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Abstract: The usefulness of (probability) distributions in the field of biomedical science cannot be
underestimated. Hence, several distributions have been used in this field to perform statistical
analyses and make inferences. In this study, we develop the arctan power (AP) distribution and
illustrate its application using biomedical data. The distribution is flexible in the sense that its
probability density function exhibits characteristics such as left-skewedness, right-skewedness, and J
and reversed-J shapes. The characteristic of the corresponding hazard rate function also suggests
that the distribution is capable of modeling data with monotonic and non-monotonic failure rates.
A bivariate extension of the AP distribution is also created to model the interdependence of two
random variables or pairs of data. The application reveals that the AP distribution provides a better
fit to the biomedical data than other existing distributions. The parameters of the distribution can
also be fairly accurately estimated using a Bayesian approach, which is also elaborated. To end the
study, the quantile and modal regression models based on the AP distribution provided better fits to
the biomedical data than other existing regression models.

Keywords: quantile regression; modal regression; biomedical; unit distribution; skewed data

1. Introduction

Parametric statistical techniques have been used in biomedical studies to conduct
analyses and draw conclusions. These parametric analyses, however, are constrained
by some assumptions about (probability) distributions. Thus, the task of selecting an
appropriate distribution for such analyses is incredibly essential. In addition, it is nontrivial,
as the use of an incorrect distribution will result in misleading inferences. Knowing which
distribution to use in biomedical modeling has become increasingly important as it is
used to develop new parametric regression models for modeling the relationship between
endogenous variables and a set of exogenous variables. These new regression models often
provide a good fit with minimal loss of information compared to the existing ones. This
has triggered new interest in developing regression models using extended or modified
forms of existing distributions.

Among the distributions used for developing the regression models, those that are de-
fined on the unit interval have received much attention due to the small loss of information
they offer in modeling data on this interval. Some of these distributions include the unit
folded normal distribution [1], bounded truncated Cauchy power exponential distribu-
tion [2], unit exponentiated Fréchet distribution [3], log XLindley (LXL) distribution [4], unit
Chen distribution [5], unit Burr XII distribution (UBXII) [6], unit generalized half-normal
distribution [7], unit Burr III (UBIII) distribution [8], unit Lindley distribution [9], unit
Gompertz distribution [10], unit improved second degree Lindley (UISDL) distribution [11],
unit Weibull distribution [12], and exponentiated Topp–Leone distribution [13].

Math. Comput. Appl. 2023, 28, 25. https://doi.org/10.3390/mca28010025 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca28010025
https://doi.org/10.3390/mca28010025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0001-6652-4251
https://orcid.org/0000-0003-0423-8465
https://doi.org/10.3390/mca28010025
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca28010025?type=check_update&version=1


Math. Comput. Appl. 2023, 28, 25 2 of 25

Despite the existence of these distributions, it is worth noting that the behavior of
humans or organisms is nondeterministic, and a single distribution cannot be selected in
all situations to describe or model these traits. Therefore, we develop a new distribution
called the arctan power (AP) distribution for modeling data on the unit interval based on
the following motivations:

1. Develop a flexible unit distribution that is able to model data that are left-skewed,
right-skewed, symmetric, J, and reversed-J shapes.

2. Develop a unit distribution capable of modeling data with increasing, bathtub, and
modified upside-down bathtub hazard rate functions (HRFs).

3. Develop quantile regression for modeling response variables that are skewed or
contain extreme values.

4. Develop modal regression for modeling response variables that are asymmetric or
heavy-tailed.

The article is organized into eight sections. Section 2 describes the development
of the AP distribution. Section 3 presents their statistical properties. Section 4 shows
the construction of a possible bivariate extension of the AP distribution. Nine frequentist
approaches to estimating the involved parameters are proposed in Section 5. The frequentist
and Bayesian univariate applications of the distribution are given in Section 6. Section 7
is devoted to the quantile and modal regressions based on the AP distribution and their
applications. The conclusion of the study is presented in Section 8.

2. Development of AP Distribution

Suppose that a random variable, X, follows the arctan uniform (AU) distribution.
Then, according to [14], the cumulative distribution function (CDF) and probability density
function (PDF) of X are, respectively, given by

FX(x; α) =
arctan(αx)
arctan(α)

, α > 0, x ∈ (0, 1) (1)

and
fX(x; α) =

α

arctan(α)(1 + α2x2)
, x ∈ (0, 1). (2)

The proposed AP distribution is obtained using the power transformation
Y = X1/β, β > 0. The motivations for introducing the power parameter, β, are to im-
prove the tail properties of the new distribution, making it capable of handling both
monotonic and non-monotonic HRFs. Other researchers have used the power transfor-
mation approach to modify existing continuous distributions. See, for instance, [15–17].
Hence, using standard mathematical developments, the CDF of Y is obtained as

FY(y; α, β) = FX(yβ; α)

= arctan(αyβ)
arctan(α) , α > 0, β > 0, y ∈ (0, 1).

(3)

The PDF and HRF are, respectively, given by

fY(y; α, β) =
αβyβ−1

arctan(α)(1 + α2y2β)
, y ∈ (0, 1) (4)

and

hY(y; α, β) =
αβyβ−1

(arctan(α)− arctan(αyβ))(1 + α2y2β)
, y ∈ (0, 1). (5)

Basically, when α→ 0+ , the PDF of the AP distribution reduces to the one of the
power distribution. As α→ 0+ and β = 1, the PDF of the AP distribution reduces to the
one of the standard uniform distribution. Furthermore, when β = 1, the PDF of the AP
distribution reduces to the one of the AU distribution.
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The expanded form of the PDF is often useful when deriving the statistical properties
of the distribution. Thus, using the arctangent function expansion indicated as follows:

arctan(z) =
∞
∑

k=0

(−1)kz2k+1

2k+1 , |z| < 1 (see [18]) and α ∈ (0, 1), the CDF of Y can be expressed as

FY(y; α, β) =
∞

∑
k=0

(−1)kα2k+1y(2k+1)β

(2k + 1)arctan(α)
, y ∈ (0, 1). (6)

Differentiating the expanded form of the CDF in Equation (6), the corresponding PDF
is given by

fY(y; α, β) =
∞

∑
k=0

(−1)kβα2k+1y(2k+1)β−1

arctan(α)
, y ∈ (0, 1). (7)

The PDF and HRF plots are shown in Figure 1 for some given parameter values. In it,
the PDF exhibits left-skewed, right-skewed, J, and reversed-J shapes. This makes the AP
distribution superior to the AU distribution, which exhibits only J shapes. On this side, the
HRF displays increasing, bathtub, and modified upside-down bathtub shapes.
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3. Some Statistical Properties

In this section, some statistical properties of the AP distribution are presented.

3.1. Mode

The mode of a distribution is a useful measure of central tendency. It can be used as it
for data measured on the nominal, ordinal, interval, or ratio scale. The AP distribution has
a unique mode when β > 1, and it is expressed in the result below.

Proposition 1. The mode of the AP distribution is given by

mode =

(
β− 1

α2(β + 1)

) 1
2β

, β > 1. (8)

Proof. To establish this expression, it is essential to locate the critical point(s) of the PDF.
A critical point of the PDF is a point of the PDF, or equivalently, the logarithm of the PDF,
where its derivative is zero or infinity. Taking the logarithm of the PDF and differentiating,
we have

d log fY(y; α, β)

dy
=

β− 1− α2(β + 1)y2β

y(1 + α2y2β)
.

