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Abstract: Multi-objective reliability-based design optimization (MORBDO) is an efficient tool for
generating reliable Pareto-optimal (PO) solutions. However, generating such PO solutions requires
many function evaluations for reliability analysis, thereby increasing the computational cost. In this
paper, a single-loop multi-objective reliability-based design optimization formulation is proposed that
approximates reliability analysis using Karush-Kuhn Tucker (KKT) optimality conditions. Further,
chaos control theory is used for updating the point that is estimated through KKT conditions for
avoiding any convergence issues. In order to generate the reliable point in the feasible region, the
proposed formulation also incorporates the shifting vector approach. The proposed MORBDO
formulation is solved using differential evolution (DE) that uses a heuristic convergence parameter
based on hypervolume indicator for performing different mutation operators. DE incorporating the
proposed formulation is tested on two mathematical and one engineering examples. The results
demonstrate the generation of a better set of reliable PO solutions using the proposed method over
the double-loop variant of multi-objective DE. Moreover, the proposed method requires 6×–377×
less functional evaluations than the double-loop-based DE.

Keywords: multi-objective reliability-based design optimization; shifting vector approach; reliability
analysis; chaos control theory; differential evolution

1. Introduction

The design optimization mostly keeps design variables and parameters determin-
istic. It ignores the fact that uncertainties can arise owing to manufacturing variations,
dimensional inaccuracy, boundary conditions, material properties, and improper loading
conditions, which can lead to the infeasibility of the solution obtained through determin-
istic optimization. Therefore, it is necessary to consider these uncertainties in designing
the process to maintain safety and the quality of the solution. Reliability-based design
optimization (RBDO) [1,2] is a mathematical tool that is used for obtaining such reliable
optimal solutions for problems involving uncertainties. It also enables engineers to identify
solutions effectively for complex applications in the fields of the automotive, civil, mechani-
cal, and aerospace industries [3,4]. In RBDO, the uncertainties are manifested by converting
the deterministic constraints to probabilistic constraints. This is accomplished by applying
a probability operator to performance functions or to limit-state functions in the literature.
A generalized single-objective RBDO formulation is given in Equation (1).

Minimize f (µX),
subject to P[Gi(X) ≥ 0] ≤ PT

fi
= Φ(−βT

i ), i = 1, . . . , I,

µ(L)
X ≤ µX ≤ µ(U)

X ,
(1)
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where f (µX) is the objective function, Gi(X) is the i-th performance/constraint function,
and µX is the mean value vector of random variable vector X ∈ Rn, where n is the number
of random design variables. L and U in the superscript of µX represent the lower and upper
limits of the vector. Φ(·) represents the standard normal cumulative distribution function,
βT

i is the target reliability index of the i-th performance function, and P[·] is the probability
operator that represents the failure probability of performance function (Gi(X) ≥ 0) that
should be less than the target failure probability (PT

fi
).

Equation (1) demonstrates that solving a single-objective RBDO requires a nested-loop
procedure [2], where the outer optimization loop involves the inner-loop for reliability
analysis. The reliability analysis can be performed using simulation-based methods [5] and
analytical methods [6] on probabilistic performance function to obtain its failure probability.
The simulation-based methods show better accuracy with an expense of computational
cost [7], such as Monte Carlo simulation (MCS) [5], subset simulation [8], importance
sampling [9], and Latin-hypercube sampling [9]. On the other hand, analytical methods
are known for their computational efficiency, such as most-probable point (MPP)-based
methods, in which the sub-optimization problem is solved for each performance function
to obtain their respective MPP. The MPP-based methods can be broadly divided into the
performance measurement approach (PMA) [10] and the reliability index approach (RIA) [6].
The optimum solution obtained using PMA and RIA is known as the most probable target
point (MPTP) and the most probable failure point (MPFP), respectively. Many advanced
methods have been developed to estimate the MPTP and MPFP of performance functions,
and they are categorized as double-loop methods, decoupled-loop methods, and single-
loop methods.

The classical double-loop methods [11,12] involve a nested optimization loop, where
the inner-loop performs reliability analysis and the outer-loop is used for obtaining design
solutions. All the random variables are transformed to standard normal variables [13]
for performing reliability analysis. Since the nested optimization loop is computationally
expensive, the reliability analysis loop (inner-loop) is decoupled and performed separately
in decoupled-loop methods [14–17]. Some advanced and efficient reliability-based frame-
works were also proposed based on isogeometric analysis [18,19]. The reliability analysis
itself is considered as an computationally expensive procedure. Therefore, single-loop
methods [20] have been proposed, in which approximate reliability analysis is performed.
Different concepts such as Karush-Kuhn Tucker (KKT) conditions and quantile approxi-
mation are used to approximate MPTP that can eliminate the reliability analysis loop. The
adaptive conjugate single-loop approach (AC-SLA) [21], the enhanced single-loop method
(ESM) [22], the chaotic single-loop approach (CSLA) [23], the single-loop shifting vector
method (SLShV-CG) [24], the sequential single-loop reliability optimization and confidence
analysis method (SROCA) [25], and the approximate single-loop chaos control method
(ASLCC) [26] are a few recently developed single-loop methods. Recently, some efficient
evolutionary RBDO methods are also proposed to obtain the global reliable solution [27,28].

