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Abstract: Soft robotics is an emerging field that leverages the compliant nature of materials to control
shape and behaviour. However, designing soft robots presents a challenge, as they do not have
discrete points of articulation and instead articulate through deformation in whole regions of the
robot. This results in a vast, unexplored design space with few established design methods. This
paper presents a practical generative design process that combines the Encapsulation, Syllabus, and
Pandamonium method with a reduced-order model to produce results comparable to the existing
state-of-the-art in reduced design time while including the human designer meaningfully in the
design process and facilitating the inclusion of other numerical techniques such as Markov chain
Monte Carlo methods. Using a combination of reduced-order models, L-systems, MCMC, curve
matching, and optimisation, we demonstrate that our method can produce functional 2D articulating
soft robot designs in less than 1 s, a significant reduction in design time compared to monolithic
methods, which can take several days. Additionally, we qualitatively show how to extend our
approach to produce more complex 3D robots, such as an articulating tentacle with multiple grippers.

Keywords: pneumatic soft robot; reduced-order model; Encapsulation, Syllabus, and Pandamonium

1. Introduction

Soft robotics is a sub-field of robotics that focuses on the use of compliant materials
and significant material deformation in the design and functionality of robots [1]. Their
soft nature allows the robot to move and adapt to its environment more naturally, similar
to how living organisms move [2]. The literature categorises soft robots by the materials
used, articulation mechanisms and the method of energy transfer [3,4]. In their review of
contemporary real-world applications of soft actuators, Li et al. highlight the importance
of soft actuators to a wide range of fields [5], including notable fields such as medical and
surgical devices [6], industrial automation [7] (Figure 1), human–robot interaction [8,9],
environmental monitoring and biomimicry [10–12].

A comprehensive review of soft actuator applications by El-Atab et al. emphasises
classifying soft actuators based on their source of activation, highlighting the integrated
nature of the structure of soft robots and their control [13]. Soft actuators are classified
as responding to electrical, magnetic, thermal, light, and pressure input, distinguishing
between slow (conventional fluid flow) and rapid (explosive) pressurisation. Under this
classification, this research focussed on pressure-driven soft actuators that use air or fluid
pressure to inflate a single internal cavity or network of internal cavities to move various
robot sections [14–16].

In Lipson’s 2014 “state of the field review” [17], he notes several challenges and oppor-
tunities for the design, simulation, and fabrication of soft robots that are still problematic
today. Likewise, although there have been several developments in simulation and auto-
mated design processes for soft robots, the 2020 review by Chen et al. reaffirms that the
same challenges remain [18].
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Figure 1. An example of three bending PNA’s assembled into a gripper holding a wooden block.

A 2021 review of simulation methods for soft robotic actuators finds that while FEM
is a valuable tool for modelling soft fluidic actuators and evaluating the effect of material
properties and geometry, several limitations support the need for experimental characteri-
sation to validate FEM results [19]. However, when used with care, we can achieve accurate
results, although with a significant computational expense. This review further suggests
applying machine learning methods to learn the nonlinear kinematics of soft robots from
FEM results. Finally, this paper uses a finite element simulation to generate the training
data sets for an alternative data-driven model.

The successful design of soft robots requires a simultaneous design of their topology,
control system, and behaviour [20]. The process includes material selection, topology design,
control, and fabrication. A deep understanding of soft materials’ underlying physics and
mechanics is needed to achieve the desired behaviour. Due to the lack of discrete pivot points,
the entire material domain contributes to the deformation and response of the robot, resulting
in a larger design space with few established design methods. As a result, the design space for
soft robots is highly nonlinear and largely unexplored. Current design methods are primarily
trial and error, relying on intuition to drive development. However, several research groups
have attempted other design methods, such as generative design [18].

Automated design processes, specifically generative design, use algorithmic processes
to assist designers and are capable of generating designs for specific design domains by
formulating the design process in terms of a set of constraints and objectives. Modern
computational resources have increased the capabilities of these automated design ap-
proaches, allowing for more powerful generative design generators. Lai et al. [21] provide
a compelling overview of the current state of the art. The work by Runge and Raatz [22] is
particularly worth mentioning as they provide a robust process for the general design of
soft robotic systems using parametric design, simulation, reduced order kinematic mod-
elling and meta-modelling to generate candidate components rapidly. Previous work by
this group [23,24] uses a genetic algorithm to design a 15-unit pneumatic network bending
actuator using a computational design approach. The algorithm could produce verifiably
suitable designs, but the process was computationally expensive.