Equating the derivative to zero and simplifying yields the mode. This completes the
proof. �
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3.2. Quantile Function

The quantile function can be used to generate random observations from the AP
distribution and to compute shape-related metrics like skewness and kurtosis.

Proposition 2. The quantile function of the AP distribution is given by

Q(u; α, β) =

[
tan(uarctan(α))

α

] 1
β

, u ∈ (0, 1). (9)

Proof. The quantile function is the solution Q(u; α, β) of the following nonlinear equation:
FY(Q(u; α, β); α, β) = u for all u ∈ (0, 1). After some simplifications, letting y = Q(u; α, β)
in the CDF and equating the CDF to u ∈ (0, 1) yields the quantile function. This completes
the proof. �

It is important to note that the quantile function of the AP distribution is uniquely
determined with simple trigonometric and power functions.

The median Q(0.5; α, β), first quartile Q(0.25; α, β), and upper quartile Q(0.75; α, β)
are obtained, respectively, by substituting 0.5, 0.25, and 0.75 into the quantile function. The
Bowley’s (BS) measure of skewness and the Moors’ (MK) measure of kurtosis can then be
calculated using the quantiles. They are, respectively, given by

BS =
Q(0.75; α, β) + Q(0.25; α, β)− 2Q(0.5; α, β)

Q(0.75; α, β)−Q(0.25; α, β)
,

and

MK =
Q(0.375; α, β)−Q(0.125; α, β) + Q(0.875; α, β)−Q(0.625; α, β)

Q(0.75; α, β)−Q(0.25; α, β)
.

The plots of the Bowley’s coefficient of skewness and Moor’s coefficient of kurtosis
are displayed in Figure 2. Both the skewness and kurtosis are affected by changes in the
values of the parameters. From this figure, we can observe that the AP distribution can be
left-skewed or right-skewed.
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3.3. Moments and Generating Function

The moments are useful for estimating measures of central tendency, dispersion, and
shapes. The generating functions can be used to estimate the moments, if they exist in the
mathematical sense.

Proposition 3. For α ∈ (0, 1), the rthraw moment of an AP random variable Yis given by

µ′r =
∞

∑
k=0

(−1)kβα2k+1

(r + (2k + 1)β)arctan(α)
, r = 1, 2, ... (10)
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Proof. The rth raw moment by definition is given by µ′r = E(Yr) =
1∫

0
yr fY(y; α, β)dy. Thus,

we obtain

µ′r =
∞

∑
k=0

(−1)kβα2k+1

arctan(α)

1∫
0

yr+(2k+1)β−1dy.

After some algebraic simplifications, the raw moment of the AP random variable is
obtained. This completes the proof. �

The incomplete moment is very useful when computing measures of inequalities, such
as the Lorenz and Bonferroni curves.

Proposition 4. For α ∈ (0, 1), the rth incomplete moment of an AP random variable Y is given by

ϑr(y) =
∞

∑
k=0

(−1)kβα2k+1yr+(2k+1)β

(r + (2k + 1)β)arctan(α)
, r = 1, 2, ... (11)

Proof. By definition, ϑr(y) = E(Yr1{Y < y}) =
y∫

0
zr fY(z; α, β)dz. Hence, substituting the

expanded PDF into the definition and simplifying it completes the proof. �

The Lorenz and Bonferroni curves are obtained, respectively, as

LF(y) =
1
µ

y∫
0

z fY(z; α, β)dz

and

BF(y) =
1

µFY(y; α, β)

y∫
0

z fY(z; α, β)dz,

where µ = µ′1 is the mean.
Figure 3 displays the plots of the Lorenz and Bonferroni curves of the AP distribution

for some selected parameter values. For the Lorenz curve, when LF(y) = y, the minimal
point of inequality is obtained. When BF(y) = y, the so-called equidistributional line for
the Bonferroni curve is obtained.
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When non-central moments of a random variable exist, they can be found using the
moment-generating function (MGF).
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Proposition 5. For α ∈ (0, 1), the MGF of an AP random variable Y is given by

MY(t) =
∞

∑
r=0

∞

∑
k=0

(−1)ktrβα2k+1

r!(r + (2k + 1)β)arctan(α)
. (12)

Proof. Using the definition MY(t) = E(etY) =
1∫

0
ety fY(y; α, β)dy and applying the Taylor

series expansion, we get

MY(t) =
∞

∑
r=0

tr

r!
µ′r

Hence, substituting the rth non-central moment completes the proof. �

3.4. Order Statistics

Order statistics are very useful in extreme value analysis. They can be used to de-
termine the behavior of the minimum and maximum value. Consider the order statistics
Y1:n ≤ Y2:n ≤ . . . ≤ Yn:n from the AP distribution. Then, the PDF of Yk:n, k = 1, 2, ..., n is

fk:n(y; α, β) = Ck:n[FY(y; α, β)]k−1[1− FY(y; α, β)]n−k fY(y; α, β),

where the factor constant is given by

Ck:n =
n!

(k− 1)!(n− k)!
.

Using the standard binomial expansion, we can express this PDF as

fk:n(y; α, β) = Ck:n

n−k

∑
j=0

(−1)j
(

n− k
j

)
[FY(y; α, β)]k+j−1 fY(y; α, β).

Hence, we obtain

fk:n(y; α, β) =
αβyβ−1Ck:n

arctan(α)(1 + α2y2β)

n−k

∑
j=0

(−1)j
(

n− k
j

)[
arctan(αyβ)

arctan(α)

]k+j−1

. (13)

The minimum (Y1:n) and maximum (Yn:n) order statistics can serve to investigate the
minimum and maximum failure time of a system, respectively. The PDF of Y1:n is given by

f1:n(y; α, β) = n fY(y; α, β)[1− FY(y; α, β)]n−1

= nαβyβ−1(arctan(α)−arctan(αyβ))
n−1

(1+α2y2β)(arctan(α))n

and the PDF of Yn:n is

fn:n(y; α, β) = n fY(y; α, β)[FY(y; α, β)]n−1

= nαβyβ−1(arctan(αyβ))
n−1

(1+α2y2β)(arctan(α))n .

The minimum and maximum (min-max) plot of the order statistics can be used to
describe whether the distribution is symmetrical or skewed. The min-max plots depend
on E(Y1:n) and E(Yn:n). The min-max plots for some chosen parameter values for the AP
distribution are shown in Figure 4. This figure reveals that the AP distribution can be
right-skewed, left-skewed, or symmetric.
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4. Bivariate AP Distribution

The development of bivariate distributions is very useful in the context of investigating
the joint relationship between two random variables. For example, one may be interested
in studying the relationship between the human development index and literacy rate
of a country, the maternal mortality rate and literacy rate, or rainfall and temperature,
among others. There are different methods of developing bivariate distributions. One
way to do this is to use copula functions (see [19]). However, in this study, we follow the
approach used by [20,21]. Let (X, Y) be a bivariate continuous random vector. The CDF
of the bivariate AP (BAP) distribution with parameters α, β, ρ1, ρ2, ρ3, where α > 0, β > 0,
−1 < ρ1 + ρ3 < 1, −1 < ρ2 + ρ3 < 1, x ∈ (0, 1) and y ∈ (0, 1), is given by

FXY(x, y; ς) =
arctan(αxβ)arctan(αyβ)(arctan(α))−2[

1 + (ρ1 + ρ3)
(

arctan(α)−arctan(αxβ)
arctan(α)

)
+ (ρ2 + ρ3)

(
arctan(α)−arctan(αyβ)

arctan(α)

)]−1 , (14)

where ς= (α, β, ρ1, ρ2, ρ3). The plots of the CDF of the BAP distribution for the given
parameter values are shown in Figure 5:

(a) α = 8.5, β = 2.5, ρ1 = 0.4, ρ2 = 0.1, ρ3 = 0.2,
(b) α = 4.5, β = 8.2, ρ1 = −0.3, ρ2 = 0.4, ρ3 = −0.2 and
(c) α = 3.4, β = 6.2, ρ1 = 0.3, ρ2 = 0.4, ρ3 = −0.6.