It has been found that many real-world engineering problems consist of more than one
objective, which are conflicting in nature [29], and can also have uncertainties. Evolutionary
algorithms are found to be promising for solving deterministic multi-objective optimization
problems (MOOPs) because they can generate Pareto-optimal (PO) solutions in one run.
However, these evolutionary algorithms need to be modified for generating reliable PO
solutions for multi-implemented as a design optimization algorithm, and inverse reliabil-
ity was performed. objective reliability-based design optimization (MORBDO) problems.
To address uncertainty in MORBDO, Deb et al. [3] used a non-dominated sorting genetic
algorithm (NSGA-II) [30] for design optimization, and Fast RIA for reliability analysis.
A multi-objective differential evolution (MODE) [31] was also Simulation-based tech-
niques are also used for reliability analysis and are coupled with double-loop methods.
For example, a radial basis function was used for approximating the responses of the
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performance function and was coupled with MCS to implement reliability analysis. NSGA-
II was used to obtain PO solutions for solving the multi-objective and multi-case [32]
RBDO problem. In another study, MCS and NSGA-II were coupled with entropy weighted
grey relational analysis for design optimization [33] to solve the control arm problem.
The multi-objective optimization design of the control arm was carried out using the
Kriging surrogate model. Sun et al. [34] proposed a radial basis function-based surrogate
modeling that was implemented with Latin-hypercube sampling for sensitivity analysis.
MCS and multi-objective particle swarm optimization (PSO) were coupled for obtaining
the reliable PO solutions. In another study, a multiple response surface method-based
artificial neural network was implemented for reliability analysis [35], and a dynamic
multi-objective particle swarm optimization algorithm was proposed for obtaining PO
solutions. A worst-case scenario was used with fuzzy sets for reliability analysis, and a real-
coded population-based incremental learning [36] was implemented with DE for obtaining
the PO solutions. A multi-objective robust optimization [37] was proposed, in which
the design problems consisted of parametric uncertainties involving both random and
interval variables. NSGA-II was implemented to generate robust PO solutions, and MCS
was performed to evaluate the impact responses of the mixed uncertainties. Constrained
NSGA-II was also implemented to solve the MORBDO problem [38]. It was coupled with
the hybrid method using the Kriging surrogate metamodel for reliability analysis.

A time-dependent reliability-based robust design optimization (TRBRDO) problem [39]
was solved using NSGA-III [40] and the dimension reduction method. It was developed
by constructing an extreme value model using the sparse grid-based stochastic collocation
method for time-dependent reliability analysis. A Bayesian multi-objective RBDO [41] was
proposed to solve problems involving aleatory and epistemic uncertainties. Multi-objective
PSO was implemented for obtaining PO solutions, and Bayesian interference was used
for reliability analysis. Another method using nested loop was proposed to solve RBDO
problems [42], in which the outer-loop was performed using multi-objective PSO, and the
inner-loop was solved using surrogate modeling with MCS sampling. A two-layer nested
optimization problem was proposed based on a decoupling strategy. The inter-generation
projection genetic algorithm was employed in the inner-loop, and the multi-objective ge-
netic algorithm [43] was implemented at the outer-loop for solving the MORBDO problem.
Another multi-objective RBDO [44] was solved by converting it into a single-objective
RBDO problem. This was achieved by assigning weights to the objectives based on quan-
titative analysis and evidence theory. The reliability analysis was estimated using the
PMA method.

From the literature, it can be seen that most of the MORBDO methods focus on
PMA, RIA, MCS, or surrogate modeling for reliability analysis, and they are based on
double-loop or decoupled-loop methods, which make them computationally expensive.
Since evolutionary algorithms are population-based methods and require many functional
evaluations, a single-loop method for solving MORBDO can improve the computational
efficiency. Moreover, single-loop methods that are solved using steepest descent search
to estimate MPTP are often stuck with periodic oscillation [26,45] for highly nonlinear
functions. This leads to the motivation of this paper, in which a new MORBDO formulation
is proposed, based on adaptive multi-objective DE. An adaptive mutation scheme is used
for selecting different variants of mutations for exploration in the search space. Both
trial and target vectors take part in the MORBDO formulation to estimate the reliable PO
solutions. The following are the contributions of the paper.

• A single-loop MORBDO formulation is developed by using a shifting vector approach
for achieving feasibility quickly, and by using chaos control theory for estimating
MPTP effectively for better convergence.

• An adaptive multi-objective differential evolution is developed by performing two vari-
ants of mutation by estimating a heuristic parameter through hypervolume computation.
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• The formulation is further developed by incorporating target and trial vectors of
differential evolution for better exploration of the search space.

The proposed method is tested on three benchmark examples from the literature.
The results are compared with a double-loop variant of multi-objective differential evolution
using PMA for reliability analysis.

The organization of the paper is as follows. In Section 2, a brief discussion on multi-
objective RBDO, PMA, chaos control method, single-loop method, and shifting vector
approach are presented. The proposed single-loop multi-objective reliability-based design
optimization method is discussed in Section 3, along with its implementation. The adaptive
mutation scheme and the detailed steps of multi-objective differential evolution are also
discussed in this section. Numerical examples are solved and discussed in Section 4. Finally,
the paper is concluded in Section 5 with a note on future work.

2. Preliminaries
2.1. Multi-Objective Reliability-Based Design Optimization

A generalized MORBDO formulation can be written as

Minimize fm(µX), m = 1, . . . , M,
subject to P[Gi(X) ≥ 0] ≤ PT

fi
= Φ(−βT

i ), i = 1, . . . , I,

µ(L)
X ≤ µX ≤ µ(U)

X , X(L) ≤ X ≤ X(U),
(2)

where fm(·) is the m-th conflicting objective function that is written using the mean value
(µX) of the random variable (X). X(L) and X(U) are the upper and lower limits on X. Solving
Equation (2) generates a set of reliable PO solutions in the design space. The reliability
analysis is performed on the probabilistic performance function to estimate the failure
probability by solving a multidimensional integral, as given in Equation (3).