We propose reducing computational time and improving functionality by breaking
down the monolithic optimisation problem into a structured sequence of smaller optimisa-
tions and maintaining the benefits of a human-in-the-loop design process. To this end, we
are exploring the “Encapsulation, Syllabus, and Pandamonium” (ESP) [25] method as an
alternative design approach, using reduced-order models of a typical pneumatic bending
actuator trained on data derived from FE modelling. We aim to replicate and extend our
previous work to produce a high-articulation multi-gripper.
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2. Materials and Methods
2.1. Materials, Manufacturing, and Testing

Typically, soft robots are made from flexible materials, such as silicone, rubber, and various
polymers. These materials can be shaped and moulded into various forms, allowing for a
wide range of movement and design flexibility. This paper takes the work by Ellis et al. [23,24]
as a starting point and extends it to a new application; as such, we use the same materials,
Mold Star 15 and Smooth-Sil 950, each produced by mixing binary prepolymer liquid and
allowed to cure at 30 °C. This material class requires highly nonlinear material models, and their
calibration is a prominent source of uncertainty in modelling the behaviour of soft robots,
as noted by both Ellis [23] and Xavier et al. [19].

The principal methods for fabricating soft fluidic actuators include casting and 3D
printing [26], supported by a few supplemental techniques, including reinforcement, thin-
film manufacturing, and bonding. In cases where the components are small or require tight
tolerances, they are produced using soft lithography [27]. In casting, a liquid material is
poured into a mould and solidifies, forming the internal cavity. Three-dimensional printing
is creating a physical object from a digital model by laying down successive layers of
material. In this work, we cast all actuators in 3D printed moulds, which gives a smooth
surface finish and tight tolerancing on the final parts [28].

Testing methods for soft robots include visual inspection, mechanical testing, and func-
tional testing. In this work, we use inspection and functional testing and take the mechanical
testing results from the literature. Next, we inspect the manufactured parts for defects and
geometric non-conformance, with defective actuators excluded from further testing. Finally,
the function of the part is measured against a given tip displacement target, measured
using photogrammetry or extracted from a computer simulation.

This work is limited to the design of a single pneumatic bending actuator comprised
of 15 single chamber units. Each unit comprised an air chamber with height h, width W
and thickness t1 cast in the more compliant Mold Star 15, and a strain limiting layer of
thickness t2 cast in stiffer Smooth-Sil 950. The asymmetric stiffness of each unit causes a
biased expansion when subjected to internal pressure. Fifteen of these single chamber units
are cast in a single reconfigurable mould proposed by Ellis [29] together, either with the
strain limiting layer either in the ‘up’ or ‘down’ position, Figure 2.

Figure 2. Example of a 15-unit pneumatic network bending actuator, showing the geometric parame-
ters of a single representative unit. Regions cast in Mold Star 15 are shown as green, and Smooth-
Sil 950 as blue. Units with the Smooth-Sil 950 strain limiting layer on top are in the ‘up’ position,
and those with the strain limiting layer at the bottom are in the ‘down’ position.

2.2. Encapsulation, Syllabus, Pandamonium

In a sequence of papers, Lessin et al. [25,30,31] propose breaking down the traditional
monolithic optimisation problem posed by traditional generative design into a structured
sequence of smaller optimisations in a heuristic method they call “Encapsulation, Syllabus,
and Pandamonium”. The method consists of three main steps:

1. Encapsulation: dividing the design problem into smaller sub-problems or modules,
each with a specific function or target behaviour. Each sub-problem or module is then
optimised separately. Once a solution is found for a given encapsulation, that unit
can be stored as a complete component and reused in subsequent encapsulations.
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2. Syllabus: organising the sub-problems or modules into a structured sequence or curriculum.
Modules are sequenced logically to build from simple to complex behaviours or targets.

3. Pandemonium: combining the optimised sub-problems or modules into a final design.
The modules compete in a virtual environment, given the overall design objectives
and constraints to propose a final design.

The overall goal of this method is to reduce computational time and improve function-
ality by breaking down the monolithic optimisation problem into smaller, more manageable
sub-problems that can be optimised separately. It also allows for a better understanding
of the design problem and space, which can help guide the design process. The method
relies on computational power to explore the design domain for the designer, who steers
the development by structuring the elements of the problem.

