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Abstract: In this paper, the numerical solutions for magneto-hydrodynamic Hiemenz fluid over
a nonlinear stretching sheet and the Brownian motion effects of nanoparticles through a porous
medium with chemical reaction and radiation are studied. The repercussions of thermophoresis
and mass transfer at the stagnation point flow are discussed. The plate progresses in the contrary
direction or in the free stream orientation. The underlying PDEs are reshaped into a set of ordinary
differential equations employing precise transformation. They are addressed numerically using the
successive linearization method, which is an efficient systematic process. The main goal of this study
is to compare the solutions obtained using the successive linearization method to solve the velocity
and temperature equations in the presence of m changes, thereby demonstrating its accuracy and
suitability for solving nonlinear differential equations. For comparison, tables containing the results
are presented. This contrast is significant because it demonstrates the accuracy with which a set
of nonlinear differential equations can be solved using the successive linearization method. The
resulting solution is examined and discussed with respect to a number of engineering parameters.
Graphs exemplify the simulation of distinct parameters that govern the motion factors.

Keywords: Hiemenz flow; MHD; thermal radiation; nonlinear stretching; chemical reaction; SLM

1. Introduction

In a wide range of engineering applications, non-Newtonian fluids are frequently
encountered. Industries such as paper, food, personal care, textile coating, and suspending
solutions all use some of these applications, which are noteworthy. Three categories,
differential, rate, and integral fluids, make up the majority of this classification. Recent
advances in technology and engineering have led to the creation of a wide variety of
non-Newtonian fluids with many significant variations from viscous fluids. In addition,
modern breakthroughs in nanotechnology have made it much easier to make nanoparticles
or nanostructures using nuclear or molecular methods that have better thermo-physical
properties than their bulk equivalents. Nanofluids are created by distributing nanoparticles
in a base fluid such as water, oil, or ethylene glycol, for example. In a two-dimensional
container equipped with a Cu-water based nanofluid, the role of inclination angular
position on natural convection heat transfer flow was explored by Abu-Nada and Oztop [1].
They concluded that heat transfer accumulation slows down as the Rayleigh number
expands. Zargartalebi et al. [2] analyzed how a nanoparticle’s stagnation point and volume
fraction evolved over an isothermal stretching sheet. In the existence of thermophoresis
and Brownian motion, Makinde and Aziz [3] explored the heat and mass transfer flow of
an electrically conducting nanofluid over a radially stretching surface.

Knowledge regarding the MHD flow of an electrically conducting fluid is pivotal in
modern metallurgical and metalworking technologies. There has been a surge of attention
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towards inspecting MHD flow and heat transfer in any medium because of the strong
influence of a magnetic field on boundary–layer flow control and the efficiency of many
systems using electrically-conducting fluids. Ahmad et al. [4] acknowledged the Laplace
transform outcomes for the unsteady natural convective motion of revolving magnetohy-
drodynamics motion in a permeable medium over an oscillating sheet. Mbeledogu and
Ogulu [5] inspected the effect of the chemical reaction of a magnetohydrodynamic free
convective motion of a moving liquid over a vertical sheet. The exact solutions employ-
ing the Fourier sine and Laplace transform for magnetohydrodynamic transient rotating
flow in a permeable medium in the existence of a magnetic field have been analysed by
Salah et al. [6]. Additional interesting studies can be seen in [7–10] and cross references.

A chemical reaction is the process by which one or more substances, referred to as
reactants, transform into one or more other substances, referred to as products. Substances
consist of chemical components, or compounds. Chemical reactions produce a variety of
products via rearrangement of the atoms in the reactants; see references [11–14].

The Hiemenz flow pattern, including its employment in the monitoring of flows over
submarine tips, ship tips, and aeroplanes, occupies a crucial role in the exploration of
many industrial and natural phenomena. It is also essential in various of fields, including
hydrodynamic processes, electronic fan cooling, and nuclear device freezing, to name a
few. The optimum values of the aforementioned phenomena were provided by Ariel [15].
Motsa et al. [16] numerically ascertained the Maxwell fluid outcomes for two-dimensional
Hiemenz flow on the way to a diminishing sheet. Parand et al. [17] assessed the Hiemenz
flow with heat transfer through a porous medium of an incompressible non-Newtonian
Rivlin–Ericksen fluid.

