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1. Introduction

The study of the Laplacian on manifolds has been a very successful area of mathemati-
cal analysis for over a century, combining ideas from topology, geometry, probability theory
and harmonic analysis. A comparatively new development is the theory of a Laplacian for
certain types of naturally occurring fractals, see [1–7], to name but a few. A particularly
well-known example is the following famous set.

Definition 1. The Sierpiński triangle T ⊂ R2 (see Figure 1a) is the smallest non-empty compact
set such that

⋃3
i=1 Ti(T) = T where T1, T2, T3 : R2 → R2 are the affine maps

T1(x, y) =
( x

2
,

y
2

)
T2(x, y) =

(
x
2
+

1
2

,
y
2

)
T3(x, y) =

(
x
2
+

1
4

,
y
2
+

√
3

4

)
.

In the literature, this set is also often referred to as the Sierpiński gasket, and denoted SG2.

A second object which will play a role is the following infinite graph:

Definition 2. Let V0 = {(0, 0), (1, 0), ( 1
2 ,
√

3
2 )} be the set of vertices of T and define

Vn =
⋃3

i=1 Ti(Vn−1). Furthermore, fix a sequence ω = (ωn)n∈N ⊂ {1, 2, 3}N, and let

V∞ =
∞⋃

i=1

Vn with Vn = T−1
ω1
◦ · · · ◦ T−1

ωn (Vn),

where we use the inverses

T−1
1 (x, y) = (2x, 2y) T−1

2 (x, y) = (2x− 1, 2y)

T−1
3 (x, y) =

(
2x− 1

2
, 2y−

√
3

2

)
.
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The definition of V∞ depends on the choice of ω; however, as will be explained below, the
relevant results do not, allowing us to omit the dependence in our notation. The points in V∞

correspond to the vertices of an infinite graph L called a Sierpiński lattice, for which the edges
correspond to pairs of vertices (v, v′), with v, v′ ∈ V∞ such that ‖v− v′‖2 = 1 (see Figure 1b).
Equivalently, L has an edge (v, v′) if and only if

v, v′ ∈ T−1
ω1
◦ · · · ◦ T−1

ωn ◦ Tin ◦ · · · ◦ Ti1(V0)

for some i1, . . . , in ∈ {1, 2, 3}, n > 0.

(a) (b) (c)

Figure 1. (a) The standard Sierpiński triangle T; (b) The Sierpiński lattice L; and (c) The infinite
Sierpiński triangle T∞.

Finally, we will also be interested in infinite Sierpiński gaskets, which can be defined
similarly to Sierpiński lattices as follows.

Definition 3. For a fixed sequence ω = (ωn)n∈N, we define an infinite Sierpiński gasket to be
the unbounded set T∞ given by

T∞ =
∞⋃

n=0
Tn, with Tn = T−1

ω1
◦ · · · ◦ T−1

ωn (T),

which is a countable union of copies of the standard Sierpiński triangle T (see Figure 1c). As for
Sierpiński lattices, the definition of T∞ depends on the choice of ω, but we omit this dependence in
our notation as the cited results hold independently of it.

The maps T1, T2 and T3 are similarities on R2 with respect to the Euclidean norm, and
more precisely

‖Ti(x1, y1)− Ti(x2, y2)‖2 =
1
2
‖(x1, y1)− (x2, y2)‖2

for (x1, y1), (x2, y2) ∈ R2 and i = 1, 2, 3, and thus by Moran’s theorem the Hausdorff
dimension of T has the explicit value dimH(T) =

log 3
log 2 [8]. We can easily give the Haus-

dorff dimensions of the other spaces. It is clear that dimH(L) = 1, and since an infinite
Sierpiński gasket T∞ consists of countably many copies of T, it follows that we also have
dimH(T

∞) =
log 3
log 2 .

In this note, we are concerned with other fractal sets closely associated with the infinite
Sierpiński gasket T∞ and the Sierpiński lattice L, for which the Hausdorff dimensions are
significantly more difficult to compute.

In Section 2, we will describe how to associate to T a Laplacian ∆T which is a linear
operator defined on suitable functions f : T → R. An eigenvalue λ > 0 for −∆T on the
Sierpiński triangle is then a solution to the basic identity

∆T f + λ f = 0.
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The spectrum σ(−∆T) ⊂ R+ of−∆T is a countable set of eigenvalues. In particular, its
Hausdorff dimension satisfies dimH(σ(−∆T)) = 0. A nice account of this theory appears
in the survey note of Strichartz [6] and their book [9].

By contrast, in the case of the infinite Sierpiński gasket and the Sierpiński lattice, there
are associated Laplacians, denoted ∆T∞ and ∆L, respectively, with spectra σ(−∆T∞) ⊂ R+

and σ(−∆L) ⊂ R+, which are significantly more complicated. In particular, their Hausdorff
dimensions are non-zero and therefore their numerical values are of potential interest.
However, unlike the case of the dimensions of the original sets T∞ and L, there is no clear
explicit form for this quantity. Fortunately, using thermodynamic methods we can estimate
the Hausdorff dimension (which in this case equals the Box counting dimension, as will
become apparent in the proof) numerically to very high precision.

