levels of normal stress, especially along the lower and upper interfaces, as the
through-thickness adhesive composition is enriched by particles for a high maximum
volume fraction of particles. A particle-rich adhesive composition variation results in lower
normal strains but higher normal stresses.

Vmax = 0.01 Vmax = 0.3
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Figure 10. Effects of the gradient power index (n) and the maximum volume fraction of particles
(Vmax) on the normal strain εxx(x, y) and stress σxx(x, y) variations along (a) the upper interface,
(b) the mid-line and (c) the lower interface of the PRA→ NA functionally graded adhesive layer.

The shear strain εxy is uniform at negligible levels in a large overlap region and
increases suddenly in the vicinity of the adhesive-free edges, and then decreases to zero
levels at the adhesive-free edges (Figure 12). A symmetrical variation appears with respect
to the center of the overlap region but in the opposite sense along both interfaces and
adhesive mid-line. The lower and upper interfaces are of similar variations and levels but in
the opposite sense. The shear strain exhibits a uniform increase along the adhesive mid-line
in the center of the overlap region. In general, the power index and the maximum volume
fraction of particles have a minor influence on the variations and levels of shear strain
along both interfaces and adhesive mid-line. However, the peak values at the positions
near the adhesive-free edges decrease with increasing power index. The shear stress σxy
has a symmetrical variation but in the opposite sense along both interfaces and adhesive
mid-line with respect to the center of overlap region (Figure 12). It remains uniform at
negligible levels in a large of overlap region and increases suddenly in the vicinity of the
adhesive-free edges, and then becomes negligible at the adhesive-free edges. Both lower
and upper interfaces experience similar variations and levels but in the opposite sense.
The power index and the maximum volume fraction of particles have a negligible effect
on the various forms and levels of shear stress. However, for a higher maximum volume
fraction of particles (0.3), the peak shear stress levels at the positions near adhesive-free
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edges decrease uniformly as the through-thickness adhesive composition is enriched by
particles depending on the power index value.
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Figure 11. Effects of the gradient power index (n) and the maximum volume fraction of particles
(Vmax) on the normal strain εyy(x, y) and stress σyy(x, y) variations along (a) the upper interface,
(b) the mid-line and (c) the lower interface of the PRA→ NA functionally graded adhesive layer.

The thermal strain and stress states occurring in an adhesive composition with a low
volume fraction of particles are influenced negligibly by the through-thickness grading
manner under a uniform temperature field. However, the free edges of the adhesive layer
experience high axial and shear strain and stress levels, whereas the transverse strain and
stress become apparent in a large overlap region. As the adhesive composition is enriched
by particles at high volume fraction, the power index becomes more influential on the
strain and stress levels rather than their variation forms.

Figure 13 shows the effects of power index, the maximum volume fraction of particle,
and grading direction on the through-thickness variations and levels of strain components
εij at the left free edge of adhesive layer (x = 0). The normal strain εxx remains uniform at
high levels in the vicinity of the adhesive mid-line, decreases uniformly towards both inter-
faces, and becomes minimum at both interfaces. An almost symmetrical through-thickness
variation appears with respect to the adhesive mid-line. The power index influences only
the normal strain levels rather than the variation manner, especially in a large region
around the adhesive mid-line. As the through-thickness adhesive composition is enriched,
the high normal strain levels reduce partly (increasing power index). In the case of an
opposite grading direction, the general behavior of normal strain is the same as that in the
previous grading direction. As the adhesive composition is enriched by particles at a higher
volume fraction, the power index becomes more influential on both the strain variation
and levels. Thus, the normal strain levels are uniform and maximum in a large region
near the adhesive mid-line and become minimum at two interfaces. The through-thickness
variation of normal strain is formed by the power index value. As the adhesive composition
is enriched by particles, the normal strain levels decrease and become more uniform. The
grading direction has a negligible effect on the variation form and levels of the normal
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strain, and only turns down the normal strain variations between two interfaces. The
normal strain εyy is at uniform low levels in the adhesive region near the adhesive mid-line,
increases uniformly from very near positions to both interfaces, becomes peak, and then
decreases suddenly. However, its through-thickness variation is not symmetrical with
respect to the adhesive mid-line on the contrary to that of the normal strain εxx, namely
the adhesive zones near the neat adhesive–upper adherend interface experience higher
normal strain levels. The power index has an effect on the normal strain levels rather than
the through-thickness variation form for a lower maximum volume fraction of particles.
An opposite grading direction does not influence the general behavior of normal strain, it
turns down only the normal strain variations between two interfaces. However, both the
levels and various forms of the normal strain change apparently depending on the power
index value for a higher maximum volume fraction of particles (0.3). The shear strain εxy
becomes peak at both interfaces by increasing suddenly from uniform negligible levels in a
large middle region through the adhesive thickness. The shear strain acts in the opposite
sense in the adhesive regions near both interfaces. This response at the free ends of both
interfaces arises due to the incompatible mechanical and thermal properties of bi-material
interfaces. The variation and level of shear strain are not influenced by the power index for
a low maximum volume fraction of particles, whereas the shear strain levels in the adhesive
zones near both interfaces increase slightly for particle-enriched adhesive compositions. In
addition, the grading direction does not influence the through-thickness variation of shear
strain at the adhesive-free edge.
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Figure 12. Effects of the gradient power index (n) and the maximum volume fraction of particles
(Vmax) on the shear strain εxy(x, y) and stress σxy(x, y) variations along (a) the upper interface,
(b) the mid-line and (c) the lower interface of the PRA→ NA functionally graded adhesive layer.
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Figure 13. Effects of the gradient power index (n), the maximum volume fraction of particles (Vmax)

and the grading direction on (a) the normal strain εxx, (b) the normal strain εyy and (c) the shear
strain εxy variations at the left free end (x = 0) of the functionally graded adhesive layer.