Thermal radiation, the impact of thermophoretic diffusion on the Darcy–Forchheimer
flow of nanofluid and melting heat transport and nanofluid in a nozzle of liquid rocket
engine have all been studied [18–20].

Thermal radiation’s ramifications on MHD flow and heat transfer have become cru-
cially influential in many sectors. Thermal radiation heat transfer has a variety of potentials
in space technology and projects that require a significant amount of heat. Hashim et al. [21]
studied the implications of variable thermal conductivity on MHD Williamson nanofluid
flow. A porous mechanism is a material that has a solid matrix and an interconnected void
that allows fluid to flow through it. Zhang et al. [22] and Pandey and Kumar [23] reported
the collective impact of thermal radiation and porous medium nanofluid flow. Additional
fascinating and detailed work is available in [24–27].

According to the existing literature, no attempt has been made to investigate the
electrically conducting Hiemenz fluid over a nonlinear stretching sheet and Brownian
motion. Thus, the purpose of this paper is to apply the findings of reference [28] to a
broader problem, such as the effects of nanoparticles through a porous medium with
chemical reaction. The motivation of this work is to compare the results obtained using the
SLM technique to solve velocity, temperature and concentration equations in the presence
of the power-law velocity exponent parameter changes, thereby demonstrating its accuracy
and suitability for solving nonlinear differential equations. This work tabulates the effects
of numerous flow parameters found in the governing equations and visually illustrates
their effects. Employing SLM [29,30], this study strives to pinpoint the consequences of
thermal radiation on convective phenomena in MHD nanofluid over a non-linear stretching
surface under heat generation and chemical reaction through a porous medium. This paper
is structured as follows: Section 1 contains the literature survey; Section 2 contains the
mathematical formulation; Section 3 contains the methodology; Section 4 presents the
results; and Section 5 contains the conclusion.

2. Mathematical Formulation

We review a non-linear continuously stretched horizontal plate impinging on a steady,
two-dimensional, incompressible stagnation-point flow. The plate and free stream velocities
are analogous to xm, while the magnetic field and mass transfer velocity are analogous to
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x(m−1)/2, where x is the distance around the plate from the plate’s leading edge. Figure 1
describes the flow model. The relevant interpretations developed in this study are:

• x and y axes are taken as the way of sheet motion and normal to the motion.
• The nonlinear stretching velocity of the flat plate is assumed as uw(x) = u0

( x
l
)m

, where
u0 is a constant indicating the direction of the plate along the positive or negative side
of the x axis, depending on whether u0 > 0 or u0 < 0, and a stationary plate when
u0 = 0, m is the power-law velocity exponent, and l is the characteristic length.

• The ambient fluid’s moving velocity has the form ue(x) = u∞
( x

l
)m

, where u∞ is
a constant.

• A variable magnetic field B(x) = B0
( x

l
)m−1

2 where B0 is a constant is assumed along
the plate.
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The formulation of the present problem is modelled with respect to following presumptions:

1. Stagnation point flow.
2. Micropolar liquid model.
3. Joule heat, radiation, source/sink, porous medium and chemical reaction effects

are deemed.
4. Thermophoresis and Brownian motion effects are taken into account.

Under the above assumptions, the governing equations so obtained are given; see, for
example, [28,31].

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ ν

∂2u
∂y2 −

σB2(x)
ρ

(u− ue)−
v
K
(u− ue), (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 −

1
ρCp

∂qr

∂y
+ τ

(
DT
T∞

(
∂T
∂y

)2
+ DB

∂T
∂y

∂C
∂y

)
+

Q0

ρCp
(T − T∞), (3)

u
∂C
∂x

+ v
∂C
∂y

= DB

(
∂2C
∂y2

)
+

DT
T∞

(
∂2T
∂y2

)
− k0(C− C∞). (4)

where u, v are, respectively, the velocity constituents on the way to the x and y directions,
σ is the electrical conductivity of the fluid, ρ is the fluid density, τ is the ratio of heat
capacity of nanoparticles to the base fluid, DT is the thermophoretic diffusion coefficient,
DB is the Brownian diffusion coefficient, α = k

ρCp
is the thermal diffusivity, k is the thermal
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conductivity, T is the fluid temperature, C is the fluid concentration, Cp is the specific heat
at constant pressure, T∞ and C∞ are the ambient temperature and concentration of the fluid,
respectively, k0 is the dimensional chemical reaction, and Q0 is the heat source coefficient.