Theorem 1. The Hausdorff dimension of σ(−∆T∞) and σ(−∆L) satisfy

dimH(σ(−∆T∞)) = dimH(σ(−∆L)) = 0.55161856837246 . . .

A key point in our approach is that we have rigorous bounds, and the value in the
above theorem is accurate to the number of decimal places presented. We can actually
estimate this Hausdorff dimension to far more decimal places. To illustrate this, in the final
section we give an approximation to 100 decimal places.

It may not be immediately evident what practical information the numerical value
of the Hausdorff dimension gives about the sets T∞ and L but it may have the potential
to give an interesting numerical characteristic of the spectra. Beyond pure fractal geom-
etry, the spectra of Laplacians on fractals are also of practical interest, for instance in the
study of vibrations in heterogeneous and random media, or the design of so-called fractal
antennas [10,11].

We briefly summarize the contents of this note. In Section 2 we describe some of
the background for the Laplacian on the Sierpiński graph. In particular, in Section 2.3 we
recall the basic approach of decimation which allows σ(∆T) to be expressed in terms of a
polynomial RT(x). Although we are not directly interested in the zero-dimensional set
σ(−∆T), the spectra σ(−∆T∞) and σ(−∆L) actually contain a Cantor set JT ⊂ [0, 5], the
so-called Julia set associated with the polynomial RT(x).

As one would expect, other related constructions of fractal sets have similar spectral
properties and their dimension can be similarly studied. In Section 3 we consider higher-
dimensional Sierpiński simplices, post-critically finite fractals, and an analogous problem
where we consider the spectrum of the Laplacian on infinite graphs (e.g., the Sierpiński
graph and the Pascal graph). In Section 4, we recall the algorithm we used to estimate the
dimension and describe its application. This serves to both justify our estimates and also to
use them as a way to illustrate a method with wider applications.

2. Spectra of the Laplacians
2.1. Energy Forms

There are various approaches to defining the Laplacian ∆T on T. We will use one of
the simplest ones, using energy forms.

Following Kigami [2], the definition of the spectrum of the Laplacian for the Sierpiński
gasket T involves a natural sequence of finite graphs Xn with

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂
⋃
n

Xn ⊂
⋃
n

Xn =: T,

the first three of which are illustrated in Figure 2. To this end, let

V0 =

{
(0, 0), (1, 0),

(
1
2

,

√
3

2

)}
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be the three vertices of X0. The vertices of Xn can be defined iteratively to be the set of
points satisfying

Vn = T1(Vn−1) ∪ T2(Vn−1) ∪ T3(Vn−1) for n > 1.

X0 X1 X2

Figure 2. The first three graphs for the Sierpiński triangle.

We denote by `2(Vn) (for n > 0) the real valued functions f : Vn → R (where the
`2 notation is used for consistency with the infinite-dimensional case despite having no
special significance for finite sets).

Definition 4. To each of the finite graphs Xn (n > 0) we can associate bilinear forms En : `2(Vn)×
`2(Vn)→ R called self-similar energy forms given by

En( f , g) = cn ∑
x∼ny

( f (x)− f (y))(g(x)− g(y)), (1)

where x, y ∈ Vn are vertices of Xn, and x ∼n y denotes neighboring edges in Xn. In particular,
x ∼n y precisely when there exists x′, y′ ∈ Vn−1 and i ∈ {1, 2, 3} such that x = Ti(x′) and
y = Ti(y′). The value cn > 0 denotes a suitable scaling constant. With a slight abuse of notation,
we also write En( f ) := En( f , f ) for the corresponding quadratic form `2(Vn)→ R.

To choose the values cn > 0 (for n > 0), we want the sequence of bilinear forms
(En)∞

n=0 to be consistent by asking that for any fn−1 : Vn−1 → R (for n > 1) we have

En−1( fn−1) = En( fn),

where fn : Vn → R denotes an extension which satisfies

(a) fn(x) = fn−1(x) for x ∈ Vn−1; and
(b) fn satisfying (a) minimizes En( fn) (i.e., En( fn) = min f∈`2(Vn)

En( f )).

The following is shown in [9], for example.

Lemma 1. The family (En)∞
n=0 is consistent if we choose cn =

( 5
3
)n in (1).

The proof of this lemma is based on solving families of simultaneous equations arising
from (a) and (b). We can now define a bilinear form for functions on T using the consistent
family of bilinear forms (En)∞

n=0.

Definition 5. For any continuous function f : T → R we can associate the limit

E( f ) := lim
n→+∞

En( f ) ∈ [0,+∞]

and let dom(E) = { f ∈ C(T) : E( f ) < +∞}.
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Remark 1. We can consider eigenfunctions f ∈ dom(E) which satisfy Dirichlet boundary condi-
tions (i.e., f |V0 = 0).