For example, consider the problem of designing a soft robot that moves between points
on a plane when subjected to an oscillating input pressure. Cheney et al. successfully solve
the monolithic problem [32]. However, the solution is challenging to realise practically,
and the time taken to find a solution is immense. Therefore, we can instead reframe the
problem using the ESP paradigm. We can consider the overall objective of producing a
locomoting robot as the highest level of encapsulation and define the robot’s behaviour
at this level. Figure 3 shows the high-level encapsulation for a locomoting robot and the
lower-level encapsulation with arrows showing how solved encapsulations are used as
components in higher-level encapsulations. To achieve the overall behaviour, we will
follow a syllabus where first, we learn how to produce elementary movements. In this case,
a small material region can expand, elongate or shear when subjected to internal pressure.
We do this in such a way that we produce a meta-model for each case relating the input
factors, such as pressure and scale, to output features, such as deformation.

Figure 3. Framing the development of a locomoting robot using ESP. The high-level encapsulation
defines the locomoting robot’s properties, while lower-level encapsulations such as “expand” are
grouped within a given syllabus. Arrows indicate where lower-level encapsulations are used as
elements in higher-level encapsulations.

Once we have satisfactory encapsulations for each movement, we can use them as base
components in the following “Movement Control” syllabus item. Here we define a domain
comprised of “Movement” encapsulation and target movement to the left, right or forward.
These encapsulations can then, in turn, become the base components for the last syllabus item
of “location control”, where the robot learns how to “go to” or “return to” a specified location.

The learning mechanism at each encapsulation level creates multiple candidate so-
lutions and allows these to compete to form a list of high-performing encapsulations.
In addition, it is possible to allow several encapsulation variants to maintain variability
throughout the development process.
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2.3. Reduced-Order Model

A reduced-order model can significantly alleviate the computational requirements of a
simulation by removing or combining redundant or unnecessary aspects of the design [33].
For example, nonlinear FEA is a common technique for representing or simulating the
behaviour of soft robot elements. It can capture both the time-transient nature of robot
motion and the nonlinear material behaviour and large displacements typical in this
field. This field does use several alternative order reduction strategies, including linear
and nonlinear beam theory [34], eigenvalue analysis and orthogonal decomposition [35],
machine learning [36], and inverse kinematics [37].

Ellis et al. [24] simulate each candidate bending actuator using a complete, 3D FE
model in MSC.Marc. The computational time to simulate each candidate is significant
(≈20 min per evaluation), compounded by the need for many such simulations in a gen-
erative design environment. Ellis et al. found that by replacing the internal cavity with a
tuned low-stiffness material, one can represent the 3D actuator in 2D, significantly reducing
simulation time (≈45 s per evaluation). However, the material models must be calibrated
for the reduced dimension. The 2D reduced model worked well for the case with only a
single geometry but will require additional calibration to include various geometries.

In this paper, we can initially reduce the problem by acknowledging that the motion
profile we are working with is 2D and that the actuator is a sequence of replicating units.
The reduced order model we require only needs to map the parametric geometry (t1, t2,
h, W, l, see Figure 2), of a single unit to a change in length (∆L) and bending angle (θ) for
various internal pressure loads (P), Figure 4. We can estimate the behaviour of a 15-unit
actuator by summing the behaviour of its component units. Further, we are only interested
in the quasi-static behaviour and ignore any time-transient behaviour.

Figure 4. Geometric representation of the reduced-order model. Left is the cross-section of a single
unit in a profile. The compliment Mold Star 15 cavity (green) and Smooth-Sil 950 strain-limiting
layer (blue) are shown. The reduced model replaced the entire unit with a single line (red) of
length L. The right shows the change in geometry experienced by each unit when pressure is applied.
The cavity expands significantly, while the strain-limiting layer does not. This is represented by an
increase in length ∆L and a change in angle for the two ends of the line Θ.

To determine the relationship between a unit of given parameters and its response, we
simulate a sequence of three identical units and measure the response only of the middle
unit, Figure 5. The first unit in the sequence has a fully fixed boundary condition, not
representative of the general unit, and the last unit is prone to unrepresentative bulging.



Math. Comput. Appl. 2023, 28, 53 6 of 17

Figure 5. Three unit FE model of a soft bending actuator. The red wedge indicates the centre unit
used as input for the reduced-order model.

