
Citation: Venter, M.P.; Conradie, N.T.

Intermediate Encoding Layers for the

Generative Design of 2D Soft Robot

Actuators: A Comparison of CPPN’s,

L-Systems and Random Generation.

Math. Comput. Appl. 2023, 28, 68.

https://doi.org/10.3390/

mca28030068

Academic Editors: Hans Beushausen

and Sebastian Skatulla

Received: 15 February 2023

Revised: 12 May 2023

Accepted: 12 May 2023

Published: 15 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical

and Computational

Applications

Article

Intermediate Encoding Layers for the Generative Design of 2D
Soft Robot Actuators: A Comparison of CPPN’s, L-Systems and
Random Generation
Martin Philip Venter 1,*,† and Naudé Thomas Conradie 1,†

Department of Mechanical and Mechatronic Engineering, Stellenbosch University,
Stellenbosch 7600, South Africa
* Correspondence: mpventer@sun.ac.za
† These authors contributed equally to this work.

Abstract: This paper introduced a comparison method for three explicitly defined intermediate
encoding methods in generative design for two-dimensional soft robotic units. This study evaluates a
conventional genetic algorithm with full access to removing elements from the design domain using
an implicit random encoding layer, a Lindenmayer system encoding mimicking biological growth
patterns and a compositional pattern producing network encoding for 2D pattern generation. The ob-
jective of the optimisation problem is to match the deformation of a single actuator unit with a desired
target shape, specifically uni-axial elongation, under internal pressure. The study results suggest that
the Lindenmayer system encoding generates candidate units with fewer function evaluations than
the traditional implicitly encoded genetic algorithm. However, the distribution of constraint and
internal energy is similar to that of the random encoding, and the Lindenmayer system encoding
produces a less diverse population of candidate units. In contrast, despite requiring more function
evaluations than the Lindenmayer System encoding, the Compositional Pattern Producing Network
encoding produces a similar diversity of candidate units. Overall, the Compositional Pattern Produc-
ing Network encoding results in a proportionally higher number of high-performing units than the
random or Lindenmayer system encoding, making it a viable alternative to a conventional monolithic
approach. The results suggest that the compositional pattern producing network encoding may be a
promising approach for designing soft robotic actuators with desirable performance characteristics.

Keywords: soft robot; Lindenmayer system; compositional pattern producing network; generative
design

1. Introduction

Soft robotics is a sub-field of robotics that centres on integrating flexible materials
and pronounced material deformation into the design and operation of robots [1]. A key
motivation for developing soft robotics is its capacity for embodied intelligence, which is the
ability to leverage the shape and deformation of the robot’s physical structure to achieve
tasks in complex, poorly defined environments [2]. Achieving embodied intelligence
requires consideration of both internal and external interactions of actuators [3]. The key to
successful design lies in employing modelling techniques and interdisciplinary research.
However, a large and complex design space, which can be sensitive and unintuitive, often
hampers the development of soft robotics. As a result, there is a growing need to use
automated design processes combined with physical experimentation to produce viable
soft robots that have practical utility in various applications [4].

The soft composition of these robots enables them to move and adjust to their sur-
roundings like living organisms [5]. In the literature, soft robots are classified based on
the materials used, the mechanism of articulation and the method of energy transfer [6–8].
Some common categories of soft robots include soft inflatable robots [9–11], electro-active

Math. Comput. Appl. 2023, 28, 68. https://doi.org/10.3390/mca28030068 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca28030068
https://doi.org/10.3390/mca28030068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-0238-0305
https://doi.org/10.3390/mca28030068
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca28030068?type=check_update&version=1

Math. Comput. Appl. 2023, 28, 68 2 of 18

polymers [12–14], origami robots [15–17], shape memory alloys [18–21] and flexible hybrid
robots [22–25].

Soft robots have a wide range of applications, including medical and surgical de-
vices [26–28], industrial automation [29–33], human–robot interaction [34–38], environmen-
tal monitoring and underwater exploration [39,40], biomimicry [41–48], search and rescue
operations [49] and entertainment [50,51].

The practical design of soft robots demands a coordinated approach to their topology,
control system and performance. This process involves choosing suitable materials, deter-
mining the optimal topology, defining the control strategies and fabricating the robot [52].
To achieve the desired behaviour of a soft robot, a comprehensive understanding of the
physics and mechanics of soft materials is crucial [53]. However, the absence of discrete
pivot points means that the entire material domain contributes to the robot’s deformation
and response, leading to a vast design space with limited established design methods.
This results in a highly nonlinear design space for soft robots that remains largely un-
charted [54]. Currently, most design methods for soft robots are based on trial and error
and rely heavily on intuition. Nevertheless, various research groups have explored other de-
sign approaches, such as generative design [4,55–59], topology optimisation or compliance
optimisation [60,61] and user-driven hierarchical approaches [62], to tackle this challenge.

Pinskier and Howard [52] discuss generative design as an automated design process
which uses algorithmic techniques to support designers and generate designs for specific
design domains by formulating constraints and objectives. With the advancement in com-
putational resources, generative design has become more sophisticated and can generate
more comprehensive designs. Finally, Lai et al. [63] have provided an insightful overview
of the current state of the art in generative design.

In this paper, we propose that introducing an explicit intermediate encoding layer to
the design space for soft robots can reduce the computational cost of generative design and
lower the barrier to entry for early-stage design exploration. To achieve our aim, we need
to address four methodological elements. First, we must develop methods of encoding
patterns of removed material from a design domain we identify. Second, we must create a
test environment to subject the generated topologies to internal pressure and measure their
simulated and physical response [64]. Third, we need to quantify the performance of the
generated unit topologies relative to some targeted behaviour. Last, we must implement a
selection process for identifying high-performing encodings.

Our objectives include creating a testing framework that allows for the explicit inclu-
sion of an intermediate encoding layer while retaining the ability to automate the design
of a soft robot element that produces uni-directional elongation without lateral expansion
when pressurised. We then use this framework to directly compare three intermediate lay-
ers, the conventional implicit random encoding used in most generative design processes,
a compositional pattern-producing network previously researched and the Lindenmayer
system encoding not previously explored.

2. Methods and Materials
2.1. Test Case

In this study, we design the interior topology of a 2D square grid of elements that changes
shape under internal pressure to form one of three typical engineering deformations: Uni-axial
elongation, uniform dilation and shear. First, we divide the 200 mm× 200 mm sample into
a fixed number of square sub-domains or elements, allowing for an automated process to
determine whether each contains material. Next, the areas without material become pressurised
internal cavities. This work limits itself to a single cavity and removes unloaded elements with
an island-finding algorithm.