2.2. Laplacian for T

To define the Laplacian ∆T , the last ingredient is to consider an inner product defined
using the natural measure µ on the Sierpiński triangle T.

Definition 6. Let µ be the natural measure on T such that

µ
(
Ti1 ◦ · · · ◦ Tin co(V0)

)
=

1
3n for i1, . . . , in ∈ {1, 2, 3},

where co(V0) is the convex hull of V0, i.e., the filled-in triangle.

In particular, µ is the Hausdorff measure for T, and the unique measure on T for which

T∗i µ =
1
3

µ for i = 1, 2, 3.

The subspace dom(E) ⊂ L2(T, µ) is a Hilbert space. Using the measure µ and the
bilinear form E, we recall the definition of the Laplacian ∆T .

Definition 7. For u ∈ dom(E) which vanishes on V0 we can define the Laplacian to be a continu-
ous function ∆Tu : T → R such that

E(u, v) = −
∫
(∆Tu)vdµ

for any v ∈ dom(E).

Remark 2. For each finite graph Xn, the spectrum σ(−∆Xn) for the graph Laplacian ∆Xn will
consist of a finite number of solutions of the eigenvalue equation

∆Xn f + λ f = 0. (2)

This is easy to see because Vn is finite and thus the space `2(Vn) is finite-dimensional and so the
graph Laplacian can be represented as a matrix. There is then an alternative pointwise formulation
of the Laplacian of the form

∆Tu(x) =
3
2

lim
n→+∞

5n∆Xn u(x) (3)

where x ∈ ⋃∞
n=1 Vn \V0. The eigenvalue equation ∆Tu + λu = 0 then has admissible solutions

provided u, ∆Tu ∈ C(T). A result of Kigami is that u ∈ dom(E) if and only if the convergence in
(3) is uniform [12].

2.3. Spectral Decimation for σ(−∆T)

We begin by briefly recalling the fundamental notion of spectral decimation introduced
by [3,13,14], which describes the spectrum σ(−∆T).

Definition 8. Given the polynomial RT : [0, 5]→ R defined by

RT(x) = x(5− x),

we can associate local inverses (see Figure 3) S−1,T , S+1,T : [0, 5]→ [0, 5] of the form

Sε,T(x) =
5
2
+

ε

2

√
25− 4x for ε = ±1. (4)
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The process of spectral decimation (see Section 3.2 in [9], or [1]) describes the eigen-
values of −∆T as renormalized limits of (certain) eigenvalue sequences of −∆Xn , n ∈ N.
These eigenvalues, essentially, follow the recursive equality λn+1 = S±1,T(λn), while the
corresponding eigenfunctions of −∆Xn+1 are such that their restrictions to Vn are eigen-
functions for −∆Xn . Thus, the eigenvalue problem can be solved inductively, constructing
solutions f to the eigenvalue equation (2) at level n + 1 from solutions at level n ∈ N.
The values of f at vertices in Vn+1 \Vn are obtained from solving the additional linear equa-
tions that arise from the eigenvalue equation ∆Xn+1 f + λ f = 0, which allows for exactly
two solutions. The exact limiting process giving rise to eigenvalues of −∆T is described by
the following result.

1 2 3 4 5

1

2

3

4

5

6

0 1 2 3 4 5

1

2

3

4

5

Figure 3. The polynomial RT(x) and the contracting inverse branches S−1,T and S+1,T for the
Sierpiński triangle T.

Proposition 1 ([1,3,15]). Every solution λ ∈ R to the eigenvalue equation

∆Tu + λu = 0 (5)

can be written as
λ =

3
2

lim
m→+∞

5m+cλm, (6)

for a sequence (λm)m>m0 and a positive integer c ∈ N0 satisfying

1. λm0 = 2 and c = 0, or λm0 = 5 and c > 1, or λm0 = 3 and c > 2;
2. λm = λm+1(5− λm+1) = RT(λm+1) for all m > m0; and
3. the limit (6) is finite.

Conversely, the limit of every such sequence gives rise to a solution of (5).

We remark that, equivalently, the sequence (λm)m>m0 could be described recursively
as λm+1 = Sεm ,T(λm) where εm ∈ {±1} for m > m0. The finiteness of the limit (6) is
equivalent to there being an m′ > m0 such that εm = −1 for all m > m′.

2.4. Spectrum of the Laplacian for Sierpiński Lattices

For a Sierpiński lattice, we define the Laplacian ∆L by

(∆L f )(x) = sx ∑
y∼x

( f (y)− f (x))

with

sx =

{
2 if x is a boundary point,
1 if x is not a boundary point,

which is a well-defined and bounded operator from `2(V∞) to itself (this follows from the
fact that each vertex of L has at most 4 neighbors).

Remark 3. We note that our definition of V∞ and L depended on the choice of a sequence (ωn)n∈N,
and graphs resulting from different sequences are typically not isometric ([7], Lemma 2.3(ii)).