We construct the FE model in MSC.Marc based on the parametric CAD shown in
Figure 2; instead of all 15 units, we only model three, and we make use of a longitudinal
symmetry plane suggested by Xavier et al. to reduce the computational cost of each
simulation [19]. Next, we mesh the geometry in MSC.Apex using second-order hexahedral
elements with a nominal dimension of 0.5 mm, resulting in a mesh with at least two
elements through the thickness of any wall. Finally, for simulation purposes, we represent
each material using an Ogden constitutive model [38] with material parameters derived
from testing performed per ISO 37:2011 [39] and ISO 7743 [40], as shown in Table 1.

Table 1. Ogden parameters for Mold Star 15 and Smooth-Sil 950 derived from materials testing in
accordance with ISO 37:2011 and ISO 7743.

Material µ1 (N mm−2) α1 µ2 (N mm−2) α2 µ3 (N mm−2) α3

Mold Star 15 −6.503× 10−6 −21.32 0.2169 1.180 1.372× 10−3 4.884
Smooth-Sil 950 −0.3062 −3.059 0.0283 4.597 6.596× 10−9 17.69

The left edge of the three-unit mesh is fully constrained, representing a fully clamped
condition, while the right edge remains free. The simulation uses implicit integration in a
full Newton–Raphson scheme, with large displacements and follower forces active.

We train a response surface constructed with radial basis functions [41] using a Latin
hypercube design of experiments (DOE), resulting in a reconstruction error R2 = 0.98 with
100 training points, as shown in Table 2. Note that the unit length is constant, allowing us
to maintain the overall length of the actuator with 15 units for comparison purposes.

Table 2. Parameter ranges used in the DOE for a reduced-order model of a single bending actuator
unit. Nominal values were taken from Ellis et al. [24] as t1 = 1 mm, t2 = 2 mm, h = 17.5 mm, W = 15 mm,
and l = 10 mm.

Parameter Min Max

Cavity wall thickness t1 0.5 mm 3.0 mm
Strain limiter thickness t2 0.5 mm 3.0 mm
Cell height h 15.0 mm 20.0 mm
Cell width W 12.5 mm 17.5 mm
Cell length l 10 mm 10 mm
Pressure P 0.1 bar 1.1 bar
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2.4. Lindenmeyer Systems

Lindenmayer systems, also known as L-systems, are a type of formal grammar used
to describe the growth of plants and other organisms and the shapes of specific natural
structures, such as crystals and snowflakes [42]. It was first described by the Hungarian
biologist Aristid Lindenmayer in the 1960s and has been used in various fields, such as
biology [43], computer graphics [44], and architectural and graphic design [45]. This paper
uses L-systems to encode repeating building block sequences of actuator units. The L-
system can be considered a mathematical model of the growth process of the organism
or system, with the symbols in the string representing different parts of the organism or
system, and the production rules specifying how those parts change over time. An L-system
consists of an alphabet of symbols, variables or immutable constants, an initial axiom,
and production rules. Starting with the axiom as iteration 0, the production rules specify
how to replace each symbol in the produced string during the successive iterations of the
L-system. For example, Table 3 shows how an L-system can produce a Koch curve [46].
Table 4 shows the resulting string and visual representation.

Table 3. Construction rules to produce a Koch curve using L-systems. Starting with the axiom “F”,
at each iteration, “F” is replaced by “F+F–F–F+F”. As constants “+” and “–” are not replaced in
successive iterations. Including an interpretation layer, we can sketch the Koch curve created. “F”
represents a line, “+” represents a right turn in the lines’ direction, and “–” represents a left turn in
the lines’ direction.

Variables: F
Constants: +, –
Axiom: F
Production Rules: F→ F+F–F–F+F

Table 4. Result of three iterations of the presented Koch curve using L-systems.

Iteration String Representation

0 F
1 F+F–F–F+F

2 F+F–F–F+F+F+F–F–F+F–F+F–F–F+F–F+F–F–F+F+F+F–F–F+F

2.5. Markov Chain Monte Carlo Methods

This research requires exploring permutations of a sequence of bending actuator units
with different geometries. The eventual response of the final unit in the sequence depends
on the response of all previous units. Markov chain Monte Carlo (MCMC) methods are
a class of computational algorithms for estimating the properties of complex probability
distributions. These algorithms are widely used in Bayesian statistics and machine learning,
where they can perform parameter estimation, model selection, and model averaging tasks.
These methods can also be used to explore a combinatorial design space in an organised
way [47]. Gibbs sampling [48] is a special case of the Metropolis–Hastings algorithm [49]
that is used when the target distribution can be written as a product of simpler distributions.
It works by sampling from each simpler distribution, one at a time.