Figure 1 shows a schematic of the desired domain for our case study. Elements on the
outer edge of the square are not removable, while all other elements can be air-filled or
solid silicone. Additionally, the number of elements in the grid can be changed to test the
efficacy of results at different resolutions. Finally, the individual domains can be nested

Math. Comput. Appl. 2023, 28, 68 3 of 18

in a larger meta domain to observe the behaviour of a particular topology surrounded by
similar topologies, as seen in Figure 1.

Figure 1. A schematic representation of the 2D grid domain for this work. We show a 5× 5 grid of
regular square elements on the left. The outer edge elements form an exclusion zone that enforces
a fully contained internal cavity for all candidate units. Elements in the exclusion zone are always
material filled. In the central 3× 3 region, any element can be either a void or filled with material.
On the right, we show how a single unit can be nested into a regular grid of similar units as a
larger meta-unit.

To represent a functional soft robot, the material must be highly compliant, resulting
in large deformations and high strains when subjected to typical loading. Mold-Star-15
is an easy-to-cast platinum cure silicone with a 1:1 mixing ratio typical of pneumatic soft
robots [65]. The material is highly nonlinear, and the test case involves quasistatic inflation
subject to 2D plane strain.

In this paper, we explore the topology of single inflatable units to achieve one of the
deformations shown in Figure 2. Initially, square units with edges AB, BC, CD, and DA,
as shown in the figure, are deformed in one of three ways, shown by the arrows around
each. Case 1 (top left): The initially square unit elongates along one axis. The distance
between sides AB and DC is increased on the y-axis while the distance between sides BC
and DA remains the same on the x-axis. Case 2 (top right): The initial square unit elongates
along two axes. The distance between sides AB and DC increases on the y-axis, and the
distance between sides BC and DA increases along the x-axis. Case 3 (bottom): The initial
square unit shears along one axis. With the length of each edge remaining the same, edge
CD remains in place and edge AB is moved along the x-axis so that the initial 90° interior
angle reduces.

We aim to identify units that perform better than randomly generated units for
the targeted deformations. To measure the performance of candidate units, we have
considered two scenarios, enforcing the target shape on the external edges of the unit
and comparing the unconstrained deformed shape to the target shape without enforcing
boundary conditions.

With enforced shape, the first scenario is simpler to model in FEM and computation-
ally more efficient. However, it may not accurately represent the behaviour of the units
when nested into a larger meta-unit. On the other hand, without enforcing the boundary
condition, the second scenario is more representative of the real-world application but
computationally more expensive. Figure 3 shows a representative unit with all four edges
subjected to an enforced motion as in the first scenario, and the single unit, internal pressure

Math. Comput. Appl. 2023, 28, 68 4 of 18

and minimal boundary conditions. This paper presents the case of uni-axial elongation by
50 %, where we fix the bottom edge vertically but leave it free to slide horizontally. The left
and right edges are free to slide vertically but fixed horizontally, and the top edge is forced
0.5 units vertically and free to slide horizontally.

Figure 2. Three simple deformation patterns considered. Each of the three shows an initially regular
square unit (solid black line) deforming on inflation (blue dashed line). The top left shows single-axis
elongation, the top right shows two-axis elongation and the bottom shows “shear”. A, B, C and D
indicate the corners of the initial square unit.

Figure 3. Right: A representative 5 × 5 unit implemented as a FE model, with prescribed displace-
ment on all four edges (blue, green, red and yellow arrows). Left: A representative 15 × 15 unit
implemented as a FE model, with a single point fixed in translation and rotation (bottom left corner,
pink arrows), and internal pressure (green arrows).

Math. Comput. Appl. 2023, 28, 68 5 of 18

We measure the unit’s performance by monitoring the constraint energy (EC) on the
boundary when subjected to the 25 kPa internal pressure, as seen in Equation (1), where nb
is a list of nodes on the boundary, di is the distance the point moves from the unconstrained
position and Fr,i is the force applied to the node. Using this method, however, opens up the
trivial solution where the best unit is an empty unit, so we need to contrast the constraint
energy results against the internal energy (EI), as seen in Equation (2), where n is the
element in the domain and Ui is the strain energy in each unit. A high-performing unit
would thus have high internal energy but low constraint energy.

EC =
nb

∑
i=1
|diFr,i| (1)

EI =
n

∑
i=1
|Ui| (2)

We use a three-term Ogden model shown in Equation (3) to model the nonlinear
behaviour of the silicone material (µi are Lamé parameters and α are stretching param-
eters), with specified parameter values µ1 = −6.502× 10−6, µ2 = 0.2168, µ3 = 0.0013,
α1 = −21.32, α1 = 1.179, α3 = 4.884 [57,66].

W(λ1, λ2, λ3) =
3

∑
i=1

µi
αi
(λαi

1 + λ
αi
2 + λ

αi
3 − 3) (3)

Physical samples of the candidate geometries are manufactured using a re-configurable
mould, as seen in the left of Figure 4, and tested under pressure between parallel transparent
plates, as seen in the right of Figure 4. Figure 5 shows the FE results (yellow with black
lines) overlayed on a scaled photo of an inflated sample unit at the same pressure. The two
images are aligned by minimising the Hausdorff distance between the exterior surface of
the simulated and physical results. The maximum deviation is 5 mm on a unit with edge
length 150 mm.

Figure 4. Left: The re-configurable mould used to manufacture sample units. The interior of the
mould has mounts for square blocks placed at the coordinates of voids. Right: The test fixture for
pressurising sample units. The unit is centred over the inflation port and placed between two thick
perspex plates.

Math. Comput. Appl. 2023, 28, 68 6 of 18

Figure 5. Photograph of a pressurised silicone sample scaled and overlayed with the results of a FE
simulation of the same unit at the same pressure.

2.2. Encoding Methods

The design domain under consideration is a regular grid of square elements represent-
ing each design’s material distribution. The material distribution is binary, so an element is
either filled with material or empty. This regular grid is similar to the raster images typical
of digital photography. Raster image encoding techniques aim to reduce the size of the
image data by representing the repeating patterns in the image or compressing the data.
Methods such as run-length encoding [67], Huffman coding [68] and arithmetic coding [69]
achieve this by starting with a target image and reducing its size while preserving details.

On the other hand, pattern growth models work in the opposite direction by starting
with a small amount of seed data and generating complex, growing patterns. These meth-
ods include iterated function systems (IFS) [70], Lindenmeyer systems (L-Systems) [71],
Fractals [72], cellular automata (CA) [73], genetic algorithms (GAs) [74] and swarming [75],
partial differential equation (PDE) methods, reaction–diffusion systems (RDSs) [76] and ar-
tificial neural networks (ANNs) [77].

Several researchers use pattern-generating or pattern growth models in the design of
soft robots (fractals [78], CA [79], GA [80], ANN [81]); however, none of these works make
use of the encoding as an intermediate store of information but rather as a type of reduced
order model of the system.