Pfi
= P[Gi(X) ≥ 0] =

∫
· · ·

∫
Gi(X)≥0

fX(X)dX, (3)

where fX(X) is the joint probability density function of X. Solving this multidimensional
integral is difficult, and therefore, it is approximated with reliability analysis [7]. The first-
order reliability method (FORM) [6] and second-order reliability method (SORM) [46] are
analytical methods for reliability analysis. Both FORM and SORM estimate the reliability
index β that represents the minimum distance from the origin to the performance function
in the standard normal space. The reliability index β can be obtained by solving a sub-
optimization problem, and the reliability (R) can be estimated using Φ(β) (R = 1− Pf =
1− Φ(−β) = Φ(β)). Due to its computational efficiency and stability in generating a
reliable solution, PMA is widely used to solve the sub-optimization problem [47].

2.2. Performance Measure Approach (PMA)

PMA estimates the failure probability of performance function G(X) by finding MPTP
in the standard normal space (U-space). After transforming G(X) to the U-space using
the Rosenblatt transformation [13], the MPTP can be estimated using the steepest descent
direction. When all the random variables are independent, the joint cumulative distribu-
tion function (CDF) is calculated via the product of the marginal CDFs. The Rosenblatt
transformation is given as

Φ(ui) = FXi (xi) =⇒ ui = Φ−1(FXi (xi)), (4)
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where FXi (xi) is the marginal CDF of Xi and Φ(·) is the CDF of the standard normal random
variable. After transforming variables to the standard normal space by using Equation (4),
MPTP is calculated by performing the following sub-optimization problem.

Minimize G(U),
subject to ‖U‖ = βT ,

(5)

where U is the random variable in the standard normal space, and βT is the target reliability
index for the performance function G(U). To efficiently obtain the optimum solution of
Equation (5), the advanced mean value algorithm is used and the expression is presented
in Equation (6).

U(k+1) = βT ∇G(U)

‖∇G(U)‖ . (6)

If the performance function value at MPTP is less than or equal to zero, it is satisfied
for the given target reliability, as presented in Equation (2).

2.3. The Chaos Control Method

It has been observed that PMA performs well for simple nonlinear performance
functions, but it fails to converge for highly nonlinear performance functions. To overcome
this issue, chaos control theory [45] was proposed based on a stability transformation
method [48]. The modification is achieved while updating the iterative point U(k+1) of
Equation (5). The formulation for estimating the iterative point via the chaos control (CC)
method is as follows.

U(k+1)
CC = U(k)

CC + λC[F(u(k))−U(k)
CC],

F(u(k)) = U(k+1) = βT ∇G(U)

‖∇G(U)‖ ,
(7)

where U(k)
CC is the MPTP calculated using CC method in the k-th iteration; C is the involutory

matrix with only one element in each row and is assumed as identity matrix I for sim-
plicity. The matrix C is usually selected to stabilize the unstable fixed point of the chaotic
dynamical system in Equation (7). The chaos control factor λ is determined according
to the eigenvalues of the original system’s Jacobian matrix, and the value is considered
within interval [0, 1]. When λ is considered as one, the formulation of the CC method is
similar to Equation (5) and can have the same issue as discussed earlier. Therefore, a small
value of λ is considered for stable convergence. F is the vector of the response function
that is estimated via nonlinear mapping with respect to the iterative values of U(k+1), as
shown in Equation (7). Although the CC method eliminates the issue of oscillation in the
convergence of MPTP, it is considered to be an inefficient process. Therefore, a modified
chaos control (MCC) [12] was proposed. The modification is achieved by extending the
iterative search to the β-hypersphere that is at the constraint boundary in the standard
normal space. Thus, MPTP is located on the constraint boundary, and convergence is
improved by controlling the tangential step size instead of the radial step size, which was
the case for the CC method. The formulation of MCC is given as

ñ(k+1) = U(k)
CC + λC[F(u(k))−U(k)

CC],

U(k+1)
MCC = βT ñ(k+1)

‖ñ(k+1)‖
,

(8)

where ñk is the modified search direction updated using U(k+1)
CC of Equation (7). U(k+1)

MCC is
the MPTP evaluated using the MCC method.
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2.4. Single-Loop Method

The single-loop method (SLM) [20] has been proposed to approximate the reliability
analysis of the double-loop method, and establish an equivalent deterministic performance
function that is computationally efficient. The approximate MPTP is estimated by using
the KKT optimality conditions of Equation (5), and is given in Equation (9).

∇G(U)− λ̂∇H(U) = 0, (9)

where λ̂ is the Lagrange multiplier, and H(U) = ‖U‖2 − βT
i

2 after squaring both sides
of the equality constraint of Equation (5). Using Equation (9) and ∇H(U) = 2U yields
∇G(U)− 2Uλ̂ = 0. After simplification, U can be written as ∇G(U)

2λ̂
, and multiplying it

with ‖∇G(U)‖ in the numerator and denominator, and further simplifying, we obtain

U =
‖∇G(U)‖

2λ̂

∇G(U)

‖∇G(U)‖ = βTα, (10)

where α = ∇G(U)
‖∇G(U)‖ is the unit gradient direction, and βT = ‖∇G(U)‖

2λ̂
is a constant at the

optimal solution U∗. The gradient is calculated in U-space and the random design variables
lie in the X-space. Therefore, the transformation from X-space to U-space is used for the
evaluation of approximate MPTP, using the following relationship.

X = µX + σXU, (11)

where σX is the standard deviation of X. Substituting U from Equation (10) in Equation (11)
and using the chain rule, we obtain MPTP in the X-space as

XMPTP = µX + σXβα = µX + σXβT σX∇XG(X)
‖σX∇XG(X)‖ , (12)

where XMPTP is the MPTP of the performance function G(X).