In this work, there is only one probabilistic component, whether a particular unit
in a sequence is up or down. Using a probability of 50% that a unit will be in the “up”
orientation, we can readily explore our design space. We use Gibbs sampling to explore the
design space without bias, allowing us to identify high-performing and unique multi-unit
combinations for reuse.
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2.6. Curve Matching

One key element of this work is the capability to measure the relative performance
of two designs in their ability to match a given target curve. The user can use an ordered
sequence of points from an analytical equation to represent the target curve. The output
curve is constructed from the sequence of unit centroids for a given actuator geometry at a
given pressure. The closer the size and shape of the target and output curve, the higher the
actuator performance.

Several alternatives are available for measuring the difference between curves, includ-
ing discrete Fréchet distance [50], dynamic time warping (DTW) [51], and partial curve
matching (PCM) [52]. In robotics, PCM is used for grasping, path planning, tracking,
and recognising non-rigid objects. PCM is simple to implement and robust. However, it
can become computationally expensive as the curves’ complexity increases. The basic idea
behind PCM is to divide the given curve and the reference curves into smaller segments
and compare the segments to find the best match. The segments can be divided into equal
parts, or a technique such as DTW can be used to align the segments based on their shape.

In our case, we map each target curve segment to the output curve’s corresponding
segment. This requires the target and output curves to have the same number of segments.
We use simple linear interpolation to divide the target curve into the same number of
segments as the output curve if they initially differ. Each pair of segments is then connected
to form a quadrilateral. The area of each quadrilateral is then calculated and summed
to quantify the total deviation between the two curves. This method provides flexibility
because parts of the target or output curves can be used rather than the whole curve when
beneficial. Figure 6 shows an example of comparing two curves.

Figure 6. PCM example showing a target curve (blue) and a candidate curve (red). Both the target
and candidate curves are discretised and connected into simple quadrilaterals (green). The area of
each quadrilateral is calculated and accumulated over all quadrilaterals to produce a performance
measure for later optimisation. In this case, the candidate curve is not required to have a complete
match with the target curve, so only part of the candidate curve is discretised.

2.7. Optimisation

This paper uses numerical optimisation to minimise the distance between two points or
the area between two curves. We use the Euclidian distance (dE(x, y)), where x and y are the
initial and target tip coordinates in the first and PCM (PCMarea) in the second. Equation (1)
describes the optimisation problem for minimising the difference. The parameters and
ranges are the same as in Section 2.3, and an additional discrete orientation variable O with
states ↑ or ↓.
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minimize dE(x, y) or PCMarea

subject to 0.5 mm ≤ t1 ≤ 3.0 mm

0.5 mm ≤ t2 ≤ 3.0 mm

15.0 mm ≤ h ≤ 20.0 mm

12.5 mm ≤W ≤ 17.5 mm

0.1 bar ≤ P ≤ 1.1 bar

l = 10.0 mm

O ∈ [↑ or ↓]

(1)

Although gradient information is available from some reduced-order models, we use a
non-gradient-based genetic algorithm (GA), [53]. Firstly, it allows for the simple inclusion of
discrete variables such as orientation. Secondly, the survival of the fittest heuristic mechanism
used by GA’s closely matches the intent of the pandamonium phase of the ESP methods
described in Section 2.2. Lastly, GA’s are better suited to produce a collection of high-performing
options rather than a final optimal solution. This paper uses a basic GA with parameters listed
in Table 5. That said, we invested little effort in tuning the hyperparameters.

Table 5. Hyperparameters for simple GA used in this paper.

Population size: 250 individuals
Maximum iterations: 1000
Patience: 5 iterations
Elites: 5%
Crossover: 50%
Mutation rate: 5%
Mutation strength: 5%

3. Results and Discussion

Here we present two sets of results. The first shows how we replicate the work by
Ellis et al. [24] using ESP, and then we show how we can extend the method to a more
complex example.