Although raster image encoding is closer to the expected input, these methods are
unsuitable for generating new patterns at various scales and resolutions. GA’s and swarm-
ing methods, while they represent intelligent automated selection methods, still solve the
conventional monolithic design problem and are the datum against which other automated
design paradigms are judged. PDE methods and reaction–diffusion systems can generate
scalable organic patterns. However, they require a mechanism for assembling and parame-
terising new functions, practically conducted through auto-differentiation, which heavily
relies on ANNs. Therefore, we decided to investigate the use of ANNs directly. Out of
the various iterative generators (IFS, L-Systems, Fractals and CA), we explored L-Systems
because the resulting patterns can be stochastic and closely resemble organic structures.

Math. Comput. Appl. 2023, 28, 68 7 of 18

In summary, this paper will generate 1000 units encoded using L-systems and CPPNs
as intermediate encoding layers with high-performing units generated and selected by a
GA. These will be compared to 1000 units randomly generated in Monte Carlo style.

2.2.1. Random Units

Previous implementations of automated or generative design of soft robots explored
the full design space with the ability to remove any number of elements from the domain
grid at any point. However, each element in the design domain represents a Boolean
variable, so implementing a GA’s results in a combinatorial optimisation problem, causing
the design space to grow rapidly with increased resolution. With this in mind, we can
produce results representative of other authors under controlled conditions by generating
random units that meet the requirements imposed by the optimiser.

We use the random unit generation process as a baseline for comparing L-systems and
CPPN-NEAT results. We control the percentage of the total number of elements removed
from the design domain by setting a target number of elements to remove.

Randomly removing elements from the domain creates “islands” of unconnected
elements that do not contribute to the overall response of the square unit to a pressure load.
We must remove these islands for the simulation’s stability and the experiment’s simplicity.

To detect islands of unconnected elements in a grid, we adopt a graph-based ap-
proach [82]. First, we represent the physical grid of removable elements as a graph, where
each element serves as a node, and we create edges between adjacent nodes. Then, we
initiate a search, starting from a node on the outer edge of the design domain (one not avail-
able for removal), to find all connected nodes in the graph. If a node becomes unreachable
from the edge, we consider it an “island” and remove it. We repeat this process for each
node until we find and remove all “islands”. We use two standard methods to traverse
the graph: breadth-first search (BFS) and depth-first search (DFS). Using BFS with the four
corner elements in the design domain leads to a marginally faster result.

We first assign each element in the design domain a unique identifier to implement
island finding and removal of elements. Then, we generate a random list of elements to
remove that have the target number of elements. We remove elements starting with the first
element on the list, followed by island detection and removal. Next, we verify the number
of elements removed against the target, and if it equals the target, we store the topology of
the updated domain for evaluation. If the number of elements is too low, we restart the
process by removing the first two elements from the list, followed by island detection and
removal. We repeat this process of removing one more random element, followed by island
detection and removal until the total number of elements removed equals or exceeds the
target. If the number of elements exceeds the target, we restart the process using a different
seed to generate the list of random element identifiers.

2.2.2. Lindenmayer Systems

Lindenmayer systems are a formal grammar, imitating plants’ growth patterns and
natural structures such as crystals and snowflakes [71]. It was proposed by Hungarian
biologist Aristid Lindenmayer in the 1960s and since been applied in various fields such
as biology [83], computer graphics [84], architecture and design [85]. This paper uses
L-systems to encode patterns for material removal from a fixed starting point in our grid
domain. An L-system consists of an alphabet of symbols, initial axiom and production
rules. The axiom is considered iteration 0, and the production rules determine how the
symbols in the produced string change with each iteration. Table 1 shows how we construct
an L-System, and Figure 6 shows the result of two iterations from a single point axiom.

Math. Comput. Appl. 2023, 28, 68 8 of 18

Table 1. Example L-System construction for a simple pattern in a grid domain. Starting with the
axiom “F”, at each iteration, “F” is replaced by “F[−fF][+fF]”. Constants “[,], +, −, and f” are not
replaced in successive iterations. Including an interpretation layer, we can traverse the domain and
remove material iteratively. “F” represents the removal of material at the current grid coordinate,
“f” represents movement in the direction of the current travel direction, “[,]” represents storing the
current and retrieving the current grid position and travel direction from a last in, first out stack
and “+, −” represent rotation of the current travel direction by an angle of ±45◦.

Variables: F
Constants: [,], +, −, f
Axiom: F
Production Rules: F→ F[−fF][+fF]

Figure 6. A graphical representation of the axiom, the first and second iteration of the L-System
described in Table 1.

This paper’s L-System vocabulary is the same as that provided in the example, ex-
cept that a GA generates the production rules and that we pre-defined a set of 12 axioms
that create various symmetries in the generated unit topologies. Table 2 shows the L-system
axiom for each, and Figure 7 shows the interpretation.

Table 2. Axioms used to inject various symmetries into interpreting an L-system.

Symmetry Axis Rotational Axiom Reflective Axiom

Horizontal [F]++++[F] [F]++++(F)
Vertical − −[F]++++[F] −−[F]++++(F)
Horizontal and vertical [F]++[F]++[F]++[F] [F]++(F)++[F]++(F)
Diagonal +[F]++++[F] +[F]++++(F)
Negative diagonal −[F]++++[F] −[F]++++(F)
Diagonal and negative diagonal +[F]++[F]++[F]++[F] +[F]++(F)++[F]++(F)

To create the topology for a new unit, the GA can select one of the 12 axioms. The user
can set the maximum number of production rules the GA can create, but at least one
production rule must have “F” replaced by a string containing “F”. The user can also set
the minimum and maximum length of the generated production rules, but the GA can
produce rules anywhere between those bounds. During trials, we noted that production
rules randomly generated with variables and constants often produce uninterpretable
rules. For example, unmatched brackets prevented the correct interpretation of the axioms
leading to incomplete branching. This could be avoided by restricting the GA from creating
rules that do not meet additional restrictions. Table 3 shows the parameter ranges for the
GA, including the number of iterations allowed to interpret the unit.

Math. Comput. Appl. 2023, 28, 68 9 of 18

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7. L-System interpretation of symmetry axioms according to Table 2. Axes of symmetry
are indicated with dotted lines. (a) Horizontal rotation. (b) Vertical rotation. (c) Horizontal and
vertical rotation. (d) Diagonal rotation. (e) Negative diagonal rotation. (f) Diagonal and negative
diagonal rotation. (g) Horizontal reflection. (h) Vertical reflection. (i) Horizontal and vertical reflection.
(j) Diagonal reflection. (k) Negative diagonal reflection. (l) Diagonal and negative diagonal reflection.

Math. Comput. Appl. 2023, 28, 68 10 of 18

Table 3. Parameters and ranges available to the GA when designing using L-system intermediate
encoding layer.