2.5. Shifting Vector Approach

The concept of the shifting vector (S(k)
i ) has been proposed [14] to decouple the double-

loop structure of the RBDO problem. It separates the optimization and reliability analysis
loop and performs it sequentially in the sequential optimization and reliability assessment
(SORA) [14] method. Using this process, the computational efficiency of SORA has been
improved as compared to the double-loop method. The concept of the shifting vector is
used to shift the violated performance function towards the feasible direction. It is given as

S(k)
i = µ

(k−1)
X − X(k−1)

i,MPTP (13)

where (S(k)
i ) is the shifting vector at the k-th iteration, X(k−1)

i,MPTP is the MPTP for the i-th

constraint, and µ
(k−1)
X is the mean of the random variable X in the (k − 1)-th iteration.

Figure 1 shows the schematic diagram of the shifted constraint based on the MPTP. It can
be seen that (S(1)

i ) is estimated based on X(1)
i,MPTP and µ

(1)
X , and the shifted constraint is

evaluated at µ
(1)
X − (S(1)

i ) until the reliability of the constraint is achieved. Here, the shifting

vector (S(k)
i ) is generated via an iterative process that helps to estimate the feasibility of the

performance function until its reliability is satisfied.
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Figure 1. Shifting vector approach.

3. The Proposed Method and Its Implementation
3.1. Single-Loop MORBDO Formulation Using Chaos Control and the Shifting Vector Approach

The single-loop MORBDO formulation can be written using the approximate MPTP
given in Equation (12) as

Min. fm(µX), m = 1, . . . , M,

s.t.: Gi(X
(k)
i,MPTP) ≤ 0, i = 1, . . . , I,

where X(k)
i,MPTP = µ

(k)
X + βT

i σXα
(k)
i,X ,

α
(k)
i,X =

σX ∇Gi,X(X
(k−1)
i,MPTP)

‖σX ∇Gi,X(X
(k−1)
i,MPTP)‖

,

µ(L)
X ≤ µX ≤ µ(U)

X ,

(14)

where X(k)
i,MPTP is the approximate MPTP of the ‘i’ performance function at the k-th iteration,

and α
(k)
i,X is the unit gradient vector of the performance function ‘i’ with respect to random

variable (X). In Equation (14), the probabilistic performance functions of Equation (2) are
converted into deterministic performance functions, which eliminate the MPTP search
of the inner-loop at every iteration. Thus, the computational efficiency can be improved
significantly. It is to be noted that the steepest descent search is used to evaluate the
approximate MPTP, which has a tendency to oscillate during convergence [45].

In the proposed formulation, chaos control theory replaces the steepest descent search
for approximating MPTP. The concept of the shifting vector approach is incorporated to
formulate a novel single-loop MORBDO formulation, as shown in Equation (15).

Min. fm(µX), i = 1, . . . , M,

s.t.: Gi(Ψ
(k)) ≤ 0, i = 1, . . . , I,

where Ψ(k) =


X(k)

i,MPTP , ∀ target vectors,

µ
(k+1)
U − S(k+1)

i , ∀ trial vectors,

S(k+1)
i = µ

(k)
X − X(k)

i,MPTP ,

X(k)
i,MPTP = T−1(U) = µ

(k)
X + σXU(k)

i,SLCC,

µ(L)
X ≤ µX ≤ µ(U)

X ,

(15)
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where U(k)
i,SLCC is the approximate MPTP in the U-space that is estimated using the MCC

method. µ
(k+1)
U is the trial vector of differential evolution in the U-space in the (k + 1)-th

iteration. In the proposed formulation, the performance function Gi(Ψ
(k)) includes both

X(k)
i,MPTP and (µ

(k+1)
U − S(k+1)

i ), which are used for evaluating the performance function

for each target vector and trial vector, respectively. The vector (µ
(k+1)
U − S(k+1)

i ) shifts
the violated performance function towards a feasible direction for the population of trial
vectors. U(k)

i,SLCC in the standard normal space is given in Equation (16).

U(k)
i,SLCC = βT

i
U(k−1)

i + λ
(k)
i C[U(k)

i −U(k−1)
i ]

‖U(k−1)
i + λ

(k)
i C[U(k)

i −U(k−1)
i ]‖

, (16)

where U(k)
i and U(k−1)

i are the MPTPs estimated for the i-th constraint in the k-th and (k− 1)-

th generations, respectively. The value of U(k)
i,SLCC is calculated after the transformation, as

given in Equation (17).

U(k)
i = T(X(k)

i ) = (X(k)
i − µX)/σX. (17)

The proposed single-loop MORBDO formulation given in Equation (15) is developed
based on a single-loop methodology that eliminates the integrated reliability analysis in-
volved in double-loop formulation, as given in Equation (2). The approximated formulation
for reliability analysis is established through KKT optimality conditions, where the search
direction is calculated by using modified chaos control theory. Furthermore, the shifting
vector is integrated with the single-loop MORBDO formulation that uniquely involves the
target and trial vectors of differential evolution.

3.2. Multi-Objective Differential Evolution with Adaptive Mutation Scheme

Differential evolution (DE) [49] is a population-based meta-heuristic algorithm that
works with a set of vectors and optimizes an optimization problem by iteratively improving
each vector based on an evolutionary process. It explores the design space by maintaining
a population of vectors and creating new vectors by combining existing ones. It starts
with a random generation of vectors, which are referred to as target vectors, µ

(k)
X (t), in

which t represents the t-th target vector, and k represents the k-th generation counter. Since
DE is used for solving the MORBDO problem, the notation for vector is kept the same
as the mean value of the random variable. Each target vector (µ(k)

X (t)) is transformed to

the mutant vector (µ(k+1)
V (t)) using the randomly chosen vectors (µ

(k)
r1 (t)), (µ(k)

r2 (t)) and

(µ
(k)
r3 (t)). In this paper, an adaptive mutation scheme is used, in which the mutation vector

(µ(k+1)
V (t)) is generated, either by using a random vector or the best vector. The scheme for

generating (µ(k+1)
V (t)) is given in Equation (18).