These plots reveal different concave and convex shapes for the chosen parameter values.
The PDF of the BAP distribution is given by

fXY(x, y; ς) =
(αβ)2(xy)β−1(arctan(α))−2[1 + (αxβ)

2
+ (αyβ)

2
+ α4(xy)2β]

−1[
1 + (ρ1 + ρ3)

(
arctan(α)−arctan(αxβ)

arctan(α)

)
+ (ρ2 + ρ3)

(
arctan(α)−arctan(αyβ)

arctan(α)

)]−1 . (15)

The PDF plots of the BAP distribution for the following selected parameter values are
displayed in Figure 6:

(a) α = 8.5, β = 2.5, ρ1 = 0.4, ρ2 = 0.1, ρ3 = 0.2,
(b) α = 4.5, β = 8.2, ρ1 = −0.3, ρ2 = 0.4, ρ3 = −0.2 and
(c) α = 3.4, β = 2.5, ρ1 = 0.3, ρ2 = 0.4, ρ3 = −0.6.

These plots display left-skewed, right-skewed, and approximate symmetrical shapes.
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5. Estimation Methods and Simulations

This section presents nine frequentist estimation procedures for estimating the pa-
rameters of the AP distribution. These are the maximum likelihood (ML) estimation,
ordinary least squares (OLS), weighted least squares (WLS), Cramér–von Mises (CVM)
estimation, Anderson–Darling (AD) estimation, percentile estimation (PE), and product
spacing estimations.

5.1. Maximum Likelihood Estimation

Let y1, y2, . . . , yn be independent and identically random observations of sample size
n from the AP distribution. Suppose that ξ = (α, β)′ is the vector of parameters; then, the
total log-likelihood function is

`(ξ) = n log(αβ)− n log(arctan(α)) + (β− 1)
n

∑
i=1

log(yi)−
n

∑
i=1

log(1 + α2y2β
i ). (16)

The total likelihood function can be maximized directly with respect to the parameters
α and β to obtain the ML estimates of the parameters. Alternatively, these estimates can
be obtained by equating the score functions to zero and solving the resulting system of
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equations simultaneously. The score functions, obtained by differentiating Equation (16)
with respect to the parameters, are given by

∂`(ξ)

∂α
=

n
α
− n

(1 + α2)arctan(α)
−

n

∑
i=1

2αy2β
i

1 + α2y2β
i

(17)

and
∂`(ξ)

∂β
=

n
β
+

n

∑
i=1

log(yi)−
n

∑
i=1

2α2 log(yi)y
2β
i

1 + α2y2β
i

. (18)

The score functions do not have a closed form, thus, the resulting system of equations
are solved numerically to obtain the estimates α̂ and β̂.

5.2. Ordinary and Weighted Least Squares Estimation

Consider an ordered random sample y(1), y(2), . . . , y(n) of size n from the AP distribu-
tion; then, the OLS estimates, α̂OLS and β̂OLS, of the parameters are obtained by minimizing
the function

OLS =
n

∑
i=1

arctan(αyβ

(i))

arctan(α)
− i

n + 1

2

, (19)

with respect to the parameters α and β. The OLS estimates can also be obtained by
numerically solving the nonlinear equations

n

∑
i=1

arctan(αyβ

(i))

arctan(α)
− i

n + 1

πs(y(i); α, β) = 0, s = 1, 2, (20)

where

π1(y; α, β) =
2yβ

(i)

arctan(α)(1 + α2y2β

(i))
−

2arctan(αyβ

(i))

(arctan(α))2(1 + α2)
(21)

and

π2(y; α, β) =
2yβ

(i)

arctan(α)(1 + α2y2β

(i))
. (22)

The WLS estimates, α̂WLS and β̂WLS, of the parameters are obtained by minimizing
the function

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

arctan(αyβ

(i))

arctan(α)
− i

n + 1

2

, (23)

with respect to the parameters α and β. Alternatively, the WLS estimates are obtained by
numerically solving the nonlinear equations

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

arctan(αyβ

(i))

arctan(α)
− i

n + 1

πs(y(i); α, β) = 0, s = 1, 2, (24)

where πs(y; α, β), s = 1, 2 are defined in Equations (21) and (22).

5.3. Cramér–Von Mises Estimation

Given that y(1), y(2), . . . , y(n) are the ordered observations of size n from the AP distri-
bution, the CVM estimates, α̂CVM and β̂CVM, of the parameters are obtained by minimizing
the function
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CVM =
1

12n
+

n

∑
i=1

arctan(αyβ

(i))

arctan(α)
− 2i− 1

2n

2

, (25)

with respect to the parameters α and β. The CVM estimates can also be obtained by solving
the nonlinear equation

n

∑
i=1

arctan(αyβ

(i))

arctan(α)
− 2i− 1

2n

πs(y(i); α, β) = 0, s = 1, 2, (26)

where πs(y; α, β), s = 1, 2 are given in Equations (21) and (22).

5.4. Anderson–Darling Estimation

Let y(1), y(2), . . . , y(n) be ordered observations of size n from the AP distribution. The
AD estimates, α̂AD and β̂AD, of the parameters of the AP distribution are obtained by
minimizing the function

AD = −n− 1
n

n

∑
i=1

(2i− 1)

log

arctan(αyβ

(i))

arctan(α)

− log

arctan(α)− arctan(αyβ

(i))

arctan(α)

, (27)

with respect to the parameters α and β.

5.5. Percentile Estimation

Let y(1), y(2), . . . , y(n) be ordered observations of size n from the AP distribution,
and ui = i/(n + 1). The percentile estimates, α̂PE and β̂PE, of the parameters of the AP
distribution are obtained by minimizing the function

PE =
n

∑
i=1

[
y(i) −

(
tan(uiarctan(α))

α

)1/β
]2

, (28)

with respect to the parameters α and β.