3.1. Two-Dimensional Bending Actuators with ESP

Ellis et al. assemble 15 identical bending units in either the up (↑) or down (↓) position
to target one of four cases using a GA. For reference, the length of the assembled bending
actuator is shown in Figure 2 as the horizontal direction (x), with increasing magnitude
moving from left to right with a fully clamped condition representing x = 0 on the left end
of the actuator. The vertical direction (y) is perpendicular to the horizontal with y = 0 also
at the centre of the clamped left edge of the actuator. Ellis et al. [24] investigates four target
cases, Table 6, when a bending actuator is subjected to a given internal pressure.

Table 6. Target cases investigated by Ellis et al. [24] replicated in this paper.

Maximise x-position of the free tip (max horizontal)
Minimise x-position of the free tip (min horizontal)
Maximise y-position of the free tip (max vertical)
Minimise the distance between fixed and free ends (min radius)

Figure 7 shows our approach using the ESP framework. Here we start with two encap-
sulations that represent pre-built modules used in later training. These two encapsulations
are a parametric FE model of a three-unit bending actuator (three-unit FE analysis) and a
dataset containing the ranges for each parameter in a single unit (Unit Parameters). These
encapsulations are somewhat independent and can be swapped for encapsulations with
similar properties easily. However, they represent a necessary starting position and tools
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that are not learnt within the ESP syllabus in this case. The syllabus consists of three
modules, “represent bending unit”, “represent bending actuator” and “target measure”.
The “represent bending unit” module is tasked with learning the bending response of a
single bending unit within the parameter range contained within defined parameter ranges,
using the method described in Section 2.3, resulting in a model of a single bending unit
(bending unit). The “represent bending actuator” module learns how to assemble the bend-
ing units into a predicted performance for a full actuator (bending actuator). The “target
measure” module consists of learning the best configurations for each of the four target
measures. For this, we need an encapsulation containing the definitions for the desired
performance measures (performance measures).

Figure 7. ESP framework for generating candidate designs for various pneumatic bending actuators
to replicate the work of Ellis et al. [24].

This paper replicates the unit orientation results of Ellis et al., as shown in Table 7. We
further show that if we reverse each unit in the four results, there is a second viable configuration
for each case, something not shown in Ellis’s work. Finally, Table 8 compares the tip displace-
ment measured and simulated by Ellis et al. with those found using ESP. In each case, the results
of the ESP method proposed here show close conformance to those previously presented, as
visually confirmed in Figure 8. It is important to note that by making use of the pre-trained
reduced order models resulting from the “Three Unit FEA” and “Unit Parameters” encapsula-
tions, the optimisation time for each of the four target measures in the “Target Measure” module
takes less than 1 s compared to a single function evaluation using Ellis et al.’s reduced-order
model taking around 45 s on the same hardware. A single function evaluation of the “Three
Unit FE Analysis” encapsulation used in training takes around 40 s.

Table 7. Resulting unit orientations for each unit in sequence from left to right targeting each of the
four cases described in Table 6. Note that in all four cases, if each is reversed, they still produce the
same result, though the results will be visually reflected about the x-axis.

Case Configuration

max horizontal [↓ ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ]
min horizontal [↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↓]
max vertical [↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ]
min radius [↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ]

Table 8. Comparison of the results measured and simulated by Ellis et al. [24] and generated using
the ESP as proposed.

Ellis et al. [24] Ellis et al. [24] ESP
Measured Simulated Simulated

max horizontal 225.2 mm 232.1 mm 222.0 mm
min horizontal −101.2 mm −99.9 mm −97.8 mm
max vertical 204.6 mm 211.2 mm 201.4 mm
min radius 10.4 mm 16.8 mm 16.5 mm
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Figure 8. Visual representations of the resulting deformed bending actuators for each case described
in Table 6. (a) Min horizontal, (b) min radius, (c) max horizontal, (d) max vertical. It should be noted
that the result for the simple linear extension case (d) has an unexpected shape with a “kink” in the
middle. This results from the fixed unit’s mounting angle, which is corrected by the mid-span “kink”.

3.2. Multi-Gripper Tentacle with ESP

In Section 3.1, we frame an established design problem within the ESP framework
and found that in conjunction with the reduced-order model proposed in Section 2.3, we
achieve comparable results in less time compared to using GA and FE simulations on their
own. We now aim to use the ESP framework to create a tentacle-like soft robot that can
articulate and grip multiple objects.