µ
(k+1)
V (t) =


µ
(k)
r1 (t) + F̂× (µ

(k)
r2 (t)− µ

(k)
r3 (t)), ζ > ε,

µ
(k)
best(t) + F̂× (µ

(k)
r2 (t)− µ

(k)
r3 (t)), otherwise,

(18)

where r1 6= r2 6= r3 are the three randomly chosen vectors from the current population,
and F̂ is the scaling factor. The variant “DE/rand/bin/1” is found to be effective in explor-
ing the search space during the initial generations because the mutant vector is generated
a using random vector. When DE starts converging towards the Pareto-optimal front,
the “DE/best/bin/1” variant replacing µ

(k)
r1 (t) to µ

(k)
best(t) can improve the convergence.

The µ
(k)
best(t) vector for each target vector is found by calculating the Euclidean distance

of the t-th target vector with respect to all non-dominated target vectors in the objective
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space. The closest non-dominated target vector is selected as µ
(k)
best(t) for the t-th target

vector. Since both the variants have their own merits, a heuristic convergence parameter (ζ)
is proposed that can help DE to use either of these variants, depending on the user-defined
parameter ε. The parameter ζ is calculated using the hypervolume (HV) performance
indicator [50] that is given as

ζ = I(k)H − I(k−1)
H , (19)

where I(k)H and I(k−1)
H are the hypervolume calculated with respect to the non-dominated

target vectors in the (k) and (k − 1) generations. It is noted that the non-dominated
target vectors in the (k− 1) and (k) generations are normalized together for estimating the
hypervolume with respect to the dominated point. Thereafter, the trial vector (µ(k+1)

U (t)) is

created for each target vector (µ(k)
X (t)), which is given as

µ
(k+1)
U (tj) =

{
µ
(k+1)
V (tj) if r ≤ pc or j = rnbr(i),

µ
(k)
X (tj) if r > pc and j 6= rnbr(i),

(20)

where subscript j with t in µ
(k)
X (tj), µ

(k+1)
V (tj), and µ

(k+1)
U (tj) represent the j-th component

of the target, mutant, and trial vectors, respectively. r is a random number between 0 and
1, pc is the crossover rate, and rnbr(i) is a randomly chosen index ∈ {1, 2, . . . , n}, which
ensures that µ

(k+1)
U (tj) obtains at least one component from µ

(k+1)
V (tj). Thereafter, all target

vectors and trial vectors are combined (µ(k)
X

⋃
µ
(k+1)
U ) to find the rank of the combined

population using the non-dominated sorting [30] of NSGA-II. The crowding distance is
also calculated for maintaining the diversity for the selection of the next generation of
target vectors. The best N target vectors for the next generation are selected by using
the environmental selection scheme of NSGA-II [30]. Multi-objective DE is terminated if
the generation counter (k) is more than the total number of generations (K). Otherwise,
the generation loop continues till the termination condition becomes satisfied.

3.3. Steps for Implementation

In this section, the steps for implementing DE with an adaptive mutation scheme for
the proposed MORBDO formulation are presented, which are as follows.

1 Input: population size (N), number of variables (n), total number of generations (K),
scaling factor (F̂), probability of crossover (pc), standard deviation (σ) for random
variables, and target reliability index for constraints (βT), generation counter (k = 1).

2 Initialize random population (P(k)) that comprises target vectors (µ(k)
X ).

3 For each target vector (µ(k)
X (t)) of (P(k)):

3.1 Calculate the objective function values, fm(µ
(k)
X (t)).

3.2 Calculate MPTP for each performance function (i) using Equations (15) and (16),

and estimate shifting vector S(k+1)
i,µX

= µ
(k)
X − X(k)

i,MPTP.

3.3 Calculate the constraint violation of each performance function using the MPTP
that is estimated through the chaos control theory given in Equation (15).

4 If (k > K), terminate. Otherwise, continue to Step 5.

5 Generate mutant vectors (µ(k+1)
V ) using the scheme given in Equation (18).

6 Generate trial vectors (µ(k+1)
U ), as given in Equation (20).

7 For each trial vector:

7.1 Calculate the objective function, fm(µ
(k+1)
U (t)).
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7.2 Calculate MPTP (X̂(k+1)
i,MPTP) and shifting vector for each performance function (i)

using Equations (15) and (16), and S(k+2)
i,µU

= µ
(k+1)
U − X̂(k+1)

i,MPTP, and estimate the

constraint violation of Gi(µ
(k+1)
U − S(k+1)

i,µX
).

7.3 Calculate the constraint violation of each performance function using the MPTP
that is estimated through chaos control theory as given in Equation (15).

8 Combine target and trial vectors, and perform non-dominated sorting and estimate
the crowding distance.

9 Update target vectors (µ(k+1)
X ) for the next generation using the environmental selec-

tion of NSGA-II. It should be noted that the corresponding MPTPs and shifting vector
are stored in Step 7 for utilizing them in the next generation. Set k = k + 1 and go to
Step 4.

4. Numerical Examples

In this section, three mathematical examples and one engineering example are solved
to demonstrate the performance of the proposed method. All the examples consist of
two objective functions, along with the nonlinear performance functions. The proposed
method is abbreviated as SLMDE since it is developed via a single-loop method using
multi-objective DE. The results of SLMDE are compared with double-loop multi-objective
differential evolution (DLMDE). It is noted that PMA is used with DLMDE for reliability
analysis. The reliable PO solutions are generated via both methods for different values of
the target reliability index (βT). HV performance indicator values and number of function
evaluations are used to compare the outcome. Both the methods are run 30 times with
different initial populations. The standard deviation (SD) is also evaluated to see the
dispersion of HV values. The Wilcoxon signed-rank test at a 5% significance level is
also used to determine the difference for the statistical significance between SLMDE and
DLMDE. The parameters of SLMDE and DLMDE are as follows: the scaling factor (F̂) is
taken as 0.3, the crossover probability (pc) is 0.9, the population size (N) is 200, and the total
number of generations (K) is 100 for the first example, 250 for the second example, and
200 for the car side impact example. The chaos control factor (λ) is considered as 0.2 [26].
The user-defined parameter (ε) in Equation (18) is considered as 10−3. The MATLAB
R2016b platform is used for developing both methods.