Parameter Min Max

Num Axioms 1 Number of predefined axioms
Number of rules 1 Total domain
Rule length 2 5
Number of iterations 1 5

2.2.3. Compositional Pattern Producing Networks

Compositional pattern producing networks (CPPNs) are a tool for generating com-
plex, high-dimensional patterns [86]. CPPNs are artificial neural networks capable of
generating patterns based on user-defined parameters. The combination of CPPNs and
NeuroEvolution of Augmenting Topologies (NEAT) algorithms provides a flexible and effi-
cient approach for evolving patterns and solving problems in various fields. CPPN-NEAT
algorithms are particularly useful in image generation, scalability and when generating
models with low complexity. Using activation functions, such as sine, cosine, hyperbolic
tangent, sigmoid and Softplus, produces high-quality patterns with a wide range of fea-
tures. CPPNs have previously been used to generate the topology of soft robots directly
rather than as an intermediate encoding layer [87,88]. In these cases, generating the full
robot’s topology, considering the end behaviour, is computationally expensive.

This paper implements a CPPN-like generation method that generates multiple models
from a single trained CPPN. CPPNs are generated using a random seed to determine the
initial layer, hidden layers and activation functions. The parametric input of the CPPN
means that if the same seed is provided, the same CPPN will result.

A CPPN model may be scaled inwards or outwards to produce topologies on different
scales. To do this, we set the number of nodes in each hidden layer to the resolution of
the unit we are interested in. For example, an 11 by 11 domain will need hidden layers of
121 nodes. The CPPN will result in a model that fits perfectly within the internal space of
the unit.

CPPN models obtained for this thesis are at much lower resolutions than traditional
CPPN models, so a reduction in complexity is deemed appropriate. Only five activation
functions are available for the hidden layers of the CPPN (sin, cos, tanh, sigmoid and ReLu),
and the same activation function applies to every node in a layer. Furthermore, only the
Sigmoid and ReLu functions are available for the output layer of the CPPN, as they result
in values ranging only from 0 to 1.

Since the CPPNs produce a continuous value between 0 and 1 for each element in
the design domain, we use a threshold value between 0 and 1 to determine whether any
given element is material or void. Figure 8 shows three example patterns produced on
a five-by-five domain. Again, a GA is used to set the input parameters for each CPPN.
Table 4 shows the parameter ranges used in this paper.

Figure 8. Simple example patterns generated using a CPPN encoding layer interpreted into the 2D
Boolean domain used in this paper.

Math. Comput. Appl. 2023, 28, 68 11 of 18

Table 4. Parameters and ranges available to the GA when designing using CPPN intermediate
encoding layer.

Parameter Min Max

Num of Hidden layers 2 10
Size of first layer 2 32
Element removal threshold 0 100

3. Results and Analysis

The results and analysis aimed to compare the suitability of an intermediate L-System
or CPPN encoding layer to direct random input regarding the quality of solutions generated.
The evaluation was performed using the Monte Carlo style and comparing populations of
1000 individuals generated by each encoding method. Each unit is optimised for uniaxial
elongation using a genetic algorithm (GA) starting from a random seed.

The histograms in Figure 9 show the constraint energy of populations generated by
Random, L-System and CPPN encoding. Both Random and L-System encoding produced
a significant proportion of units with high constraint energy, which indicates poor per-
formance in forming the desired shape. On the other hand, CPPN encoding produced a
more significant portion of high-performing units and a more even distribution of lesser-
performing units.

(a) (b)

(c)

Figure 9. Histograms showing the distribution of unit constraint energy for 1000 units generated by a
GA using either random, L-system and CPPN intermediate encoding layer. (a) Random. (b) L-System.
(c) CPPN.

The histograms in Figure 10 show the internal energy of populations generated by
Random, L-System and CPPN encoding. Random and L-System encoding produced similar
results with a strong bias towards higher internal energies, which means more material

Math. Comput. Appl. 2023, 28, 68 12 of 18

and higher loading in the units. On the other hand, CPPN encoding resulted in fewer
high-energy units and produced a more comprehensive range of internal energies.

(a) (b)

(c)

Figure 10. Histograms showing the distribution of unit internal energy for 1000 units generated
by a GA using either random, L-system and CPPN intermediate encoding layers. (a) Random.
(b) L-System. (c) CPPN.

Comparing constraint and internal energy, Figure 11, provides insight into the tradeoff
between the two performance measures. Dividing the scatter plots into four quadrants,
which classify the individual units into:

1. High constraint energy, high internal energy—Units that do not deform to the desired
shape and require significant work to maintain that shape.

2. High constraint energy, low internal energy—Units that do not deform to the desired
shape but do not require much work to maintain that shape.

3. Low constraint energy, low internal energy—Units that deform to the desired shape
and do not require much work to maintain that shape.

4. Low constraint energy, high internal energy—Units that deform to the desired shape
but require significant work to maintain that shape.

Units in quadrants 1 and 2 do not perform well in the desired test case, while units
in quadrants 3 and 4 do, but with a broad range of internal energies. This is related to the
amount of material in a given unit and the degree of strain in the units, defining a spectrum
of potential units depending on the use case. For example, units in quadrant 3 require less
work to form the target shape but will have limited capacity to store energy, while units in
quadrant 4 have the reverse behaviour.

Further analysis of the results showed that L-System encoding produced fewer unique
combinations and less coverage of the response domain. In contrast, CPPN encoding had a
more comparable coverage of the response domain.

Math. Comput. Appl. 2023, 28, 68 13 of 18

(a) (b)

(c)

Figure 11. Comparison of 1000 generated units in terms of internal and constraint energy for random,
L-system and CPPN intermediate encoding layers. (a) Random. (b) L-System. (c) CPPN.

Figure 12 shows examples of units in the low constraint energy, low internal energy
quadrant produced with Random, L-System and CPPN encoding. As expected, the Random
unit does not share the same regularity of shape as the other two. In addition, neither the
L-system nor CPPN encoding could produce the horizontal tie between the left and right
sides we may expect of a human designer. The CPPN, however, does indirectly reinforce
the lateral stiffness of the unit with the additional material near the unit’s centre.

Finally, we can compare the performance of the three methods tested. Introducing an
intermediary encoding layer restricts the design space so that the optimiser more rapidly
converges to an optimum. Considering that the computational cost of running a nonlinear
FEA dominates the optimisation time, we want to reduce the required function evaluations.
Table 5 summarises the average number of function evaluations required to generate a
candidate unit. Let us remember that the GA in all three cases has 1000 individuals per
generation. As expected, the GA without an intermediate encoding layer required the
highest number of function evaluations, followed by the CPPN encoding and L-System
encoding the least.

Table 5. Performance comparison of units generated using Random, L-system and CPPN interme-
diary encoding layers in a GA. The table shows the function evaluations required to converge to a
stable solution from the same starting point with the same GA settings.