5.6. Product Spacing Estimations

In this subsection, the maximum product spacing (MPS) and minimum spacing dis-
tance (MSD) estimation methods are discussed. The MPS estimation method is based on
the Kullback–Leibler information measure. Let us consider the uniform spacing

Di = FY(y(i); α, β)− FY(y(i−1); α, β)

=
arctan(αyβ

(i))

arctan(α) −
arctan(αyβ

(i−1))

arctan(α) ,

where FY(y(0); α, β) = 0, FY(y(n+1); α, β) = 1 and D0(α, β)+D1(α, β)+ . . .+Dn+1(α, β) = 1.
The MPS estimates, α̂MPS and β̂MPS, of the parameters are obtained by directly maximizing
the logarithm of the geometric mean of the spacing given by

MPS =
1

n + 1

n+1

∑
i=1

log Di(α, β), (29)

with respect to the parameters α and β.
The MSD estimates, α̂MSD and β̂MSD, of the parameters of the AP distribution are

obtained my minimizing the function
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MSD =
n

∑
i=1

∆(Di(α, β),
1

n + 1
), (30)

where ∆(a, b) represents an appropriate distance. Several choices of ∆(a, b) exist. However,
in this study, we employ the absolute |a− b| and absolute-logarithm |log(a)− log(b)|
distances. Hence, the minimum spacing absolute distance (MSAD) and minimum spacing
absolute-logarithm (MSALD) estimates of the parameters are obtained by minimizing
the functions

MSAD =
n

∑
i=1

∣∣∣∣Di(α, β)− 1
n + 1

∣∣∣∣ (31)

and

MSAD =
n

∑
i=1

∣∣∣∣log(Di(α, β))− log(
1

n + 1
)

∣∣∣∣, (32)

where Di(α, β) 6= 1
n+1 and log(Di(α, β)) 6= log( 1

n+1 ).

5.7. Monte Carlo Simulation

In this section, we conduct Monte Carlo simulation studies to investigate how the
various estimation techniques perform with regards to estimating the parameter of the
AP distribution. The exercise is carried out with two sets of parameter values, which are
α = 0.8, β = 0.4 and α = 4.5, β = 6.2. The simulation experiments are repeated 5000 times
using the sample sizes n = 25, 50, 100, 250 and 350. The average estimates (AE), average
absolute bias (AB), and root mean square error (RMSE) of the parameters are estimated
and reported in Tables 1 and 2. We observe that as the sample size increases, the AE of the
parameters approaches the true parameter values. Furthermore, the ABs and RMSEs of the
parameters decrease as the sample size increases for all the estimation methods used. Thus,
the various estimation methods produce consistent estimates for the parameters of the AP
distribution. However, none of the estimation methods proves to be superior to the others.

Table 1. AE, AB, and RMSE for α = 0.8 and β = 0.4.

Parameter n ML MPS OLS WLS AD CVM PE MADS MALDS

AE

α

25 0.7609 1.1013 0.4303 0.5079 0.5634 0.6210 0.8969 0.1730 0.5673

50 0.8989 1.1131 0.6865 0.7679 0.7794 0.8387 0.9400 0.1718 0.5865

100 0.5186 0.6330 0.5285 0.5408 0.5316 0.6020 0.7364 0.3013 0.4153

250 0.7563 0.8212 0.6438 0.6947 0.6821 0.6737 0.6598 0.4516 0.5850

350 0.8082 0.8765 0.7720 0.8039 0.7933 0.7969 0.6947 0.5602 0.7547

β

25 0.4217 0.4674 0.3992 0.4005 0.4065 0.4237 0.4895 0.3323 0.4021

50 0.4294 0.4580 0.4086 0.4158 0.4174 0.4258 0.4584 0.2995 0.3967

100 0.3903 0.4039 0.3947 0.3944 0.3926 0.4016 0.4371 0.3582 0.3858

250 0.4035 0.4115 0.3938 0.3975 0.3966 0.3974 0.4061 0.3673 0.3940

350 0.3949 0.4026 0.3907 0.3944 0.3931 0.3936 0.3904 0.3719 0.3899

AB

α

25 0.5584 0.6872 0.6047 0.5382 0.5453 0.6459 0.7676 0.6845 0.6637

50 0.5308 0.6270 0.5159 0.5405 0.4941 0.5491 0.9510 0.6712 0.6083

100 0.6628 0.6447 0.7083 0.6909 0.6867 0.6793 0.8618 0.5800 0.6805

250 0.2803 0.2719 0.3670 0.3164 0.3256 0.3616 0.4728 0.5443 0.4994

350 0.2584 0.2666 0.2306 0.2376 0.2389 0.2336 0.4586 0.4518 0.3332
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Table 1. Cont.

Parameter n ML MPS OLS WLS AD CVM PE MADS MALDS

β

25 0.0701 0.1000 0.0807 0.0724 0.0686 0.0844 0.1327 0.2182 0.1001

50 0.0442 0.0643 0.0495 0.0435 0.0428 0.0580 0.1059 0.1275 0.0445

100 0.0504 0.0530 0.0493 0.0493 0.0490 0.0500 0.0657 0.0640 0.0480

250 0.0270 0.0286 0.0352 0.0306 0.0314 0.0358 0.0534 0.0557 0.0356

350 0.0226 0.0222 0.0243 0.0176 0.0192 0.0243 0.0520 0.0428 0.0268

RMSE

α

25 0.6832 0.8824 0.6642 0.6196 0.6373 0.7498 0.9374 0.7249 0.7684

50 0.6291 0.7570 0.6603 0.6831 0.5963 0.7164 1.4860 0.7176 0.6671

100 0.7322 0.7492 0.7848 0.7744 0.7611 0.7921 0.9537 0.6576 0.7420

250 0.3359 0.3366 0.4614 0.3988 0.4108 0.4615 0.5893 0.6260 0.5625

350 0.3129 0.3093 0.3154 0.3086 0.3098 0.3142 0.5602 0.5355 0.4107

β

25 0.0910 0.1217 0.1029 0.0918 0.0880 0.1174 0.1684 0.2464 0.1214

50 0.0542 0.0782 0.0607 0.0559 0.0493 0.0712 0.1646 0.1592 0.0603

100 0.0612 0.0655 0.0627 0.0618 0.0606 0.0652 0.0875 0.0981 0.0604

250 0.0337 0.0362 0.0402 0.0364 0.0374 0.0411 0.0679 0.0696 0.0446

350 0.0259 0.0259 0.0293 0.0242 0.0249 0.0289 0.0619 0.0560 0.0337

Table 2. AE, AB, and RMSE for α = 4.5 and β = 6.2.