Figure 14 shows the effects of power index, the maximum volume fraction of particle,
and grading direction on the through-thickness variations and levels of normal and shear
stress components σij at the left free edge of adhesive layer (x = 0). The normal stress σxx
and shear stress σxy are negligible at the free edge due to the zero-stress condition at the
free edge. However, a sudden change near both interfaces appears due to the continuity
conditions along the interfaces. The normal stress σyy is uniform in the middle region of
adhesive thickness and decreases towards a position near the interfaces, and then becomes
maximum here by increasing towards both interfaces. The power index exhibits an evident
influence on the through-thickness variation and levels of normal stress σyy for only a high
maximum volume fraction of particles (0.3). As the local adhesive composition is enriched
by particles, the stress levels decrease and become more uniform. The adhesive zones
near the particle-rich adhesive–lower adherend interface experience higher stresses. The
grading direction can only upturn the through-thickness variations of stress components,
whereas the general trend of stress variations remains the same.

As a result, the different mechanical and thermal properties of adherend and adhesive
materials in a single lap joint result in thermal stresses in both adherends and adhesive
layer under a uniform temperature field. The thermal conductivity of the adhesive layer
can be improved by mixing Al2O3 particles, and the larger coefficient of thermal expansion
of the adhesive layer, which is the main reason for incompatible-thermal strain, can be
reduced by tailoring the adhesive composition. The adherend–adhesive interfaces exhibit
sharp discontinuous thermal stresses. The discontinuous nature of thermal strains along
bi-material interfaces can be smoothed by the power index. The free edges of the adhesive
layer are critical due to the occurrence of high normal/shear strains and stresses. The
gradient power index, which controls through-thickness volume fraction variation of
particles, can influence the distribution and levels of strain and stress components only
for a sufficiently high volume fraction of particles. The grading direction of the volume
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fraction of particles in the adhesive layer is not influential because the temperature field
is uniform, it can only reverse the low and high strain and stress regions because the
neat adhesive–adherend interface and the particle-rich adhesive–adherend interface are
relocated.
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Figure 14. Effects of the gradient power index (n), the maximum volume fraction of particles (Vmax)

and the grading direction on (a) the normal stress σxx, (b) the normal stress σyy and (c) the shear
stress σxy variations at the left free end (x = 0) of the functionally graded adhesive layer.

5. Conclusions

The thermal stress analyses of an aluminum single lap joint bonded with a through-
thickness functionally graded adhesive layer subjected to a uniform temperature field
show that:

• A uniform temperature field causes both adherends and adhesive layers to experience
apparent deformation and thermal stress states due to the mismatches of thermal and
mechanical properties of aluminum and neat or particle-reinforced adhesives.

• The normal (xx) and shear (xy) components of strain and stress remain uniform at
very low levels in a large overlap region and reach peak levels around/at the free
edges of Al2O3 reinforced adhesive layer, whereas a large of overlap region undergoes
still high normal strain and stress components (yy).

• In order to control the deformation and stress states induced by a uniform tempera-
ture field, a functionally graded material concept was implemented. However, the
influence of the gradient power index, which tailors the through-thickness variation
of the volume fraction of Al2O3 particles, becomes apparent only for a sufficiently
high volume fraction of particles.

• An excessive volume fraction of particles is not desired because the adhesion qual-
ity between adherend and particle-reinforced adhesive, namely, interfacial bonding
strength, is deteriorated. In this respect, the volume fraction of particles is recom-
mended to limit a reliable range of 0.01 and 0.1.
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• The grading direction through the adhesive thickness between the neat adhesive–
adherend interface and the particle-rich adhesive–adherend interface has a small
influence on the variations of total strain and thermal stress components, and can
partly affect only their levels because the temperature field is uniform. In the case
of a nonuniform temperature field induced by a constant/variable applied heat flux,
the effect of grading direction needs to be investigated for a large range of volume
fractions of particles.
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Abbreviations
The following abbreviations are used in this manuscript:

Al2O3 aluminum oxide
FGM functionally graded material
NA neat adhesive
PRA Al2O3 particle-rich adhesive
a, p adhesive, particle
dx, dy increments between two neighbour grid points along

the x- and y-directions
eps specified error level
erru, errv the differences of the calculated values of displacement components

at iteration steps k + 1 and k
i, j indices of grid point along the x- and y-directions
k iteration index
n gradient power index
SumError the total differences of the calculated values of displacement

components at iteration step k + 1 and k
t1, t3 lower and upper adherend thicknesses
t2 adhesive thickness
ui, u, v displacement components along the x- and y-directions
xi, x, y spatial coordinate variables
ȳ the position relative to the lower adhesive interface
E modulus of elasticity
G, Ga, Gp shear modulus (mixture, adhesive, particle)
H joint height
K, Ka, Kp bulk modulus (mixture, adhesive, particle)
L adherend and adhesive (joint) length
T, T0, Tre f temperature
T̄ temperature difference
Va, Vp volume fractions of adhesive and particles
Vmax maximum volume fractions of particles
α, αa, αp coefficient of thermal expansion (mixture, adhesive, particle)
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ψ(x, y) a continuous, differentiable two-variable function
δij kronocker delta
λ, µ Lamé’s constants
5x, 5y the central-difference operator of first-order partial derivative
5xx, 5yy, 5xy the central-difference operator of second-order partial derivative
Γx, Γy the central-difference operator of first-order partial derivative
Γxx, Γyy the central-difference operator of second-order partial derivative
σij stress components
εij strain components
εv, εnn volumetric strain
ν Poisson’s ratio
→, ← forward and backward sense
−, + lower and upper sides of adhesive interfaces
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