Math. Comput. Appl. 2023, 28, 70 7 of 16

On the other hand, the spectrum σ(−∆L) turns out to be independent of this choice (see [7], Remark
4.2 or [4], Proposition 1).

The operator −∆L : `2(V∞) → `2(V∞) has a more complicated spectrum which
depends on the following definition.

Definition 9 (cf. [8]). We define the Julia set associated with RT to be the smallest non-empty
closed set JT ⊂ [0, 5] such that

JT = S−1,T(JT) ∪ S+1,T(JT).

This leads to the following description of the spectrum σ(−∆L).

Proposition 2 ([7], Theorem 2). The operator −∆L on `2(V∞) is bounded, non-negative and
self-adjoint and has spectrum

σ(−∆L) = JT ∪
(
{6} ∪

∞⋃
n=0

R−n({3})
)

.

This immediately leads to the following.

Corollary 1. We have that dimH(σ(−∆L)) = dimH(JT).

Thus, estimating the Hausdorff dimension of the spectrum σ(−∆L) is equivalent to
estimating that of the Julia set JT . The following provides a related application.

Example 1 (Pascal graph). Consider the Pascal graph P [16], which is an infinite 3-regular graph,
see Figure 4. Its edges graph is the Sierpiński lattice L, and as was shown by Quint [16], the
spectrum σ(−∆P) of its Laplacian −∆P is the union of a countable set and the Julia set of a certain
polynomial (affinely) conjugated to RT . From this, we deduce that

dimH(σ(−∆P)) = dimH(JP) = dimH(JL) = dimH(σ(−∆L)),

which we estimate in Theorem 1.

Figure 4. The Pascal graph.

2.5. Spectrum of the Laplacian for Infinite Sierpiński Gaskets

We finally turn to the case of an infinite Sierpiński gasket T∞. The Laplacian ∆T∞ is
an operator with a domain in L2(T∞, µ∞). Here, µ∞ is the natural measure on T∞, whose
restriction to T equals µ, and such that any two isometric sets are of equal measure (see [7]).

Remark 3 applies almost identically also to the Sierpiński gasket case: T∞ depends non-
trivially on the choice of a sequence ω in its definition, and different sequences typically
give rise to non-isometric gaskets, with the boundary of T∞ empty if and only if ω is
eventually constant ([7], Lemma 5.1). The spectrum σ(−∆T∞), however, is independent of
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ω (even if the spectral decomposition is not, see Remark 5.4 in [7] or Proposition 1 in [4]).
Using the notation

R(z) = lim
n→∞

5n(S−1,T)
n(z),

we have the following result on the spectrum σ(−∆T∞).

Proposition 3 ([7], Theorem 4). The operator −∆T∞ is an unbounded self-adjoint operator from
a dense domain in L2(T∞, µ∞) to L2(T∞, µ∞). Its spectrum is σ(−∆T∞) = J∞ ∪ Σ∞

3 with

J∞ =
∞⋃

n=−∞
5nR(JT) and Σ∞

3 =
∞⋃

n=−∞
5nR(Σ3),

where Σ3 =
⋃∞

n=0 R−n({3}).

A number of generalizations of this result for other unbounded nested fractals have
been proved, see, e.g., [17,18]. The proposition immediately yields the following corollary.

Corollary 2. We have that dimH(σ(−∆T∞)) = dimH(JT).

Thus, estimating the Hausdorff dimension of the spectrum σ(−∆T∞) is again equiva-
lent to estimating the Hausdorff dimension of the Julia set JT .

3. Related Results for Other Gaskets and Lattices

In this section, we describe other examples of fractal sets to which the same approach
can be applied. In practice, the computations may be more complicated, but the same basic
method still applies.

3.1. Higher-Dimensional Infinite Sierpiński Gaskets

Let d > 2 and Ti : Rd → Rd be contractions defined by

Ti(x1, . . . , xd) =
( x1

2
, . . . ,

xd
2

)
+

1
2

ei, for i = 1, . . . , d,

where ei is the ith coordinate vector. The d-dimensional Sierpiński gasket Td ⊂ Rd is the
smallest non-empty closed set such that

Td =
d⋃

i=1

Ti(T
d).

In [3], the analogous results are presented for the spectrum of the Laplacian ∆Td

associated with the corresponding Sierpiński gasket Td ⊂ Rd in d dimensions (d > 3).

Definition 10. For a sequence (ωn)n∈N ⊂ {1, . . . , d}N we can define an infinite Sierpiński gasket
in d dimensions as

Td,∞ =
∞⋃

n=1

T−1
ω1
◦ · · · ◦ T−1

ωn (T
d).