Parameter n ML MPS OLS WLS AD CVM PE MADS MALDS

AE

α

25 7.0765 10.3643 5.9141 5.8055 6.6186 7.5983 4.8574 1.2794 8.3329

50 5.0499 5.9801 4.8062 4.7651 4.7680 5.3690 4.1797 3.3758 5.4587

100 4.3862 4.8383 4.1504 4.2629 4.2891 4.3589 3.9500 3.6863 4.3552

250 4.3660 4.5560 4.2758 4.3155 4.3307 4.3597 4.1551 3.9716 4.4893

350 4.3334 4.4767 4.2076 4.2748 4.2766 4.2668 4.2163 4.1250 4.3294

β

25 6.4914 7.3170 5.9496 5.9510 6.2163 6.5382 5.5927 3.3139 5.9368

50 6.1885 6.6336 5.9530 6.0059 6.0516 6.2226 5.7082 4.6987 6.1925

100 6.2534 6.5278 6.0770 6.1657 6.1849 6.2094 5.9914 5.5851 6.2811

250 6.1297 6.2481 6.0714 6.1025 6.1135 6.1240 6.0026 5.7696 6.1201

350 6.0608 6.1514 5.9857 6.0232 6.0258 6.0232 5.9824 5.8618 6.0932

AB

α

25 3.4127 5.9293 3.3920 3.1570 3.4268 4.2622 2.7449 3.2862 5.8446

50 1.8288 2.1741 2.1320 1.9167 1.7383 2.2757 1.7767 2.4817 2.5227

100 1.0012 0.9566 1.0738 1.0249 1.0781 1.0474 1.0521 1.5290 1.2026

250 0.8031 0.8054 0.8103 0.7709 0.7570 0.7912 0.8309 1.2029 1.0822

350 0.6395 0.6136 0.6138 0.6133 0.6086 0.6041 0.6972 0.8890 0.5945

β

25 1.2038 1.4981 1.3240 1.2379 1.1823 1.3926 1.2174 2.9029 1.2698

50 0.9340 0.9660 1.0599 0.9933 0.9327 1.0433 1.0666 2.1079 1.2164

100 0.5449 0.5436 0.5723 0.5544 0.5715 0.5383 0.5769 0.9975 0.6254

250 0.4017 0.4156 0.4049 0.4016 0.3959 0.4026 0.4575 0.7574 0.6456

350 0.3707 0.3538 0.3835 0.3678 0.3652 0.3723 0.4190 0.5258 0.3588
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Table 2. Cont.

Parameter n ML MPS OLS WLS AD CVM PE MADS MALDS

RMSE

α

25 9.0289 16.6588 7.7515 7.0825 8.9366 10.7903 5.1325 3.5862 19.9363

50 3.1101 4.1306 3.7004 2.9429 2.7048 4.3787 2.2720 3.1047 4.0033

100 1.2746 1.4424 1.3415 1.3020 1.3645 1.3743 1.1958 2.0602 1.7619

250 1.0203 1.0631 1.0172 1.0052 0.9906 1.0217 1.0439 1.6323 1.3097

350 0.7575 0.7559 0.7539 0.7476 0.7376 0.7427 0.8050 1.2130 0.7278

β

25 1.5369 2.0307 1.6441 1.5388 1.5357 1.7984 1.4325 3.3678 1.7998

50 1.2005 1.3372 1.3614 1.2314 1.1733 1.3964 1.2318 2.6988 1.5320

100 0.6942 0.7728 0.7270 0.6891 0.7131 0.7296 0.6689 1.5722 0.8371

250 0.5388 0.5432 0.5306 0.5343 0.5215 0.5232 0.5916 0.9666 0.7900

350 0.4264 0.4122 0.4673 0.4368 0.4343 0.4534 0.4743 0.6624 0.4570

6. Empirical Application

In this section, we present frequentist and Bayesian applications of the AP distribution
using biomedical data.

6.1. Frequentist Application

In this subsection, the univariate application of the AP distribution is illustrated using
the ML estimation approach. The illustration is done using data on the recovery rates for
viable CD34+ cells of 239 patients who agreed to an autologous peripheral blood stem cell
(PBSC) transplant after myeloablative doses of chemotherapy between the years 2003 and
2008 at the Edmonton Hematopoietic Stem Cell Lab in the Cross Cancer Institute-Alberta
Health Services. The data can be found in the simplexreg package developed by [22].
Ref. [6] recently fitted the unit Burr XII (UBXII) distribution to improve the recovery rates
for viable CD34+ cells. The AP distribution is fitted to the recovery rates in this study,
and its performance is compared to the AU distribution [14], unit power Weibull (UPW)
distribution [23], log-XLindley (LXL) distribution [4], unit Lindley (UL) distribution [9],
unit improved second degree Lindley (UISDL) distribution [11], bounded Marshall–Olkin
extended exponential (BMOEE) distribution [24], unit Burr III (UBIII) distribution [8],
unit Gompertz (UG) distribution [10], unit Weibull (UW) distribution [12], exponentiated
Topp–Leone (ETL) distribution [13], Kumaraswamy distribution [25], and beta distribu-
tion. The performances of the distributions are compared using the log-likelihood (`),
Akaike information criterion (AIC), AIC difference (DAIC), Bayesian information criterion
(BIC), Anderson–Darling (AD) test, Cramér–von Mises (CVM) test, and Kolmogorov–
Smirnov (KS) test. The distribution with the highest value of ` and lowest values of
AIC, BIC, AD, CVM, and KS is considered to be the best. The DAIC is computed as
DAICi = AICi −AICmin, i = 1, 2, ..., S, where S is the number of distributions under com-
parison. The best distribution satisfies DAIC = 0. If DAIC > 2, then the difference in
performance between the two models is significant. Before fitting the models to the recov-
ery rate for viable CD34+ cells, we explore their characteristics. From the kernel density,
boxplot, and violin plots shown in Figure 7, we observe that the recovery rate for viable
CD34+ cells is left-skewed. Hence, a distribution capable of modeling left-skewed data is
required, which is the case for the AP distribution.

Table 3 presents the ML estimates of the parameters with their respective standard
errors in brackets. The AP distribution appears to be the best model since it has the highest
log-likelihood values and the smallest values for the AIC, BIC, AD, CVM, and KS. The
p-values of the AD, CVM, and KS tests are given in parentheses. The p-values also indicate
that the AP distribution is the best. Furthermore, looking at the DAIC values, the AP
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distribution significantly performs better than the other fitted distributions. Comparing
the goodness-of-fit statistics of the AP and AU distributions, it can be concluded that
the induction of the new parameter has greatly improved the performance of the AP
distribution, making it superior to the AU distribution.

Table 3. Parameter estimates, standard errors, goodness-of-fit tests.

Model Parameter ` AIC DAIC BIC AD CVM K-S

AP α = 5.0250(0.9841)
β = 8.1856(0.6324) 194.5900 −385.1756 0.0000 −378.2227 0.3670

(0.8806)
0.0461

(0.8999)
0.0430

(0.7694)

AU α = 2.5208× 10−14(0.0828) 0.0000 2.0000 387.1756 5.4765 131.0700
(<0.0001)

28.2090
(<0.0001)

0.5572
(<0.0001)

Beta α = 8.6671(0.8063)
β = 2.2859(0.1962) 191.8700 −379.7345 5.4411 −372.7816 0.8732

(0.4310)
0.1402

(0.4213)
0.0650

(0.2647)

Kumaraswamy α = 6.6942(0.4546)
β = 2.4355(0.2411) 190.7600 −377.5820 7.5936 −370.5751 1.1438

(0.2899)
0.1916

(0.2845)
0.0723

(0.1646)

UBIII α = 6.4356(0.5341)
β = 1.5532(0.0695) 192.5000 −381.0031 4.1725 −374.0501 0.7758

(0.4987)
0.1191

(0.4996)
0.0535

(0.4997)

BMOEE α = 7.6885(1.7248)
β = 9.6771(0.7554) 192.4200 −380.8355 4.3401 −373.8825 0.6848

(0.5715)
0.0866

(0.6551)
0.0489

(0.6182)

UG α = 1.0457(0.2360)
β = 2.3734(0.3237) 177.0300 −350.0612 35.1144 −343.1082 4.9419

(0.0031)
0.7829

(0.0080)
0.1106

(0.0058)

UW α = 8.0560(0.8314)
β = 1.6182(0.0791) 192.0200 −380.0314 5.1442 −373.0785 0.8636

(0.4373)
0.1328

(0.4467)
0.0557

(0.4486)