The appropriate boundary conditions are

u = uw(x), v = 0, T = Tw, C = Cw at y = 0,
u = ue(x), T = T∞, C = C∞ as y→ ∞,

(5)

where ue(x) is the potential velocity, uw(x) is the velocity of the plate, and Tw and Cw are
the plate temperature and plate concentration, respectively.

The radiative heat flux is determined using Rosseland approximation

qr = −
4σ∗

3k∗
∂T4

∂y
,

where σ∗ is the Stefan–Boltzmann constant and k∗ is the mean absorption coefficient. We
recognise that the disparity in temperature within the flow ensures that in a Taylor’s
sequence, T4 can be extended. Hence, establishing T4 in a Taylor series about T∞, we obtain
T4 = 4T3

∞T − 3T4
∞.

Now, we introduce the following similarity transformations:

x = x
l , y = y

√
Re

l , u = u
u∞

, v = v
√

Re
u∞

, ue =
ue
u∞

, η = y
√

Re
l x

1−m
2 , θ = T−T∞

Tw−T∞
,

φ = C−C∞
Cw−C∞

, ψ = x
m+1

2 f (η), u = xm f ′(η), v = −
[

m+1
2 x

m−1
2 f (η) + m−1

2 y xm−1 f ′(η)
] (6)

Substituting Equation (6) in Equations (2)–(5), we obtain

f ′′′ +
m + 1

2
f f ′′ + m

(
1− f ′2

)
+ (M + Ω)

(
1− f ′

)
= 0, (7)

1
Pr

(
1 +

4
3

R
)

θ′′ +
m + 1

2
f θ′ + Nbθ′φ′ + Ntθ′2 + Q θ = 0, (8)

φ′′ +
m + 1

2
Le f φ′ +

Nt
Nb

θ′′ − Le γ φ = 0, (9)

where Pr = ν
α is the Prandtl number, M =

σB2
0 l

ρu∞
is the magnetic parameter, Ω = νl

Ku∞

is the permeability parameter, R = 4 σ∗ T3
∞

k∗k is the radiation parameter, Nb = τDB(Tw−T∞)
ν

is the Brownian motion parameter, Nt = τDT(Cw−C∞)
T∞ν is the thermophoresis parameter,

Q = Q0
ρCpu∞xm−1 is the heat generation/absorption parameter, Le = ν

DB
is the Lewis number,

and γ = k0
u∞xm−1 is the chemical reaction parameter.

The boundary conditions are

f = 0, f ′ = V, θ = 1, φ = 1 at η = 0,
f ′ = 1, θ = 0, φ = 0 as η → ∞,

(10)

where prime denotes differentiation with respect to η, V = u0
u∞

is the velocity ratio parame-
ter, V > 0 reflects that the plate is progressing in the identical manner as the free stream
velocity, V < 0 implies that the plate is heading in the contrary side of the free stream, and
V = 0 stands for static plate. The case 0 < V < 1 designates that the plate’s mobility is
slower than that of the free-flowing fluid and V > 1 designates that the mobility is greater.
V = 1 is the case when the plate and the fluid proceed at the same velocity.

Non-dimensional skin friction coefficient C f and Nusselt number Nux are

C f x =
2τw

ρu2
e

,
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where τw = µ(∇u)y=0, Nux = xqw
k(Tw−T∞)

and the Sherwood number

Shx =
xqm

DB(Cw − C∞)
,

where qw and qm are the heat flux and mass flux at the surface, respectively, given by

qw =

(
−
(

k +
16σ∗T3

∞
3k∗

)
(∇T)

)
y=0

, qm = −(DB(∇C))y=0.