As before, we can associate a Julia set JTd and consider its Hausdorff dimension
dimH(JTd). More precisely, in each case, we can consider the decimation polynomial
RTd : [0, 3 + d]→ R defined by

RTd(x) = x((3 + d)− x),
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with two local inverses S±1,Td : [0, 3 + d]→ [0, 3 + d] given by

Sε,Td(x) =
1
2

(
3 + d + ε

√
9 + 6d + d2 − 4x

)
with ε = ±1.

Let JTd ⊂ [0, 3 + d] be the limit set of these two contractions, i.e., the smallest non-
empty closed set such that

JTd = S−1,Td(JTd) ∪ S+1,Td(JTd).

Theorem 2. The Hausdorff dimension dimH(JTd) of the Julia set JTd for d ∈ {2, . . . , 10} associ-
ated with the Sierpiński gasket in d dimensions is given by the values in Table 1, accurate to the
number of decimals stated.

Table 1. The Hausdorff dimension of JTd for 2 6 d 6 10.

d dimH(JTd)

2 0.55161856837246 . . .
3 0.45183750018171 . . .
4 0.39795943979056 . . .
5 0.36287714809375 . . .
6 0.33770271892130 . . .
7 0.31850809575800 . . .
8 0.30324865557723 . . .
9 0.29074069840192 . . .
10 0.28024518050407 . . .

The proof uses the same algorithmic method as that of Theorem 1, see Section 4.

Remark 4. By arguments developed in [1,4], one can deduce that similarly to Proposition 3 and
Corollary 2, the Hausdorff dimensions of the spectrum of the appropriately defined Laplacian on
Td,∞ and the Julia set dimH(JTd) coincide.

We can observe empirically from the table that the dimension decreases as d→ +∞.
The following simple lemma confirms that limd→+∞ dimH(JTd) = 0 with explicit bounds.

Lemma 2. As d→ +∞ we can bound

log 2
log(d + 3)

6 dimH(JTd) 6
2 log 2

log(d + 3) + log(d− 1)
.

Proof. We can write

I1 := R−1
Td ([0, 3 + d]) ∩

[
0,

3 + d
2

]
=

[
0,

3 + d
2

(
1−

√
1− 4

3 + d

)]
.

Thus, for x ∈ I1 we have bounds√
(3 + d)(d− 1) 6 |R′

Td(x)| 6 3 + d.

Similarly, we can define I2 := R−1
Td ([0, 3 + d]) ∩

[
3+d

2 , 3 + d
]

and obtain the same

bounds on |R′
Td(x)| for x ∈ I2. In particular, we can then bound

log 2
log(3 + d)

6 dimH(JTd) 6
2 log 2

log(3 + d) + log(d− 1)
.
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3.2. Post-Critically Finite Self-Similar Sets

The method of spectral decimation used for the Sierpiński gasket by Fukushima and
Shima [1], was extended by Shima [5] to post-critically finite self-similar sets and thus
provided a method for analyzing the spectra of their Laplacians.

Definition 11. Let Σ = {1, . . . , k}Z+ be the space of (one-sided) infinite sequences with the
Tychonoff product topology, and σ the usual left-shift map on Σ.

Let T1, . . . , Tk : Rd → Rd be contracting similarities and let X be the limit set, i.e., the smallest
closed subset with X =

⋃k
i=1 Ti(X). Let π : Σ→ X be the natural continuous map defined by

π((wn)
∞
n=0) = lim

n→+∞
Tw0 Tw1 · · · Twn(0).

We say that X is post-critically finite if

#

(
∞⋃

n=0
σn{(wn) ∈ Σ : π(wn) ∈ K}

)
< +∞

where K =
⋃

i 6=j TiX∩ TjX.

The original Sierpiński triangle T is an example of a limit set which is post-critically
finite. So is the following variant on the Sierpiński triangle.

Example 2 (SG3 gasket). We can consider the Sierpiński gasket SG3 (see Figure 5) which is the
smallest non-empty closed set XSG3 such that XSG3 =

⋃6
i=1 TiXSG3 where

Tj(x, y) = pj +
( x

3
,

y
3

)
for j = 1, . . . , 6,

with

p1 = (0, 0), p2 =

(
1
3

, 0
)

, p3 =

(
2
3

, 0
)

, p4 =

(
1
6

,
1

2
√

3

)
, p5 =

(
1
2

,
1

2
√

3

)
, p6 =

(
1
3

,
1√
3

)
.

In this case, we can associate the decimation rational function RSG3 : [0, 6]→ [0, 6] given by

RSG3(x) =
3x(5− x)(4− x)(3− x)

14− 2x
,

for which there are four local inverses Sj,SG3 (for j = 1, 2, 3, 4) [19], see Figure 6. The associated
Julia set JSG3 , which is the smallest non-empty closed set such that JSG3 =

⋃4
j=1 Sj,SG3(JSG3), has

Hausdorff dimension dimH(JSG3).

X0 X1

Figure 5. The first two graphs for SG3 (left, centre) and the SG3 gasket (right).
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Figure 6. The function RSG3 (x) and the four contracting inverse branches for the SG3 gasket.