ETL α = 14.9326(1.3241)
β = 0.8641(0.0718) 192.6800 −381.3601 3.8155 −374.4072 0.6705

(0.5838)
0.0996

(0.5873)
0.0520

(0.5370)

UBXII α = 10.0760(1.0039)
β = 1.7321(0.0787) 193.5000 −383.0054 2.1702 −376.0525 0.5806

(0.6664)
0.0887

(0.6437)
0.0522

(0.5321)

UISDL α = 0.3571(0.0134) 54.2900 −106.5865 278.5891 −103.1101 34.4330
(<0.0001)

20.1010
(<0.0001)

0.2851
(<0.0001)

UL α = 0.2424(0.0112) 97.6400 −193.2741 191.9015 −189.7976 20.1010
(<0.0001 )

4.0961
(<0.0001)

0.2365
(<0.0001)

LXL α = 4.2040(0.2569) 154.6800 −307.3564 77.8192 −303.8799 15.7970
(<0.0001)

3.0033
(<0.0001)

0.2010
(<0.0001)

UPW
α = 500.0000(8.1076× 10−6)

β = 2.4183(9.9309× 10−2)
λ = 0.0372(3.5461× 10−3)

168.2600 −330.5111 54.6645 −320.0817 5.3084
(0.0021)

0.8375
(0.0059)

0.1152
(0.0035)
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Figure 8 displays the histogram of the data and the estimated PDF of the AP distribu-
tion on the one hand and the empirical CDF and the estimated CDF of the AP distribution
on the other hand, using the estimates of the parameter. This figure suggests that the AP
distribution provides good fit to the data.
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Figure 9 displays the probability-probability (P-P) plots of the fitted distributions. This
figure suggests that the AP distribution provides a good fit to the data as its expected and
observed probabilities cluster along the diagonal line.
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The profile log-likelihood plots of the estimated parameters of the AP distribution
are shown in Figure 10. These plots suggest that the ML estimates of the parameters are
unique and denote the true maxima.
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6.2. Bayesian Application

In this subsection, we demonstrate how to use the Bayesian approach to estimate
the parameters of the AP distribution. To proceed, we need to first establish the prior
distributions for the parameters, as it is very essential in Bayesian estimation. In this study,
we use the non-informative gamma distribution as the prior distribution. Numerous studies
have recommended the use of this approach (see [26,27]). Thus, the prior distributions of
the parameters are

π(α) ∼ Gamma(a1, b1) =
ba1

1
Γ(a1)

αa1−1e−b1α, a1 > 0, b1 > 0, α > 0

and

π(β) ∼ Gamma(a2, b2) =
ba2

2
Γ(a2)

βa2−1e−b2β, a2 > 0, b2 > 0, β > 0

The joint PDF of the prior distributions of the parameters is given by

π(α, β) = π(α)π(β).

The joint posterior PDF is therefore given by

P(α, β|y) ∝
n

∏
i=1

fY(yi; α, β)× π(α, β),

where
n
∏
i=1

fY(yi; α, β) is the likelihood function of the AP distribution. The joint posterior

PDF is not analytically tractable; hence, we employ the Markov Chain Monte Carlo (MCMC)
approach to obtain samples from which features of the marginal distributions can be
inferred. The following hyperparameter values a1 = a2 = b1 = b2 = 0.001 are considered
for the analysis. The analysis is performed using the R2jags package in R (see [28]) and the
data described in Section 6.1. We use three parallel chains, each with 40,000 iterations and a
burn-in of 5000. Hence, posterior sample of size 7000 and thinning interval 5 is used in the
analysis. Table 4 presents the mean estimate, Monte Carlo standard error (SE), posterior
standard deviation (SD), and other numerical summaries of the posterior distribution.
From the results, the MCMC algorithm has converged because the potential reduction scale
factor (R̂) is approximately 1 and the effective sample size (neff) is greater than 400. The
estimated deviance information criterion (DIC) is −385.2000. It can be observed that the
Bayesian estimates and ML estimates of the parameters are quite close.
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Table 4. Posterior summaries of the parameters of the AP distribution.

Parameter Estimate SE SD 2.50% 50% 97.50% R̂ Neff

α 5.0600 0.0107 1.0150 3.3760 4.9540 7.3560 1.0010 5500

β 8.1600 0.0066 0.6300 6.9640 8.1490 9.4110 1.0010 6200

We investigate the convergence of the chains visually using the trace, ergodic mean,
and autocorrelation plots. The trace plots shown in Figure 11 suggest a stationary pattern
and thus convergence of the chains.
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The ergodic mean plots (Figure 12) of the parameters clearly show that the chains have
converged after 3000 iterations.
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The rapid decay of the autocorrelation plots, as shown in Figure 13, suggests good
mixing of the chains and the convergence of the MCMC algorithm.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 20 of 28 
 

 

 
Figure 12. The AP distribution posterior parameters ergodic mean plots. 

The rapid decay of the autocorrelation plots, as shown in Figure 13, suggests good 
mixing of the chains and the convergence of the MCMC algorithm. 

 
Figure 13. The AP distribution posterior parameters autocorrelation plots. 

7. Regression Models 
In this section, the quantile and modal regression models are developed for investi-

gating the relationship between a dependent variable and a set of independent variable (s). 

7.1. Quantile Regression Model 
When investigating the influence of covariates on a skewed, bounded response vari-

able, the beta regression model cannot produce reliable results since it models the condi-
tional mean of the response variable. This is because the mean is not an appropriate 

Figure 13. The AP distribution posterior parameters autocorrelation plots.

7. Regression Models

In this section, the quantile and modal regression models are developed for investigating
the relationship between a dependent variable and a set of independent variable (s).

7.1. Quantile Regression Model

When investigating the influence of covariates on a skewed, bounded response vari-
able, the beta regression model cannot produce reliable results since it models the con-
ditional mean of the response variable. This is because the mean is not an appropriate
measure of central tendency when the data are skewed. Thus, a regression model that is
not influenced by outliers is required. The quantile regression is appropriate when dealing
with skewed response variables. In this subsection, the AP quantile regression model is
developed. To this aim, we re-parameterize the PDF of the AP distribution in terms of its
quantile function. Let η = Q(u; α, β), η ∈ (0, 1), making β the subject in the quantile func-
tion, and we have β = (log(η))−1 log(α−1 tan(uarctan(α))). Hence, the re-parametrized
PDF in terms of the quantile function is given by

fY(y; α, η) =
α(log(η))−1λy(log(η))−1λ−1

arctan(α)(1 + α2y2(log(η))−1λ)
, (33)

where λ = log(α−1 tan(uarctan(α))) and η is the quantile parameter. Suppose that
y1, y2, ..., yn are random observations from the AP distribution and zi is non-random covari-
ates. The AP quantile regression model is thus given by

ηi = g−1(zT
i δ)

where δ = (δ0, δ1, δ2, . . . , δp)
T is the vector of coefficients of the covariates to be estimated,

zT
i = (1, zi1, zi2, . . . , zip) is the known ith vector of independent variables, and g(·) is an

appropriate link function that relates the independent variables to the conditional quantile
of the dependent variable. When u = 0.5, the median regression is obtained. Although
different link functions exist for modeling bounded response variables, in this study, the
logit link function is used due to the easy interpretation of the parameters. Hence, we have
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log
(

ηi
1− ηi

)
= δ0 + δ1zi1 + δ2zi2 + . . . + δpzip

The log-likelihood for estimating the parameters of the regression model is

` = n log(α)− n log(arctan(α)) + n log(λ)−
n
∑

i=1
log( log(ηi)) +

n
∑

i=1
((log(ηi))

−1λ− 1) log(yi)

−
n
∑

i=1
log(1 + α2y2(log(ηi))

−1λ
i ).