4.1. Example 1

The first MORBDO example [3] consists of two objectives that are developed using
two independent random normal variables with a standard deviation of 0.03. The example
is subjected to two linear performance functions that are shown in Equation (21).

min: f1(µX) = µx1 ,

min: f2(µX) =
1 + µx2

µx1

,

s.t.: P[Gi(X) > 0] ≤ φ(−βT
i ), i = 1, 2,

G1(X) = x2 + 9x1 − 6,

G2(X) = −x2 + 9x1 − 1,

0.1 ≤ µx1
≤ 1, 0 ≤ µx1

≤ 5.

(21)

Table 1 presents the best, median, and worst values of HV obtained via SLMDE
and DLMDE. SLMDE has converged to better values of HV for different βT values. This
indicates that SLMDE generates a better set of PO solutions for the given example. It is to
be noted that for a larger value of βT , the HV value becomes reduced, as compared to the
lower βT value. This is because a larger value of βT signifies a high degree of reliability
that makes the obtained PO solutions more conservative and pushes them away from the
deterministic PO front inside the feasible region.
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Table 1. Best, median, and worst HV values obtained by both methods are presented for Example 1
for different values of βT . The best performances are highlighted in bold font.

βT SLMDE DLMDE βT SLMDE DLMDE βT SLMDE DLMDE

0.8100 0.8067 0.7998 0.7754 0.7908 0.7422
1.0 0.8075+ 0.8048 2.0 0.7982+ 0.7739 3.0 0.7879+ 0.7411

0.8065 0.7772 0.7971 0.7550 0.7869 0.7247

SD 9× 10−4 0.0063 SD 6× 10−4 0.0042 SD 7× 10−4 0.0054

Figure 2 demonstrates the PO solutions obtained by both methods for different values
of βT . The reliable PO solutions shown in Figure 2a,b correspond to the median HV
values from Table 1. It can be seen that for larger values of βT , the PO solutions become
conservative and move inside the feasible region. The same figure also demonstrates that
some solutions coincide with the deterministic PO front that is located at the bottom right.
This is because for those solutions, the target reliability is satisfied for the performance
function G1(x).
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(b) DLMDE
Figure 2. The obtained PO solutions by both methods for example 1 for different βT values.

The computational efficiencies of both methods are measured with the help of a
number of function evaluations that are presented in Table 2. It can be seen that the
proposed method requires 202,000 function evaluations, which is only 14.85% of DLMDE.
This is because SLMDE is based on a single-loop method, where the reliability of the
performance function is estimated using KKT optimality conditions. On the other hand,
DLMDE performs PMA for reliability estimation, which requires many function evaluations.
Since the number of iterations for PMA is kept fixed, the number of function evaluations is
the same for DLMDE with different values of βT .

Table 2. Number of function evaluations required by both methods for example 1.

βT SLMDE DLMDE

1.0 202,000 1,360,000
2.0 202,000 1,360,000
3.0 202,000 1,360,000

The Wilcoxon test results are shown in the same table with symbols (+,=,−). The sym-
bol ‘+’ suggests a significantly better performance of SLMDE over DLMDE. Other symbols
‘−’ and ‘=’ suggest a significantly bad performance and an equivalent performance of
SLMDE over DLMDE, respectively. It can be seen from the table that SLMDE shows a
significantly better performance over DLMDE.
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The progress of HV and heuristic convergence parameter ζ with respect to iterations
are shown in Figure 3. It can be seen that there are some initial fluctuations in both HV and
ζ, which subsidise after 10 generations and stabilize after 50 generations.
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Figure 3. Progress of hypervolume and ζ of SLMDE with respect to number of generations for
example 1.

4.2. Example 2

The second example [51] consists of two objective functions which are highly nonlinear.
It has four linear and two nonlinear performance functions that are developed using two
independent random normal variables, each with a standard deviation of 0.3. The RBDO
formulation of this example is given in Equation (22).

min: f1(µX) = −[25(µx1 − 2)2 + (µx2 − 2)2 + (µx3 − 1)2 + (µx4 − 4)2 + (µx5 − 1)2],

min: f2(µX) = [µ2
x1
+ µ2

x2
+ µ2

x3
+ µ2

x4
+ µ2

x5
+ µ2

x6
],

s.t.: P[Gi(X) > 0] ≤ φ(−βT
i ), i = 1, . . . , 6

G1(X) = x1 + x2 − 2,

G2(X) = 6− x1 − x2,

G3(X) = 2− x2 + x1,

G4(X) = 2− x1 + 3x2,

G5(X) = 4− (x3 − 3)2 − x4,

G6(X) = (x5 − 3)2 + x6 − 4,

0 ≤ µx1 , µx2 , µx6 ≤ 10, 1 ≤ µx3 , µx5 ≤ 5, 0 ≤ µx4
≤ 6.

(22)

Table 3 presents the statistical values of HV obtained via both methods. In can be seen
that SLMDE has converged to better values of HV for different βT values. This indicates
that SLMDE generates a better set of PO solutions for this given example. In this case, a
similar observation can also be made where for larger values of βT , the HV values becomes
reduced. This is due to the fact that larger values of βT signify a larger degree of reliability,
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which leads to the generation of conservative PO solutions. The Wilcoxon test results are
shown in the same table with symbols (+,=,−). It can be seen from the table that SLMDE
shows a significantly better performance over DLMDE.