Method Function Evaluations Standard Deviation

Random 945 128
L-System 398 198
CPPN 650 54

Math. Comput. Appl. 2023, 28, 68 14 of 18

(a) (b)

(c)

Figure 12. Representative high-performing units generated with Random, L-system and CPPN
intermediate encoding layers. (a) Random. (b) L-System. (c) CPPN.

4. Conclusions

This study compares the impact of incorporating an intermediate encoding layer
into the generative design of two-dimensional soft robotic actuator units. Three different
encoding methods are evaluated in the context of an optimisation problem. The objective is
to match the deformation of a single unit with a desired target shape, specifically uni-axial
elongation, under internal pressure. The methods are a conventional GA with implicit
random encoding (full access to remove any elements from the design domain), an L-
System encoding that mimics biological growth patterns and a CPPN encoding for 2D
pattern generation used in previous research.

The encoding methods are evaluated by incorporating them into the optimisation
problem and measuring the constraint and internal energy of 1000 candidate units gen-
erated using each of the three encodings. The results indicate that while the L-System
encoding generates candidate units with fewer function evaluations in the optimisation
loop, and compared to the traditional implicit random encoding of a GA, the distribution
of constraint and internal energy is similar to that of the random encoding. Additionally,
the L-System encoding produces a less diverse population of candidate units but with a
regular pattern that is preferred for tessellated applications.

Math. Comput. Appl. 2023, 28, 68 15 of 18

In contrast, the CPPN encoding, despite requiring more function evaluations than the
L-System encoding, produces a similar diversity of candidate units. Overall, the CPPN en-
coding results in a proportionally higher number of high-performing units than the random
or L-System encoding, making it a viable alternative to a conventional monolithic approach.

This study provides insights into the potential benefits and limitations of incorporating
intermediate encoding layers in the generative design of soft robotic units and proposes
a robust comparison method for alternative encodings in future. Although limited to
2D, the test case applies to 2D and 3D actuators based on a 2D projection, such as planar
bending actuators. Furthermore, the comparison methodology is modular and allows for
researchers to include alternative encodings, optimisation structures and test cases, such as
the two alternatives already discussed or more complex 3D behaviours.

Author Contributions: Conceptualisation, M.P.V.; methodology, M.P.V. and N.T.C.; software, M.P.V.
and N.T.C.; validation, M.P.V. and N.T.C.; formal analysis, M.P.V.; investigation, N.T.C.; resources,
M.P.V.; data curation, M.P.V. and N.T.C.; writing—original draft preparation, M.P.V.; writing—review
and editing, M.P.V.; visualisation, M.P.V. and N.T.C.; supervision, M.P.V.; project administration,
M.P.V.; funding acquisition, M.P.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Research Foundation of South Africa grant num-
ber 129381.

Data Availability Statement: Data available on request

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rus, D.; Tolley, M. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [CrossRef]
2. Mengaldo, G.; Renda, F.; Brunton, S.L.; Bächer, M.; Calisti, M.; Duriez, C.; Chirikjian, G.S.; Laschi, C. A concise guide to modelling

the physics of embodied intelligence in soft robotics. Nat. Rev. Phys. 2022, 4, 595–610. [CrossRef]
3. Iida, F.; Laschi, C. Soft robotics: Challenges and perspectives. Procedia Comput. 2011, 7, 99–102. [CrossRef]
4. Howison, T.; Hauser, S.; Hughes, J.; Iida, F. Reality-Assisted Evolution of Soft Robots through Large-Scale Physical Experimenta-

tion: A Review. Artif 2021, 26, 484–506. [CrossRef]
5. Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci.

Robot. 2016, 1, eaah3690. [CrossRef] [PubMed]
6. Armanini, C.; Boyer, F.; Mathew, A.; Duriez, C.; Renda, F. Soft Robots Modeling: A Structured Overview. IEEE Trans. Robot. 2023,

1–21. [CrossRef]
7. Chen, W.; Wu, S.; Zhou, T.; Xiong, C. On the biological mechanics and energetics of the hip joint muscle–tendon system assisted

by passive hip exoskeleton. Bioinspir Biomim 2018, 14, 016012. [CrossRef] [PubMed]
8. Pagoli, A.; Chapelle, F.; Corrales-Ramon, J.; Mezouar, Y.; Lapusta, Y. Review of soft fluidic actuators: Classification and materials

modeling analysis. SMS 2022, 31, 013001. [CrossRef]
9. Ilievski, F.; Mazzeo, A.; Shepherd, R.; Chen, X.; Whitesides, G. Soft Robotics for Chemists. Angew. Chem. Int. Ed. 2011, 123,

1930–1935. [CrossRef]
10. Shepherd, R.; Ilievski, F.; Choi, W.; Morin, S.; Stokes, A.; Mazzeo, A.; Chen, X.; Wang, M.; Whitesides, G. Multigait soft robot. Proc.

Natl. Acad. Sci. USA 2011, 108, 20400–20403. [CrossRef]
11. Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C.; Whitesides,

G. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170. [CrossRef]
12. Mutlu, R.; Alici, G.; Li, W. Electroactive polymers as soft robotic actuators: Electro-mechanical modeling and identification.

In Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW,
Australia, 9–12 July 2013; pp. 1096–1101.

13. Laschi, C.; Cianchetti, M. Soft robotics: New perspectives for robot bodyware and control. Front. Bioeng. Biotechnol. 2014, 2, 3.
[CrossRef]

14. Olsen, Z.; Kim, K. Design and Modeling of a New Biomimetic Soft Robotic Jellyfish Using IPMC-Based Electroactive Polymers.
Front. Robot. AI 2019, 6, 112. [CrossRef]

15. Paez, L.; Agarwal, G.; Paik, J. Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement. Soft Robot.
2016, 3, 109–119. [CrossRef]

16. Yi, J.; Chen, X.; Song, C.; Zhou, J.; Liu, Y.; Liu, S.; Wang, Z. Customizable Three-Dimensional-Printed Origami Soft Robotic Joint
with Effective Behavior Shaping for Safe Interactions. IEEE Trans. Robot. 2019, 35, 114–123. [CrossRef]

http://doi.org/10.1038/nature14543
http://dx.doi.org/10.1038/s42254-022-00481-z
http://dx.doi.org/10.1016/j.procs.2011.12.030
http://dx.doi.org/10.1162/artl_a_00330
http://dx.doi.org/10.1126/scirobotics.aah3690
http://www.ncbi.nlm.nih.gov/pubmed/33157856
http://dx.doi.org/10.1109/TRO.2022.3231360
http://dx.doi.org/10.1088/1748-3190/aaeefd
http://www.ncbi.nlm.nih.gov/pubmed/30511650
http://dx.doi.org/10.1088/1361-665X/ac383a
http://dx.doi.org/10.1002/ange.201006464
http://dx.doi.org/10.1073/pnas.1116564108
http://dx.doi.org/10.1002/adfm.201303288
http://dx.doi.org/10.3389/fbioe.2014.00003
http://dx.doi.org/10.3389/frobt.2019.00112
http://dx.doi.org/10.1089/soro.2016.0023
http://dx.doi.org/10.1109/TRO.2018.2871440