(34)

Maximizing the log-likelihood function in Equation (34) with respect to the involved
parameters gives the estimates of the parameters of the model. For more information on
the development of parametric quantile regressions, we refer the readers to [2,3,6].

7.2. Modal Regression

When the response variable is heavy-tailed or asymmetric, modal regression is known
to give a better fit than the conditional mean or median regression [29]. It is also es-
tablished that the prediction intervals from modal regression possess a higher coverage
probability than the mean-based prediction interval (see [29,30]). This subsection presents
the modal-based regression using the AP distribution. Suppose that the transformation
(α, β)→ (η, ϕ) is one-to-one, where η ∈ (0, 1) is the mode and ϕ > 1 is a precision/shape
parameter. Then the PDF of the AP distribution can be re-parameterized in terms of the
mode (see [29]). Let β = ϕ, then α = η−ϕ(ϕ + 1)−1/2(ϕ− 1)1/2 and the PDF of the AP
distribution in terms of mode is given by

fY(y; η, ϕ) =
η−ϕ ϕ(ϕ + 1)−1/2(ϕ− 1)1/2yϕ−1

arctan(η−ϕ(ϕ + 1)−1/2(ϕ− 1)1/2)(1 + η−2ϕ(ϕ + 1)−1(ϕ− 1)y2ϕ)
. (35)

The modal regression is given by

ηi = h−1(zT
i δ)

where δ = (δ0, δ1, δ2, . . . , δp)
T is the vector of unknown parameters to be estimated,

zT
i = (1, zi1, zi2, . . . , zip) are the known ith vector of covariates and h(·) is an appropri-

ate link function that links the covariates to the conditional mode of the response variable.
The logit link function is adopted since the mode of the AP distribution lies on (0, 1). Thus,
we have

log
(

ηi
1− ηi

)
= δ0 + δ1zi1 + δ2zi2 + . . . + δpzip

The log-likelihood for estimating the parameters of the model is given by

` = n log(ϕ(ϕ + 1)−1/2(ϕ− 1)1/2)− ϕ
n
∑

i=1
log(ηi) + (ϕ− 1)

n
∑

i=1
log(yi)−

n
∑

i=1
log(arctan(η−ϕ

i (ϕ + 1)−1/2(ϕ− 1)1/2))−
n
∑

i=1
log(1 + η

−2ϕ
i (ϕ + 1)−1(ϕ− 1)y2ϕ

i ).

(36)
The estimates of the parameters of the modal regression are obtained by maximizing

Equation (36) with respect to the involved parameters.

7.3. Residual Analysis

Investigating how well a model fits a given data set is very important. Hence, the
adequacy of the model is often examined using the residuals from the fitted model. The
Cox–Snell and randomized quantile residuals are used to assess the performance of the
regression models in this study.
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Thus, the Cox–Snell residuals (see [31]) are used to assess the adequacy of the regres-
sion models. The Cox–Snell residuals are defined as

ei = − log(1− FY(yi; δ̂), i = 1, 2, ..., n

where δ̂ is the vector of the estimated parameters of the regression models. The Cox–Snell
residuals are expected to be standard exponentially distributed if the models provide good
fit to the data.

Assessing the randomized quantile residuals of the model is another alternative for
examining the adequacy of the regression model. The randomized quantile residual is
given by

ei = Φ−1(FY(yi; δ̂), i = 1, 2, ..., n,

where Φ−1(·) is the quantile of the standard normal distribution. If the regression model
provides good fit to the data, the randomized quantile residuals are expected to follow the
standard normal distribution (see [32]).

7.4. Monte Carlo Simulation for Regression Models

In this section, Monte Carlo simulation experiments are carried out to assess how the
ML estimates perform with regards to estimating the parameters of the AP quantile and
modal regressions. The simulations for the quantile regression are carried out using the
conditional median. The conditional median in this case is the median of the response
variable given the values of the covariates. The experiment is replicated 5000 times for
each sample size n = 50, 150, 250, 350, 450, and 550. For the first scenario, the following
parameter combinations are used for the quantile and modal regressions, respectively:
(δ0, δ1, δ2, α) = (0.8, 0.3, 0.6, 1.5) and (δ0, δ1, δ2, ϕ) = (0.8, 0.3, 0.6, 1.5). In the second sce-
nario, the parameter following combinations are used, respectively, for the quantile and
modal regressions: (δ0, δ1, δ2, α) = (0.1, 0.4, 0.8, 1.3) and (δ0, δ1, δ2, ϕ) = (0.1, 0.4, 0.8, 1.3).
The following regression structure with two covariates is employed during the simulation
for both regression models:

log
(

ηi
1− ηi

)
= δ0 + δ1zi1 + δ2zi2, i = 1, 2, ..., n.

The covariate, zi1, is generated from a standard normal distribution and zi2 is from
a t distribution with four degrees of freedom. The covariates are held fixed during the
simulation process. The observations for the response variable are generated using the
inversion method for both the quantile and modal regressions. The performance of the
estimation method is assessed using the average estimate (AE), absolute bias (AB), and
root mean square error (RMSE). The results in Tables 5 and 6 reveal that the AEs approach
the true parameter values as the sample size increases. Furthermore, the ABs and RMSEs
decrease as the sample size increases. Hence, the estimates of the parameters for both
models are consistent based on the ML technique.

Table 5. Simulation results for the first scenario.

Parameter n
AP Quantile Regression

Parameter n
AP Modal Regression

AE AB RMSE AE AB RMSE

δ0

50 0.7659 0.2028 0.2533

δ0

50 0.6495 0.5931 0.6372

150 0.7870 0.1286 0.1586 150 0.7551 0.5240 0.5771

250 0.7837 0.1041 0.1304 250 0.7015 0.4583 0.5226

350 0.7953 0.0896 0.1104 350 0.7526 0.4226 0.4880

450 0.7990 0.0868 0.1071 450 0.7674 0.3745 0.4419

550 0.7990 0.0681 0.0844 550 0.7668 0.3499 0.4195
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Table 5. Cont.