Figure 4 shows the reliable PO solutions generated in the run, corresponding to a
median HV value from Table 3. It can be seen that for larger βT , PO solutions move inside
the feasible region and away from the deterministic PO front. The spread of solutions is
less in the case of SLMDE for βT = 1.0. The solutions are nicely distributed in the case of
DLMDE. The shift of the solutions is more for larger values of βT , which leads to smaller
values of HV that can be seen from Table 3.

Table 3. Best, median, and worst HV values obtained by both methods are presented for Example 2
for different values of βT . The best performances are highlighted in bold font.

βT SLMDE DLMDE βT SLMDE DLMDE βT SLMDE DLMDE

0.9118 0.9017 0.6234 0.6119 0.4027 0.3929
1.0 0.9028+ 0.8906 2.0 0.6181+ 0.6025 3.0 0.3945+ 0.3777

0.8853 0.8293 0.5999 0.5953 0.3776 0.3680

SD 0.0065 0.0153 SD 0.0065 0.0056 SD 0.0074 0.0080
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Figure 4. The PO solutions obtained via both methods for example 2, for different βT values.

Table 4 presents the computational efficiency of both methods. The proposed method
only requires 3,915,600 function evaluations, which is only 3.5–2.7% of DLMDE. It suggests that
DLMDE needs many function evaluations because PMA is performed for reliability estimation.

Table 4. Number of function evaluations required by both methods for Example 2.

βT SLMDE DLMDE

1.0 3,915,600 111,424,992
2.0 3,915,600 132,344,016
3.0 3,915,600 145,249,728

Figure 5 shows the progress of HV and ζ with respect to the number of generations. It
can be seen that there are fluctuations for all values of βT until the termination criterion
is achieved. The initial fluctuations can also be observed for ζ, which subsidize after
150 generations.
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Figure 5. Progress of hypervolume and ζ of SLMDE with respect to the number of generations for
example 2.

4.3. Car Side Impact Example

The car side impact [3] example is considered as an engineering RBDO example, which
is formulated by using 2 objectives and 10 performance functions. It consists of 11 random
design variables that are normally distributed and that are grouped into random variables
(x1, . . . , x7) and random parameters (x8, . . . , x11). The details of the variables with their
standard deviation values are given in Table 5. The RBDO formulation is presented in
Equation (23). The mathematical expressions for each function are given in Table 6.

min: f1(µX) ≡ Structural weight,

min: f2(µX) ≡ Average rib deflection,

s.t.: P[Gi(X) > 0] ≤ φ(−βT
i ), i = 1, . . . , 10

G1(X) = Abdomen load ≤ 1KN,

G2(X) = V ∗ Cupper ≤ 0.32m/s,

G3(X) = V ∗ Cmiddle ≤ 0.32m/s,

G4(X) = V ∗ Clower ≤ 0.32m/s,

G5(X) = Upper rib deflection ≤ 32mm,

G6(X) = Middle rib deflection ≤ 32mm,

G7(X) = Lower rib deflection ≤ 32mm,

G8(X) = Pubic force ≤ 4KN,

G9(X) = Velocity of V-Pillar ≤ 9.9mm/ms,

G10(X) = Front door velocity of V-Pillar ≤ 15.7mm/ms,

0.5 ≤ µx1 , µx3 , µx4 ≤ 1.5, 0.45 ≤ µx2 ≤ 1.35, 0.875 ≤ µx5 ≤ 2.625,

0.4 ≤ µx6 ≤ 1.2, 0.4 ≤ µx7
≤ 1.2, 0.192 ≤ µx8

, µx9
≤ 0.75.

(23)

The statistical values of the HV values obtained from both methods with respect to
different βT are presented in Table 7. The proposed method has converged to larger values
of HV for all βT values. This signifies a better distribution of PO solutions of SLMDE
as compared to DLMDE. The observation of reducing HV values with larger βT values
remains the same. The Wilcoxon test results are shown in the same table with symbols
(+,=,−). It can be seen from the table that SLMDE shows significantly better, bad, and
equivalent performances over DLMDE for βT = 1, 2 and 3, respectively.

The obtained reliable PO solutions for both methods are shown in Figure 6. As ob-
served with previous examples, for larger values of βT , the PO solutions start moving away
from the deterministic PO front inside the feasible region.

Table 8 presents the computational efficiency of both methods. In this example, SLMDE
requires only 4,623,000, the number of function evaluations, which is only 0.3–0.26% that of
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DLMDE. Since SLMDE performs an approximate reliability estimation by using the KKT
optimality conditions, it saves many function evaluations compared to DLMDE. Figure 7
shows a similar progress for HV and ζ with respect to the number of generations. There
are initial fluctuations for all values of βT , which subside after 80 generations.

Table 5. Details of design variables and their standard deviation values.

Design Variable Standard Deviation

x1: Thickness of B-pillar inner 0.03
x2: Thickness of B-pillar reinforcement 0.03
x3: Thickness of floor side inner 0.03
x4: Thickness of cross members 0.03
x5: Thickness of door beam 0.03
x6: Thickness of door beltline reinforcement 0.03
x7: Thickness of roof rail 0.03
x8: Material of B-pillar inner 0.006
x9: Material of floor side inner 0.006
x10: Barrier height 10
x11: Barrier hitting position 10

Table 6. The objectives and performance functions of Example 3.

f1(µX): 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 0.00001x6 + 2.73x7,
f2(µX): (G5(X) + G6(X) + G7(X))/3,
G1(X): 1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10,
G2(X): 0.261− 0.01598x1x2 − 0.188x1x8 − 0.0198x2x7 + 0.0144x3x5 + 0.0008757x5x10

+0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11
G3(X): 0.214 + 0.00817x5 − 0.1318x1x8 − 0.0704x1x9 + 0.030998x2x6 − 0.018x2x7 + 0.0208x3x8

+0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10 + 0.00121x8x11
+0.00184x9x10 − 0.018x2

2
G4(X): 0.74− 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2

2
G5(X): 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.77x7x8 + 0.32x9x10
G6(X): 33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10 − 9.98x7x8 + 22x8x9
G7(X): 46.36− 9.9x2 − 12.98x1x8 + 0.1107x3x10
G8(X): 4.72− 0.5x4 − 0.19x2x3 − 0.01228x4x10 + 0.009325x6x10 + 0.000191x2

11
G9(X): 10.58− 0.674x1x2 − 1.958x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10
G10(X): 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x2

11

Table 7. Best, median, and worst HV values obtained via both methods, presented for car side impact
example for different values of βT . The best performances are highlighted in bold font.