Math. Comput. Appl. 2023, 28, 68 16 of 18

17. Ze, Q., Wu, S.; Nishikawa, J.; Dai, J.; Sun, Y.; Leanza, S.; Zemelka, C.; Novelino, L.; Paulino, G.; Zhao, R. Soft robotic origami
crawler. Sci. Adv. 2022, 8, 7834. [CrossRef]

18. Jin, H.; Dong, E.; Xu, M.; Liu, C.; Alici, G.; Jie, Y. Soft and smart modular structures actuated by shape memory alloy (SMA) wires
as tentacles of soft robots. SMS 2016, 25, 085026. [CrossRef]

19. Copaci, D.; Cano, E.; Moreno, L.; Blanco, D. New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory
Alloy Wire Actuators. Appl. Bionics Biomech. 2017, 2017, 1605101. [CrossRef] [PubMed]

20. Rodrigue, H.; Wang, W.; Han, M.; Kim, T.; Ahn, S. An Overview of Shape Memory Alloy-Coupled Actuators and Robots. Soft
Robot. 2017, 4, 3–15. [CrossRef] [PubMed]

21. Wang, W.; Ahn, S. Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping. Soft
Robot. 2017, 4, 379–389 [CrossRef]

22. Stokes, A.; Shepherd, R.; Morin, S.; Ilievski, F.; Whitesides, G. A Hybrid Combining Hard and Soft Robots. Soft Robot. 2014, 1,
70–74. [CrossRef]

23. Patino, T.; Mestre, R.; Sánchez, S. Miniaturised soft bio-hybrid robotics: A step forward into healthcare applications. Lab Chip
2016, 16, 3626–3630. [CrossRef]

24. Rich, S.; Wood, R.; Majidi, C. Untethered soft robotics. Nat. Electron. 2018, 1, 102–112. [CrossRef]
25. Stano, G.; Percoco, G. Additive manufacturing aimed to soft robots fabrication: A review. Extreme Mech. Lett. 2021, 42, 101079.

[CrossRef]
26. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153.

[CrossRef]
27. Gifari, M.; Naghibi, H.; Stramigioli, S.; Abayazid, M. A review on recent advances in soft surgical robots for endoscopic

applications. Int. J. Med. Robot. 2019, 15, e2010. [CrossRef]
28. Runciman, M.; Darzi, A.; Mylonas, G. Soft Robotics in Minimally Invasive Surgery. Soft Robot. 2019, 6, 423–443. [CrossRef]

[PubMed]
29. Albu-Schaffer, A.; Eiberger, O.; Grebenstein, M.; Haddadin, S.; Ott, C.; Wimböck, T.; Wolf, S.; Hirzinger, G. Soft robotics. IEEE

Robot. Autom. Mag. 2008, 15, 20–30. [CrossRef]
30. Glick, P.; Suresh, S.; Ruffatto, D.; Cutkosky, M.; Tolley, M.; Parness, A. A Soft Robotic Gripper with Gecko-Inspired Adhesive.

IEEE Robot. Autom. Lett 2018, 3, 903–910. [CrossRef]
31. Boyraz, P.; Runge, G.; Raatz, A. An overview of novel actuators for soft robotics. High-Throughput 2018, 7, 48. [CrossRef]
32. Sun, Z.; Zhu, M.; Zhang, Z.; Chen, Z.; Shi, Q.; Shan, X.; Yeow, R.; Lee, C. Artificial Intelligence of Things (AIoT) Enabled Virtual

Shop Applications Using Self-Powered Sensor Enhanced Soft Robotic Manipulator. Adv. Sci. 2021, 8, 2100230. [CrossRef]
33. Zhang, C.; Zhu, P.; Lin, Y.; Jiao, Z.; Zou, J. Modular SoAuthors need to follow the proper guideline for the referencing formats

provided by MDPI MCA journal. Do not add the DOI of journals and conference articles, if not required. Change made as
advised. ft Robotics: Modular Units, Connection Mechanisms, and Applications. Adv. Intel. 2020, 2, 1900166.

34. Polygerinos, P.; Correll, N.; Morin, S.; Mosadegh, B.; Onal, C.; Petersen, K.; Cianchetti, M.; Tolley, M.; Shepherd, R. Soft
Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot
Interaction. Adv. Eng. Mater. 2017, 19, 1700016. [CrossRef]

35. Arnold, T.; Scheutz, M. The tactile ethics of soft robotics: Designing wisely for human–robot interaction. Soft Robot. 2017, 4, 81–87.
[CrossRef] [PubMed]

36. Das, A.; Nabi, M. A review on Soft Robotics: Modeling, Control and Applications in Human-Robot Interaction. In Proceedings of
the International Conference on Computing, Communication, and Intelligent Systems, Greater Noida, India, 18–19 October 2019;
pp. 306–311.

37. Xiong, J.; Chen, J.; Lee, P. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human-Robot Interface. Adv. Mater.
2021, 33, 2002640. [CrossRef]

38. Jørgensen, J.; Bojesen, K.; Jochum, E. Is a Soft Robot More “Natural”? Exploring the Perception of Soft Robotics in Human-Robot
Interaction. Int. J. Soc. Robot. 2022, 14, 95–113. [CrossRef]

39. Rossiter, J.; Winfield, J.; Ieropoulos, I. Here today, gone tomorrow: Biodegradable soft robots. In Proceedings of the Electroactive
Polymer Actuators and Devices, Las Vegas, NV, USA, 20–24 March 2016.

40. Mazzolai, B.; Kraus, T.; Pirrone, N.; Kooistra, L.; Simone, A.; Cottin, A.; Margheri, L. Towards new frontiers for distributed
environmental monitoring based on an ecosystem of plant seed-like soft robots. In Proceedings of the 2021 Conference on
Information Technology For Social Good, Roma, Italy, 9–11 September 2021; pp. 221–224.

41. Karmakar, S.; Sarkar, A. Design and implementation of bio-inspired soft robotic grippers. In Proceedings of the Advances in
Robotics, Chennai, India, 2–6 July 2019; pp. 1–6.

42. Joshi, A.; Kulkarni, A.; Tadesse, Y. FludoJelly: Experimental study on jellyfish-like soft robot enabled by soft pneumatic composite
(SPC). Robotics 2019, 8, 56. [CrossRef]

43. Soon, H.; Rosli, N.; Athif, A.; Faudzi, M. Design and control of biomimicry eye using soft actuator. PERINTIS EJournal 2020, 10,
34–49.