We have already constructed two useful encapsulations, (bending unit) and (bending
actuator) in Section 3.1 that generate the response of various bending units and predict
the behaviour of various bending unit assemblies. Since these are already trained and
self-contained, we can simply use them in this project. To advance from these building
blocks to a full tentacle, we have divided the design task into learning modules, as shown
in Figure 9.

Figure 9. ESP framework for generating candidate designs for a multi-gripper tentacle.

We know that some combinations of single units produce a cumulative effect different
from that of a single unit. For example, a pressurised single unit forms a wedge shape.
In contrast, a sequence of wedged units with the same orientation causes the assembly
to curl, and a sequence of units with alternating orientation causes linear displacement.
The “Multi-Unit Group” module explores and identifies unique combinations of units that
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produce alternate behaviours, such as a shallower bending angle, or no bending at all.
These (multiple-unit groups) are not fully functional actuators but rather a larger pool of
primitive components.

In the “multi-unit group” module, we use MCMC methods described in Section 2.5
to explore and identify unique combinations of single units. Our objective is to find
unique accumulations of tip displacement (∆l) and bending angle (θ). We normalised
the response of the multi-unit groups by the number of units in the assembly to favour
smaller groups. This process combines elements of classification and selection, as we are
generating a list of assemblies that perform a given displacement while acknowledging
that multiple variations produce similar cumulative results. The resulting multiple-unit
groups are then encapsulated as primitive components with their own behaviour for later
modules. Figure 10 shows a few examples of multiple-unit groups. It is important to note
the stochastic nature of the process does not guarantee the same number of groups every
time the algorithm runs or that the same groups will be found. This is in no way detrimental
to the design process as the groups are potential options for later encapsulations.

Figure 10. Examples of multiple-unit groups found using MCMC methods. The red centre lines show
the response of an initially straight reduced-order model to applied pressure. The wedge shape of
the inflated bending unit is included for clarity.

The “Assemble 3D Gripper” combines the 2D Grippers learnt in the nested “Assemble
2D Gripper” module to produce a 3D Gripper capable of lifting volumetric objects. Here
we use a nested module rather than two sequential modules to improve the reusability of
the “Assemble 3D Gripper” module in later syllabi by including the ability to learn its own
components rather than being limited to simply assembling previously generated elements.

In the “Assemble 2D Gripper” module, we learn how to assemble units and multi-
unit groups to wrap around various 2D shapes. We start with the idea that construction
follows a somewhat biological growth model, which can be easily scaled depending on the
application. This means that a gripper well suited to gripping circles should look much the
same regardless of the circles’ size. We begin with a simplified 2D case, encapsulating the
gripper designs suitable for whichever object shape. Then, we use these 2D Grippers as
elements in a higher-level encapsulation to generate 3D Gripper encapsulations.

With efficient access to encapsulated single and multi-unit groups, we can start target-
ing various profiles to be gripped. We use L-Systems, discussed in Section 2.4, to learn an
encoding for recursively generating scale-invariant assemblies that meet our objective of
gripping an object in a particular state. For simplicity, we have a fixed starting point and
assume the actuator lies in a straight line when noninflated. Table 9 shows the L-system
constructed to produce candidate 2D grippers. Here we again use a GA to learn the optimal
production rules for a given target shape. The GA can replace any three-letter encoding
with between four and ten randomly selected encodings and orientation symbols from the
alphabet (shown as wildcard *).
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Table 9. L-systems construction for generating 2D gripper encodings. The L-system is constructed
with an alphabet, including letter encodings for each of the single units or multi-unit group ([aaa, . . . ,
zzz]), then two characters to indicate the orientation of the succeeding unit (↑ and ↓). A starting point
(XXX) is added as a constant to identify the global location of the assembly and the fixed boundary
condition. The axiom starts with the starting point constant, followed by a random three-character
code from the alphabet.

Alphabet: aaa, . . . , zzz, ↑, ↓
Constants: XXX
Axiom: XXX***
Production Rules: ***→ *********

. . .

As target shapes, we generated circles, triangles, and squares at various distances
from the starting point and created an offset shape half the height of the first unit away. We
then made use of this offset shape as our target curve. If we can approximate the target
shape with our bending actuator, we consider this to have “gripped” the shape. Figure 11
shows the results of this gripper design process for three square targets at three distances
and scales, using the same learnt L-system. Take note of the geometric similarity of the
generated actuator at each scale.