Using Mathematica with a sufficiently high precision setting (see Example 5 for more details),
we can numerically compute the Hausdorff dimension of the Julia set JSG3 associated with the
Sierpiński gasket SG3 to be

dimH(JSG3) = 0.617506301862352229042494874316407096341976 . . .

Example 3 (Vicsek graph). The Vicsek set XV is the smallest non-empty closed set such that
XV =

⋃5
j=1 Tj(XV) where

Tj(x, y) = pj +
( x

3
,

y
3

)
for j = 1, . . . , 5,

with

p1 = (0, 0), p2 =

(
2
3

, 0
)

, p3 =

(
2
3

,
2
3

)
, p4 =

(
0,

2
3

)
, p5 =

(
1
3

,
1
3

)
.

In this case, studied in [20], Example 6.3, one has that RV : [−1, 0]→ R is given by

RV(z) = z(6z + 3)(6z + 5),

with three inverse branches S1, S2, S3 : [−1, 0]→ [−1, 0] given by

S1(x) =
1

36

(
i(
√

3 + i)t(x)− 19(1 + i
√

3)
t(x)

− 16

)
,

S2(x) =
1

36

(
−i(
√

3− i)t(x)− 19(1− i
√

3)
t(x)

− 16

)
,

S3(x) =
1

18

(
t(x) +

19
t(x)
− 8
)

,

where t(x) =
(

9 · (81x2 + 56x− 75)1/2 + 81x + 28
)1/3

. The associated Julia set JV is the

smallest non-empty closed set such that JV =
⋃3

j=1 Sj,V(JV). The following theorem is proved
similarly to Theorem 1, as described in Section 4.

Theorem 3. The Hausdorff dimension of the Julia set JV is

dimH(JV) = 0.49195457005266 . . . ,

accurate to the number of decimals stated.

Remark 5. Analogously to the case of the Sierpiński lattice L, we can define lattices LSG3 and
LV for the SG3 and Vicsek sets from the previous two examples, as well as corresponding graph
Laplacians ∆LSG3

and ∆LV
. The Hausdorff dimensions of their spectra can again be directly

related to those of the respective Julia sets JSG3 and JV. By Theorem 5.8 in [20], one has that
JSG3 ⊆ σ(−∆LSG3

) ⊆ JSG3 ∪DSG3 and JV ⊆ σ(−∆LV
) ⊆ JV ∪DV, where DSG3 and DV are
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countable sets. It follows, analogously to Corollary 1, that dimH(σ(−∆LSG3
)) = dimH(JSG3)

and dimH(σ(−∆LV
)) = dimH(JV).

Remark 6. Other examples to which the same method could be applied include the modified Koch
curve (see [21,22]) for which the associated rational function is R(x) = 9x(x− 1)(x− 4

3 )(x−
5
3 )/(x− 3

2 ). More families of such examples can be found in [23].

Remark 7. The spectral decimation method can also apply to some non-post-critically finite exam-
ples, such as the diamond fractal [24], for which the associated polynomial is R(x) = 2x(2 + x).
On the other hand, there are symmetric fractal sets which do not admit spectral decimation, such as
the pentagasket, as studied in [25].

4. Dimension Estimate Algorithm for Theorem 1

This section is dedicated to finishing the proof of Theorem 1, by describing an al-
gorithm yielding estimates (with rigorous error bounds) for the values of the Hausdorff
dimension.

By the above discussion, we have reduced the estimation of the Hausdorff dimensions
of σ(−∆L) and σ(−∆T∞) to that of dimH(JT) for the limit set JT associated with S±1,T
from (4) (and similarly for the other examples). Unfortunately, since the maps S±1,T are
non-linear, it is not possible to give an explicit closed form for the value dimH(σ(−∆T)) =
dimH(JT). Recently developed simple methods make the numerical estimation of this
value relatively easy to implement, which we summarize in the following subsections.

4.1. A Functional Characterization of Dimension

Let B = C(I) be the Banach space of continuous functions on the interval I = [0, 5]
with the norm ‖ f ‖∞ = supx∈I | f (x)|.

Definition 12. Let Lt (for t > 0) be the transfer operator defined by

Lt f (x) = |S′−1,T(x)|t f (S−1,T(x)) + |S′+1,T(x)|t f (S+1,T(x))

where f ∈ B and x ∈ I, and S±1,T are as in (4).

It is well known that the transfer operator Lt (for t > 0) is a well-defined positive
bounded operator from B to itself. To make use of the results in the previous sections, we
employ the following “min-max method” result:

Lemma 3 ([26]). Given choices of 0 < t0 < t1 < 1 and strictly positive continuous functions
f , g : I → R+ with

inf
x∈I

Lt0 f (x)
f (x)

> 1 and sup
x∈I

Lt1 g(x)
g(x)

< 1, (7)

then t0 < dimH(JT) < t1.

Proof. We briefly recall the proof. We require the following standard properties.