44. Park, C.; Fan, Y.; Hager, G.; Yuk, H.; Singh, M.; Rojas, A.; Hameed, A.; Saeed, M.; Vasilyev, N.; Steele, T.; et al. An organosynthetic
dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging. Sci. Robot. 2020, 5, eaay9106.
[CrossRef] [PubMed]

http://dx.doi.org/10.1126/sciadv.abm7834
http://dx.doi.org/10.1088/0964-1726/25/8/085026
http://dx.doi.org/10.1155/2017/1605101
http://www.ncbi.nlm.nih.gov/pubmed/29104424
http://dx.doi.org/10.1089/soro.2016.0008
http://www.ncbi.nlm.nih.gov/pubmed/29182099
http://dx.doi.org/10.1089/soro.2016.0081
http://dx.doi.org/10.1089/soro.2013.0002
http://dx.doi.org/10.1039/C6LC90088G
http://dx.doi.org/10.1038/s41928-018-0024-1
http://dx.doi.org/10.1016/j.eml.2020.101079
http://dx.doi.org/10.1038/s41578-018-0022-y
http://dx.doi.org/10.1002/rcs.2010
http://dx.doi.org/10.1089/soro.2018.0136
http://www.ncbi.nlm.nih.gov/pubmed/30920355
http://dx.doi.org/10.1109/MRA.2008.927979
http://dx.doi.org/10.1109/LRA.2018.2792688
http://dx.doi.org/10.3390/act7030048
http://dx.doi.org/10.1002/advs.202100230
http://dx.doi.org/10.1002/adem.201700016
http://dx.doi.org/10.1089/soro.2017.0032
http://www.ncbi.nlm.nih.gov/pubmed/29182090
http://dx.doi.org/10.1002/adma.202002640
http://dx.doi.org/10.1007/s12369-021-00761-1
http://dx.doi.org/10.3390/robotics8030056
http://dx.doi.org/10.1126/scirobotics.aay9106
http://www.ncbi.nlm.nih.gov/pubmed/33022595

Math. Comput. Appl. 2023, 28, 68 17 of 18

45. Youssef, S.; Soliman, M.; Saleh, M.; Mousa, M.; Elsamanty, M.; Radwan, A. Underwater Soft Robotics: A Review of Bioinspiration
in Design, Actuation, Modeling, and Control. Micromachines 2022, 13, 110. [CrossRef]

46. Stuttaford-Fowler, A.; Samani, H.; Yang, C. Biomimicry in Soft Robotics Actuation and Locomotion. In Proceedings of the
International Conference On System Science and Engineering, Taichung, Taiwan, 26–29 May 2022; pp. 17–21.

47. Dong, X.; Luo, X.; Zhao, H.; Qiao, C.; Li, J.; Yi, J.; Yang, L.; Oropeza, F.; Hu, T.; Xu, Q.; et al. Recent advances in biomimetic soft
robotics: Fabrication approaches, driven strategies and applications. Soft Matter 2022, 18, 7699–7734. [CrossRef] [PubMed]

48. Sun, J.; Bauman, L.; Yu, L.; Zhao, B. Gecko-and-inchworm-inspired untethered soft robot for climbing on walls and ceilings. Cell
Rep. 2023, 4, 101241. [CrossRef]

49. Maur, P.; Djambazi, B.; Haberthur, Y.; Hormann, P.; Kubler, A.; Lustenberger, M.; Sigrist, S.; Vigen, O.; Forster, J.; Achermann, F.;
et al. RoBoa: Construction and evaluation of a steerable vine robot for search and rescue applications. In Proceedings of the 4th
International Conference On Soft Robotics, New Haven, CT, USA, 2–16 April 2021; pp. 15–20.

50. Jørgensen, J. Leveraging morphological computation for expressive movement generation in a soft robotic artwork. In Proceedings
of the ACM International Conference Proceeding Series, London, UK, 28–30 June 2017; pp. 1–4.

51. Lee, J.; Eom, J.; Choi, W.; Cho, K. Soft LEGO: Bottom-up Design Platform for Soft Robotics. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 7513–7520.

52. Pinskier, J.; Howard, D. From Bioinspiration to Computer Generation: Developments in Autonomous Soft Robot Design. Adv.
Intel. 2022, 4, 2100086. [CrossRef]

53. Wang, H.; Totaro, M.; Beccai, L. Toward Perceptive Soft Robots: Progress and Challenges. Adv. Sci. 2018, 5, 1800541. [CrossRef]
54. Chen, F.; Wang, M. Design Optimization of Soft Robots: A Review of the State of the Art. IEEE Robot. Autom. Mag. 2020, 27, 27–43.

[CrossRef]
55. Lipson, H.; Pollack, J. Automatic design and manufacture of robotic lifeforms. Nature 2000, 406, 974–978 [CrossRef] [PubMed]
56. Hiller, J.; Lipson, H. Automatic design and manufacture of soft robots. IEEE Trans. Robot. 2012, 28, 457–466. [CrossRef]
57. Ellis, D.; Venter, M.; Venter, G. Computational design for inflated shape of a modular soft robotic actuator. In Proceedings of the

IEEE International Conference on Soft Robotics, Seoul, Republic of Korea, 14–18 April 2019; pp. 7–12.
58. Conradie, N. A Scale-Invariant Generative Design Process for 2D Soft Robot Actuators. Ph.D. Thesis, Stellenbosch University,

Stellenbosch, South Africa, 2021.
59. Ellis, D.; Venter, M.; Venter, G. Generative Design Procedure for Embedding Specified Planar Behavior in Modular Soft Pneumatic

Actuators. Soft Robot. 2022, 9, 552–561. [CrossRef]
60. Pinskier J.; Shirinzadeh B. Topology optimisation of leaf flexures to maximise in-plane to out-of-plane compliance ratio. Precis.

Eng. 2019. 55, 397–407. [CrossRef]
61. Sun, Y.; Liu, Y.; Pancheri, F.; Lueth, T.C. LARG: A Lightweight Robotic Gripper with 3-D Topology Optimised Adaptive Fingers.