βT SLMDE DLMDE βT SLMDE DLMDE βT SLMDE DLMDE

0.8256 0.8216 0.7175 0.7104 0.5208 0.5200
1.0 0.8245+ 0.8211 2.0 0.7137− 0.7095 3.0 0.5145= 0.5142

0.8235 0.8196 0.7078 0.7070 0.4996 0.4912

SD 5× 10−4 4× 10−4 SD 0.0021 0.0040 SD 0.0050 0.0082

Table 8. Number of function evaluations required by both methods for car side impact example.

βT SLMDE DLMDE

1.0 4,623,000 1.467× 109

2.0 4,623,000 1.6970× 109

3.0 4,623,000 1.7342× 109
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Figure 6. The obtained PO solutions by both methods for car side impact example for different
βT values.
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Figure 7. Progress of hypervolume and ζ of SLMDE with respect to number of generations for car
side impact problem.

4.4. Example 4

The fourth example [44] consists of two objective functions and both of them are
quadratic functions. The example has a linear performance function developed with three
independent random normal variables. The RBDO formulation is given in Equation (24).

min: f1(µX) = (µx1 − 1)2 + (µx2 − 2)2 + (µx3 − 3)2,

min: f2(µX) = µ2
x1
+ 2µ2

x2
+ 3µ2

x3
,

s.t.: P[Gi(X) > 0] ≤ φ(−βT
i ), i = 1,

G1(X) = x1 + x2 + x3 − 1,

0.1 ≤ µxi
≤ 6, i = 1, 2, 3.

(24)

where x1 ∼ N(1, 0.05), x2 ∼ N(2, 0.1), and x3 ∼ N(3, 0.15).
Table 9 presents the statistical values of HV obtained via SLMDE and DLMDE. It can

be observed that in most of the cases, SLMDE converged to better values of HV for different
βT . The HV values become reduced with larger values of βT . The Wilcoxon test results are
shown in the same table with symbols (+,=,−). It can be seen from the table that SLMDE
shows an equivalent performance with DLMDE for βT = 2 and 3, and a bad performance
for βT = 1.
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Table 9. Best, median, and worst HV values obtained by both methods are presented for example 4
for different values of βT . The best performances are highlighted in bold font.

βT SLMDE DLMDE βT SLMDE DLMDE βT SLMDE DLMDE

0.7733 0.7751 0.7416 0.7413 0.6834 0.6833
1.0 0.7723− 0.7721 2.0 0.7407= 0.7405 3.0 0.6826= 0.6828

0.7380 0.7585 0.7297 0.7091 0.6439 0.6799

SD 0.0100 0.0028 SD 0.0035 0.0059 SD 0.0103 0.0080

Figure 8 shows the reliable PO solutions generated in the run corresponding to the
median HV value obtained via both methods for different values of βT . As observed in the
previous examples, for larger βT , PO solutions move inside the feasible region, away from
the deterministic PO front.

9 9.5 10 10.5 11 11.5 12 12.5 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Deterministic PF

T
 = 1.0

T
 = 2.0

T
 = 3.0

(a) SLMDE

9 9.5 10 10.5 11 11.5 12 12.5 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Deterministic PF

T
 = 1.0

T
 = 2.0

T
 = 3.0

(b) DLMDE
Figure 8. The PO solutions obtained via both methods for example 4 for different βT values.

Table 10 presents the computational efficiencies of both methods. The proposed
method requires only 50% of function evaluations as that of DLMDE. Figure 9 also shows
similar observations for HV and ζ during the progress of the generations. There is an initial
fluctuation which reduces after 20 generations.

Table 10. Number of function evaluations required by both methods for Example 4.

βT SLMDE DLMDE

1.0 280,000 520,000
2.0 280,000 520,000
3.0 280,000 520,000
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Figure 9. Progress of hypervolume and ζ of SLMDE with respect to number of generations for
Example 4.
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5. Conclusions

A single-loop multi-objective reliability-based design optimization has been proposed
for generating reliable PO solutions quickly. It was developed by applying KKT optimality
conditions to PMA for generating an approximate expression of MPTP. The search direction
of approximate MPTP was modified via chaos control theory. The concept of the shifting
vector approach was implemented with the novel formulation to include both target
and trial vectors. DE was made adaptive, using the heuristic parameter that helped
DE to perform different mutation operators. The proposed SLMDE was tested on three
mathematical and one engineering bi-objective RBDO examples. It was found that SLMDE
generated more reliable PO solutions for all examples compared to DLMDE. The results
demonstrate that the convergence of SLMDE takes less function evaluations than DLMDE.
For all four examples, the SLMDE was able to generate better HV values. For example 2,
a lot of fluctuations during the progress of hypervolume can be observed, which stabilize
gradually. The user-defined parameter ζ shows stable progress for all the examples. In the
future, the proposed method can be modified for quick convergence by incorporating
quantile approximation for reliability analysis. The proposed method can also be tested on
other real-world examples having many nonlinear functions.
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