Parameter n
AP Quantile Regression

Parameter n
AP Modal Regression

AE AB RMSE AE AB RMSE

δ1

50 0.4010 0.3256 0.3983

δ1

50 0.7202 0.6676 0.7959

150 0.3266 0.1974 0.2407 150 0.6208 0.5630 0.7027

250 0.3308 0.1737 0.2122 250 0.6470 0.5746 0.7074

350 0.3119 0.1443 0.1742 350 0.5695 0.5176 0.6518

450 0.3012 0.1403 0.1711 450 0.5439 0.4813 0.6098

550 0.2951 0.1044 0.1309 550 0.4965 0.4450 0.5669

δ2

50 0.6015 0.0893 0.1157

δ2

50 0.5921 0.3502 0.4263

150 0.6045 0.0480 0.0614 150 0.6143 0.2171 0.2787

250 0.6057 0.0381 0.0469 250 0.6090 0.1694 0.2232

350 0.6006 0.0325 0.0410 350 0.6183 0.1563 0.2020

450 0.6001 0.0291 0.0371 450 0.6174 0.1259 0.1659

550 0.6017 0.0272 0.0336 550 0.6187 0.1193 0.1569

α

50 1.8184 0.7279 0.8795

ϕ

50 1.6644 0.2465 0.2948

150 1.6469 0.4111 0.5266 150 1.5793 0.1477 0.1879

250 1.5957 0.3058 0.3971 250 1.5376 0.1026 0.1333

350 1.5689 0.2526 0.3190 350 1.5289 0.0840 0.1100

450 1.5586 0.2227 0.2891 450 1.5216 0.0721 0.0931

550 1.5412 0.2047 0.2602 550 1.5085 0.0693 0.0870

7.5. Application of Regression Models

The use of quantile and modal regressions is demonstrated in this subsection. The
application of the quantile regression is illustrated via the conditional median regression by
setting u = 0.5. The application of the models is illustrated by regressing the recovery rates
for viable CD34+ cells of 239 patients described in Section 6 on the following covariates:
gender (zi1, 0 for female and 1 for male), chemotherapy (zi2, 0 for receiving chemotherapy
on a one-day protocol and 1 for a three-day protocol), and adjusted patient’s age (zi3, that
is the current age minus 40). Ref. [6] fitted the UBXII median regression with the following
results: AIC = −384.2649 and BIC = −366.8826. The authors showed that the UBXII
median regression performs better than the Kumaraswamy median regression with the
following results: AIC = −375.6599 and BIC = −358.2775, and beta mean regression with
the following results: AIC = −381.7912 and BIC = −364.4089. The exploratory analysis
in Section 6.1 suggests that the response variable is left-skewed or contains some extreme
values. This is an indication that robust regression models are required for modeling the
data, and thus our choice of using the median and modal regressions is appropriate. We
adopt the following regression structure:

log
(

ηi
1− ηi

)
= δ0 + δ1zi1 + δ2zi2 + δ3zi3, i = 1, 2, ..., 239

to model the data. Table 7 displays the estimates of the model parameters, standard errors, p-
values, and information criteria. From the information criteria, the AP regressions (median
and modal) perform better than the UBXII median, Kumaraswamy median, and beta mean
regressions. Since DAIC > 2, the AP regressions perform significantly better than the
compared regressions. Comparing the AP median regression with the modal regression, it
can be said that the AP median regression performs better than the modal regression. From
Table 7, it can be seen that the parameter δ1 is not statistically significant at 5% level of
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significance. Hence, the variable gender has no significant effect on the recovery rate. The
parameters δ2 and δ3 are statistically significant at the 5% level of significance. This implies
that the recovery rate of older patients is higher than that of younger ones. Furthermore,
the recovery rate of patients who receive chemotherapy on a three-day protocol is higher
than that of those who receive chemotherapy on a one-day protocol.

Table 6. Simulation results for the second scenario.

Parameter n
AP Quantile Regression

Parameter n
AP Modal Regression

AE AB RMSE AE AB RMSE

δ0

50 0.1667 0.1496 0.1906

δ0

50 0.3746 0.3802 0.6027

150 0.1484 0.1207 0.1502 150 0.3336 0.3336 0.5220

250 0.1136 0.0907 0.1097 250 0.2376 0.2422 0.3747

350 0.1171 0.0845 0.1021 350 0.2302 0.2282 0.3570

450 0.1164 0.0842 0.1028 450 0.2165 0.2085 0.3172

550 0.1122 0.0714 0.0856 550 0.1841 0.1748 0.2572

δ1

50 0.4049 0.3025 0.3523

δ1

50 0.5759 0.5815 0.6773

150 0.3681 0.1882 0.2312 150 0.4728 0.4831 0.5746

250 0.4042 0.1654 0.2011 250 0.4892 0.4385 0.5127

350 0.3862 0.1498 0.1808 350 0.4187 0.3793 0.4540

450 0.3912 0.1453 0.1771 450 0.4457 0.3684 0.4586

550 0.3730 0.1047 0.1324 550 0.3974 0.3408 0.4147

δ2

50 0.7935 0.1038 0.1363

δ2

50 0.8970 0.3344 0.4124

150 0.8057 0.0546 0.0699 150 0.8773 0.2046 0.2720

250 0.8013 0.0426 0.0519 250 0.8651 0.1441 0.2004

350 0.8008 0.0364 0.0457 350 0.8471 0.1296 0.1734

450 0.7987 0.0327 0.0414 450 0.8440 0.1052 0.1468

550 0.8050 0.0326 0.0394 550 0.8339 0.1025 0.1397

α

50 1.2087 0.3183 0.4361

ϕ

50 1.4403 0.2164 0.2713

150 1.2667 0.2281 0.2932 150 1.3604 0.1242 0.1589

250 1.2719 0.1967 0.2448 250 1.3258 0.0870 0.1127

350 1.2930 0.1702 0.2034 350 1.3211 0.0700 0.0911

450 1.2871 0.1632 0.1971 450 1.3153 0.0609 0.0785

550 1.2919 0.1546 0.1845 550 1.3063 0.0588 0.0739

Table 7. Estimates, standard errors, and information criteria for the regression models.

AP Quantile Regression AP Modal Regression

Parameter Estimate Standard Error p-Value Parameter Estimate Standard Error p-Value

δ0 1.0119 0.1226 <0.0001 δ0 0.8903 0.1715 <0.0001
δ1 0.0533 0.0912 0.5585 δ1 0.0921 0.1235 0.4560
δ2 0.2392 0.0940 0.0110 δ2 0.3153 0.1559 0.0432
δ3 0.0169 0.0049 0.0006 δ3 0.0253 0.0082 0.0020
α 5.6100 1.1128 <0.0001 ϕ 8.4244 0.6471 <0.0001

` = 201.1400 ` = 199.7300
AIC = −392.2835 AIC = −389.4540
BIC = −374.9012 BIC = −372.0717
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The adequacy of the fitted regression models is assessed by examining the residuals
of the fitted models. The P-P plots and half-normal plots with simulated envelopes of the
randomized quantile residuals in Figure 14 indicate that the models are adequate.
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The P-P and quantile-quantile (Q-Q) plots with simulated envelopes of the Cox–Snell
residuals shown in Figure 15 again affirm that the fitted models are adequate.
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8. Conclusions

In this study, the AP distribution and its associated quantile and modal regressions
were developed. The PDF of the AP distribution exhibits flexible shapes such as left-skewed,
right-skewed, J, and reversed-J shapes. This makes the distribution a suitable candidate
for fitting data with such characteristics. The corresponding HRF also suggests that the
distribution is capable of fitting data with monotonic and non-monotonic failure rates.
We explored the performance of nine frequentist estimation procedures for estimating the
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parameters of the distribution using Monte Carlo simulations, and the results revealed
that most of the procedures are consistent with regards to estimating the parameters. A
biomedical application of the distribution showed that the model provides a good fit to the
data. A Bayesian illustration of how to apply the distribution showed that the approach
is able to estimate the parameters of the distribution very well. The applications of the
elaborated quantile and modal regressions demonstrated that the new regression models
outperformed some existing regression models. The future perspective of this work is to
demonstrate the Bayesian applications of the quantile and modal regressions.
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