IEEE ASME Trans. Mechatron. 2022, 27, 2026–2034. [CrossRef]
62. Venter, M.P.; Joubert, I.J. Generative Design of Soft Robot Actuators Using ESP. Math. Comput. Appl. 2023, 28, 53. [CrossRef]
63. Lai, G.; Leymarie, F.; Latham, W.; Arita, T.; Suz’uki, R. Virtual Creature Morphology—A Review. Comput. Graph Forum 2021, 40,

659–681. [CrossRef]
64. Choi, H.; Crump, C.; Duriez, C.; Elmquist, A.; Hager, G.; Han, D.; Hearl, F.; Hodgins, J.; Jain, A.; Leve, F.; et al. On the use of

simulation in robotics: Opportunities, challenges, and suggestions for moving forward. Proc. Natl. Acad. Sci. USA 2023, 118,
e1907856118. [CrossRef]

65. Xavier, M.S.; Fleming, A.J.; Yong, Y.K. Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments
Adv. Intell. Syst. 2021, 3, 2000187. [CrossRef]

66. Marechal, L.; Balland, P.; Lindenroth, L.; Petrou, F.; Kontovounisios, C.; Bello, F. Toward a Common Framework and Database of
Materials for Soft Robotics. SoRo 2021, 8, 284–297. [CrossRef]

67. Tanaka, H; Leon-garcia, A. Efficient Run-Length Encodings. IEEE Trans. Inf. Theory 1982, 28, 880–890. [CrossRef]
68. Javed, M.; Nadeem, A. Data compression through adaptive Huffman coding scheme. In Proceedings of the 2000 TENCON

Proceedings. Intelligent Systems and Technologies for the New Millennium, Kuala Lumpur, Malaysia, 24–27 September 2000;
pp. 187–190.

69. Rissanen, J.; Langdon, G. Arithmetic Coding. IBM J. Res. Dev. 1979, 23, 149–162. [CrossRef]
70. Barnsley, M.; Demko, S. Iterated function systems and the global construction of fractals. Proc. Math. Phys. Eng. Sci. 1985, 399,

243–275.
71. Lindenmayer, A. L-systems in their biological context. In Proceedings of the 1974 Conference On Biologically Motivated Automata

Theory, McLean, VA, USA, 19–21 June 1974; pp. 65–69.
72. Mandelbrot, B. Fractals; Freeman: San Francisco, CA, USA, 1977.
73. Wolfram, S. Cellular automata as models of complexity. Nature 1984, 311, 419–424. [CrossRef]
74. Holland, J. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
75. Kennedy, J. Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2006.
76. Turk, G. Generating textures on arbitrary surfaces using reaction-diffusion. ACM Siggraph Comput. Graph. 1991, 25, 289–298.

[CrossRef]
77. Minsky, M. Theory of Neural-Analog Reinforcement Systems and Its Application to the Brain-Model Problem. Ph.D. Thesis,

Princeton University, Princeton, NJ, USA, 1954.

http://dx.doi.org/10.3390/mi13010110
http://dx.doi.org/10.1039/D2SM01067D
http://www.ncbi.nlm.nih.gov/pubmed/36205123
http://dx.doi.org/10.1016/j.xcrp.2022.101241
http://dx.doi.org/10.1002/aisy.202100086
http://dx.doi.org/10.1002/advs.201800541
http://dx.doi.org/10.1109/MRA.2020.3024280
http://dx.doi.org/10.1038/35023115
http://www.ncbi.nlm.nih.gov/pubmed/10984047
http://dx.doi.org/10.1109/TRO.2011.2172702
http://dx.doi.org/10.1089/soro.2020.0013
http://dx.doi.org/10.1016/j.precisioneng.2018.10.008
http://dx.doi.org/10.1109/TMECH.2022.3170800
http://dx.doi.org/10.3390/mca28020053
http://dx.doi.org/10.1111/cgf.142661
http://dx.doi.org/10.1073/pnas.1907856118
http://dx.doi.org/10.1002/aisy.202000187
http://dx.doi.org/10.1089/soro.2019.0115
http://dx.doi.org/10.1109/TIT.1982.1056593
http://dx.doi.org/10.1147/rd.232.0149
http://dx.doi.org/10.1038/311419a0
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1145/127719.122749

Math. Comput. Appl. 2023, 28, 68 18 of 18

78. Kriegman, S.; Nasab, A.; Blackiston, D.; Steele, H.; Levin, M.; Kramer-Bottiglio, R.; Bongard, J. Scale invariant robot behavior with
fractals. arXiv 2021, arXiv:2103.04876.

79. Cheney, N.; Lipson, H. Topological evolution for embodied cellular automata. J. Theor. 2016, 633, 19–27. [CrossRef]
80. Giorgio-Serchi, F.; Arienti, A.; Corucci, F.; Giorelli, M.; Laschi, C. Hybrid parameter identification of a multi-modal underwater

soft robot. Bioinspir. Biomim. 2017, 12, 025007. [CrossRef] [PubMed]
81. Terrile, S.; López, A.; Barrientos, A. Use of Finite Elements in the Training of a Neural Network for the Modeling of a Soft Robot.

Biomimetics 2023, 8, 56. [CrossRef] [PubMed]
82. Lassner, M. Graph Embedding Algorithms and Their Applications. Ph.D. Thesis, Wayne State University, Detroit, MI, USA, 1981.
83. Lucas, M.; Laplaze, L.; Bennett, M. Plant systems biology: Network matters. Plant Cell Environ. 2011, 34, 535–553. [CrossRef]
84. Ebert, D. Advanced Modeling Techniques for Computer Graphics. ACM Comput. Surv. 1996, 28, 154–156. [CrossRef]
85. Wonka, P.; Wimmer, M.; Sillion, F.; Ribarsky, W. Instant Architecture. ACM Trans. Graph. 2003, 22, 669–677. [CrossRef]
86. Stanley, K. Compositional pattern producing networks: A novel abstraction of development. Genet. Program. Evolvable Mach.

2007, 8, 131–162. [CrossRef]
87. Gu, Y.; Zhang, X.; Wu, Q.; Li, Y.; Zhang, B.; Gao, F.; Luo, Y. Research on motion evolution of soft robot based on VoxCAD. In

Proceedings of the Intelligent Robotics and Applications: 12th International Conference, Shenyang, China, 8–11 August 2019;
pp. 26–37.

88. Cheney, N.; Maccurdy; R., Clune, J.; Lipson, H. Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a
Powerful Generative Encoding. ACM SIGEVOlution 2014, 7, 11–23. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.tcs.2015.06.024
http://dx.doi.org/10.1088/1748-3190/aa5ccc
http://www.ncbi.nlm.nih.gov/pubmed/28140363
http://dx.doi.org/10.3390/biomimetics8010056
http://www.ncbi.nlm.nih.gov/pubmed/36810387
http://dx.doi.org/10.1111/j.1365-3040.2010.02273.x
http://dx.doi.org/10.1145/234313.234378
http://dx.doi.org/10.1145/882262.882324
http://dx.doi.org/10.1007/s10710-007-9028-8
http://dx.doi.org/10.1145/2661735.2661737

	Introduction
	Methods and Materials
	Test Case
	Encoding Methods
	Random Units
	Lindenmayer Systems
	Compositional Pattern Producing Networks

	Results and Analysis
	Conclusions
	References