1. For any t > 0 the operator Lt has a maximal positive simple eigenvalue eP(t) (with
positive eigenfunction), where P is the pressure function [27,28].

2. P : R+ → R is real analytic and convex [28].
3. The value t = dim(JT) is the unique solution to P(t) = 0, see [29,30].

By property 1. and the first inequality in (7), we can deduce that

P(t0) = lim
n→+∞

1
n

log ‖Ln
t0

f ‖∞ > 0. (8)
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By property 1. and the second inequality in (7), we can deduce that

P(t1) = lim
n→+∞

1
n

log ‖Ln
t1

g‖∞ < 0. (9)

Comparing properties 2. and 3. with (8) and (9), the result follows.

4.2. Rigorous Verification of Minmax Inequalities

Next, we explain how we rigorously verify the conditions of Lemma 3 for a function
f : I → R+, that is,

1. f > 0;
2. infx∈I h(x) > 1 or supx∈I h(x) < 1 for h(x) := (Lt f )(x)/ f (x).

In order to obtain rigorous results, we make use of the arbitrary precision ball arith-
metic library Arb [31], which for a given interval [c− r, c + r] and function f outputs an
interval [c′ − r′, c′ + r′] such that f ([c− r, c + r]) ⊆ [c′ + r′, c′ − r′] is guaranteed. Clearly,
the smaller the size of the input interval, the tighter the bounds on its image. Thus, in
order to verify the above conditions, we partition the interval I adaptively using a bisection
method up to depth k ∈ N0 into at most 2k subintervals, and verify these conditions on
each subinterval. While the first condition is often immediately satisfied for chosen test
functions f on the whole interval I, the second condition is much harder to verify as h is
very close to 1 and would require very large depth k.

To counteract the exponential growth of the number of required subintervals, we use
tighter bounds on the image of h. Clearly for x ∈ [c− r, c + r] with c ∈ R and r > 0, we
have that |h(x)− h(c)| 6 supy∈[c−r,c+r] |h′(y)|r by the mean value theorem. More generally,
we obtain for p ∈ N that

|h(x)− h(c)| 6
p−1

∑
i=1
|h(i)(c)|ri + sup

y∈[c−r,c+r]
|h(p)(y)|rp.

This makes it possible to achieve substantially tighter bounds on h([c− r, c + r]) while
using a moderate number of subintervals, at the cost of additionally computing the first p
derivatives of h.

4.3. Choice of f and g via an Interpolation Method

Here, we explain how to choose suitable functions f and g for use in Lemma 3, so that
given candidate values t0 < t1 we can confirm that t0 < dimH(JT) < t1.
Clearly, if f and g are eigenfunctions of Lt0 and Lt1 for the eigenvalues λt0 and λt1 , respec-
tively, then condition (3) is easy to verify. As these eigenfunctions are not known explicitly,
we will use the Lagrange–Chebyshev interpolation method to approximate the respective
transfer operators by finite-rank operators of rank m, and thus obtain approximations
f (m) and g(m) of f and g. As the maps S±1,T involved in the definition of the transfer
operator (Definition 12) extend to holomorphic functions on suitable ellipses, Theorem 3.3
and Corollary 3 of [32] guarantee that the (generalized) eigenfunctions of the finite-rank
operator converge (in supremum norm) exponentialy fast in m to those of the transfer
operator. In particular, for large enough m, the functions f (m) and g(m) are positive on the
interval I and are good candidates for Lemma 3.

Initial choice of m. We first make an initial choice of m > 1. Let `n : I → R (for
n = 0, . . . , m− 1) denote the Lagrange polynomials scaled to [0, 5] and let xn ∈ [0, 5] (for
n = 0, . . . , m− 1) denote the associated Chebyshev points.

Initial construction of test functions. Let vt = (vt
i)

m−1
i=0 be the left eigenvector for the

maximal eigenvalue of the m×m matrix Mt(i, j) = (Lt`i)(xj) (for 0 6 i, j 6 m− 1) and set

f (m) :=
m−1

∑
i=0

vt0
i `i and g(m) :=

m−1

∑
i=0

vt1
i `i.
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A fast practical implementation of this requires a slight variation (see Algorithm 1 in [32]),
which can be implemented using a discrete cosine transform.

If the choices f = f (m) and g = g(m) satisfy the hypotheses of Lemma 3 (which can be
verified rigorously with the method in the previous section), then we proceed to the next
step. If they do not, we increase m and try again.

Conclusion. When the hypothesis of Lemma 3 holds, then its assertion confirms that
t0 < dimH(JT) < t1.

It remains to iteratively make the best possible choices of t0 < t1 using the
following approach.

4.4. The Bisection Method

Fix ε > 0. We can combine the above method of choosing f and g with a bisection
method to improve given lower and upper bounds t0 and t1 until the latter are ε-close:

Initial choice. First, we can set t(1)0 = 0 and t(1)1 = 1, for which t(1)0 < dimH(JT) < t(1)1
is trivially true.