As you can see, the curve matching is imperfect, but the square is sufficiently sur-
rounded to be considered “gripped”. This is an excellent example of how the designer is
involved with decision-making through the ESP process. If the designer is satisfied with the
results of a given encapsulation, they are free to use it in later modules. The 2D “gripper”
is extended to the 3D case with a simple encapsulation, including a rigid centre and the
option to attach n 2D grippers radially about the periphery of the rigid centre. Simply
testing a few variants leads to an encapsulation of three gripper units spaced 120° apart,
as shown in Figure 12.

Figure 11. Three examples of 2D grippers for square targets on various scales using the same
L-system encoding. Subfigure (a) shows a 16-unit actuator, while subfigures (b,c) show 31- and
39-unit configurations.
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Figure 12. A 3D gripper resulting from the radial assembly of three 2D gripper actuators.

Before we attempted to generate the full tentacle, we saw a need to include a few
additional actuator options and created a “represent other units” module to learn a rigid
unit and linear unit. Finally, in the last module, “represent tentacle”, we combine all earlier
encapsulations to solve the overall design task of generating an actuating tentacle with
multiple grippers, as shown in Figure 13. Producing this design using the knowledge
encapsulation produced in the first case study means that this result was produced in
less than 30 s. An advantage of the divide-and-conquer approach of ESP is that various
methods can be used to accomplish each encapsulation task.

Figure 13. A four-gripper articulating tentacle resulting from applying ESP.

4. Conclusions and Future Work

The research presented uses ESP as a framework suited to exploring and designing
soft robots. The generic framework allows designers significant flexibility in achieving and
connecting various encapsulations. This paper highlights this by using FE modelling, reduced-
order kinematic models, L-systems, and MCMC and PCM methods to design a soft robot that
can articulate and grip multiple objects. It is, however, important to keep in mind that any
methods shown here are chosen by convenience, and other methods can be used to generate
encapsulations on the condition that the encapsulation input and output are clearly defined.

The ESP framework divides the design task into smaller, manageable modules, and var-
ious methods are used to accomplish each encapsulation task. The multi-unit group module
uses MCMC to explore and identify unique combinations of single units. L-systems are
used to recursively generate scale-invariant assemblies that meet the objective of gripping
an object. The reduced-order model within the ESP framework proposed in the paper can
replicate the results of previous work with improved computational efficiency. The research
also extends the method to a more complex problem of creating a tentacle-like soft robot
with multiple grippers.

Moving from the 15-unit 3D FE model previously constructed to the proposed kine-
matic reduced-order model reduces the function evaluation time in the optimiser from
≈20 min to less than 1 s with no observable difference in the quality of the result. This first
set of results quantitatively shows that the proposed method produced similar results to an
established benchmark.

The model is extended to show how it could generate a design given a more complex
set of requirements resulting in a practical design for a multi-gripper tentacle. It is important
to remember that the purpose of the proposed design tool is not to provide a single
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optimum but rather a reasonable result for the designer to evaluate. This second set of
results qualitatively highlights the benefits of the method.

The method could be further expanded into a 3D space without changing the con-
ceptual framework, but we would need to change the reduced-order model. Currently,
the reduced order model is defined and trained for two degrees of freedom, and at least
one more would need to be included to account for movement in an additional dimension.
For example, an additional angle change can be defined for the reduced-order model, and a
series of FE simulations with movement in 3D can be generated for training. The optimisa-
tion routine and partial curve matching will remain the same.

We propose measuring contact force and system power in the simulation environment
and reduced-order models in future work. In addition to these incremental improvements
already discussed, the modular nature of ESP and the direct integration of control and
behaviour elements shown by Lessin et al. [25] means that the method can easily integrate
the mechanical and control behaviours of flexible sensors [54,55] and environmental simu-
lators, such as [20,56]. All that is required to integrate sensor and control elements into the
design process is to include encapsulations for each component and construct the control
environment to utilise additional inputs. Access to this information during the design
optimisation routine will allow for designing behaviours with feedback responses from a
virtual environment.

Overall, this paper contributes a practical generative design process that significantly
reduces the design time for soft robots while producing comparable results to existing
state-of-the-art methods. Our approach meaningfully involves the human designer in the
design process. It enables the inclusion of other numerical techniques, ultimately opening
up new avenues for exploring the vast design space of soft robots.
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