Iterative step. Given n > 0, we assume that we have chosen t(n)0 < t(n)1 . We can then

set T = (t(n)0 + t(n)1 )/2 and proceed as follows.

(i) If t(n)0 < dimH(JT) < T then set t(n+1)
0 = t(n)0 and t(n+1)

1 = T.

(ii) If T < dimH(JT) < t(n)1 then set t(n+1)
0 = T and t(n+1)

1 = t(n)1 .
(iii) If dimH(JT) = T then we have the final value (in practical implementation, this

case is of no relevance, and the only meaningful termination condition is given by
t1 − t0 < ε).

Final choice. Once we arrive at t(n)1 − t(n)0 < ε then we can set t0 = t(n)0 and t1 = t(n)1
as the resulting upper and lower bounds for the true value of dimH(JT).

Applying this algorithm yields the proof of Theorem 1 (and with the obvious modifi-
cations also those of Theorems 2 and 3). Specifically, we computed the value of dimH(JT)
efficiently to the 14 decimal places as stated by the above method, by setting ε = 10−15,
using finite-rank approximation up to rank m = 30, running interval bisections for rigorous
minmax inequality verification up to depth k = 18, i.e., using up to 218 subintervals, and
using p = 2 derivatives. There are of course many ways to further improve accuracy, e.g.,
with more computation or the use of higher derivatives.

Example 4 (Sierpiński triangle). To cheaply obtain a more accurate estimate (albeit without the
rigorous guarantee resulting from the use of ball arithmetic), we use the MAXVALUE routine
from Mathematica. To obtain an estimate on dimH(JT) to 60 decimal places, we work with 100
decimal places as Mathematica’s precision setting. Taking m = 60, we use the bisection method
and starting from an interval [0.2, 0.8] after 199 iterations we have upper and lower bounds
t0 6 dimH(JT) 6 t1, where

t0 = 0.5516185683724609316975708723135206545360797417440422

082662966000504800341581203344828264869391054705

and
t1 = 0.5516185683724609316975708723135206545360797417440422

082662980935741467208321300490581993941689232122.

With a little more computational effort (200 decimals of precision, m = 100, 329 iterations),
we can improve the estimate to 100 decimal places:

t0 = 0.55161856837246093169757087608456543417211766450713

88681168316991686668142241904865834395086581396924

80473399364569014861603996382396316337795734913712

92389795501216939500532891268573684698907908711334
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and
t1 = 0.55161856837246093169757087608456543417211766450713

88681168316991686668142241904865834395086581396926

63351381969733012016129364111250869850101334085360

70969237514708581622707399079704491867257671463809,

which yields the estimate:

dimH(JT) = 0.5516185683724609316975708760845654341721176

6450718868116831699168666814224190486583439508658139692 . . . .

We next consider as a second example, SG3, see Example 2.

Example 5 (SG3 gasket). With the same method as in the previous example, we estimate bounds
on dimH(JSG3) to 60 decimal places:

t0 = 0.6175063018623522290424948743164070963419768663609616

039516140619156598666691050499356772905041875773

and
t1 = 0.6175063018623522290424948743164070963419768663609616

039516151934758805391761943498290334758478481658,

which yields the estimate:

dimH(JSG3) = 0.617506301862352229042494874316

40709634197686636096160395161 . . .

Remark 8. A significant contribution to the time complexity of the algorithm is that of estimating
the top eigenvalue and corresponding eigenvector of an m×m matrix which is O(n ·m2) with n
denoting the number of steps of the power iteration method. Moreover, by the perturbation theory
one may expect that, in order to obtain an error in the eigenvector of ε > 0, one needs to choose
m = O(log(1/ε)) and n = O(log(1/ε)).

5. Conclusions

In this work, we have leveraged the existing theory on Laplacians associated to
Sierpiński lattices, infinite Sierpiński gaskets and other post-critically finite self-similar
sets, in order to establish the Hausdorff dimensions of their respective spectra. We used
the insight that, by virtue of the iterative description of these spectra, these dimensions
coincide with those of the Julia sets of certain rational functions. Since the contractive local
inverse branches of these functions are non-linear, the values of the Hausdorff dimensions
are not available in an explicit closed form, in contrast to the dimensions of the (infinite)
Sierpiński gaskets themselves, or other self-similar fractals constructed using contracting
similarities and satisfying an open set condition. Therefore, we use the fact that the
Hausdorff dimension can be expressed implicitly as the unique zero of a so-called pressure
function, which itself corresponds to the maximal positive simple eigenvalue of a family
of positive transfer operators. Using a min-max method combined with the Lagrange–
Chebyshev interpolation scheme, we can rigorously estimate the leading eigenvalues for
every operator in this family. Combined with a bisection method, we then accurately and
efficiently estimate the zeros of the respective pressure functions, yielding rigorous and
effective bounds on the Hausdorff dimensions of the spectra of the relevant Laplacians.
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