Substituting qw and qm in the preceding equation, we obtain

C f = C f xRe1/2
x = f ′′ (0), Nu = Re−1/2

x Nux = −
(

1 +
4
3

R
)

θ′(0)

and
Sh = Shx(Rex)

−1/2 = −φ′(0),

where Rex = ue x
ν is the local Reynolds number.

3. Methodology (SLM)

We now adopt aforementioned initial guesses and linear operators to encapsulate the
numeric solutions of Equations (7)–(10). For the SLM solution we select the initial guesses
functions f (η), θ(η), and θ(η) in the form

f (η) = fi(η) +
i−1
∑

m=0
Fm(η),

θ(η) = θi(η) +
i−1
∑

m=0
θm(η),

φ(η) = φi(η) +
i−1
∑

m=0
φm(η),

with
F0(η) = η + (V − 1)(1− e−η),

θ0(η) = e−η ,
φ0(η) = e−η ,

and the boundary conditions are

F0(η) = 0 , F′0(η) = V at η = 0,

F′0(η)→ 0 , F′′0 (η)→ 0 at η → ∞,

θo(0) = 1, θo(∞)→ 0 , φo(0) = 1, φo(∞)→ 0.

We construct the linearization equations

F′′′i + a1,i−1F′′i + a2,i−1F′i + a3,i−1Fi = r1,i−1 , (11)

φ
′′
i + b1,i−1φ′i + b2,i−1φi + a4,i−1Fi + c1,i−1θi = r2,i−1 , (12)

Bθ
′′
i + c2,i−1θ′i + c3,i−1θi + a5,i−1Fi + b3,i−1φ′i = r3,i−1 , (13)

subject to the boundary conditions

Fi(0) = φ(∞) = θi(∞) = 0, F′i (0) = V, φ(0) = θi(0) = 1 (14)
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where

a1,i−1 =
m + 1

2

i−1

∑
m=0

Fm, a2,i−1 = −2
i−1

∑
m=0

F′m − (M + Ω) ,a3,i−1 =
m + 1

2

i−1

∑
m=0

F′′m ,

a4,i−1 =
m + 1

2
L

i−1

∑
m=0

φ′m ,

a5,i−1 =
m + 1

2

i−1

∑
m=0

θm ,B =
1
Pr

(
1 +

4R
3

)
and

r1,i−1 = −
i−1

∑
m=0

F′′′m −
m + 1

2

i−1

∑
m=0

Fm

i−1

∑
m=0

F′′m −m + m

(
i−1

∑
m=0

F′m

)2

− (M + Ω)

[
1−

i−1

∑
m=0

F′m

]
(15)

b1,i−1 =
m + 1

2
Le

i−1

∑
m=0

φ′m, b2,i−1 = −Leγ, b3,i−1 = Nb
i−1

∑
m=0

θ′m,

r2,i−1 = −
i−1

∑
m=0

φ
′′
m −

Nt
Nb

i−1

∑
m=0

θ
′′
m + Leγ

i−1

∑
m=0

φm −
m + 1

2
Le

i−1

∑
m=0

Fm

i−1

∑
m=0

φ′m (16)

c1,i−1 =
Nt
Nb

,c2,i−1 =
m + 1

2

i−1

∑
m=0

Fm + Nb
i−1

∑
m=0

φm + 2Nt
i−1

∑
m=0

θ′m,c3,i−1 = Q,

r3,i−1 = −
i−1

∑
m=0

θ
′′
m −

m + 1
2

i−1

∑
m=0

Fm

i−1

∑
m=0

θ′m − Nb
i−1

∑
m=0

θ′m
i−1

∑
m=0

φ′m − Nt

(
i−1

∑
m=0

θ′m

)2

−Q
i−1

∑
m=0

θm. (17)

4. Results and Discussion

The convergence of SLM solutions for different orders of approximations is presented
in Table 1. To justify the accuracy of our method, we compare our numerical results with
Uddin et al. [28] in Table 2, and Uddin et al. [28] and Yih [31] in Table 3. The comparisons
are satisfactory. Table 4 shows the numerical values of the skin friction coefficient, local
Nusselt number and local Sherwood number for different emerging parameters; the Nusselt
number and Sherwood number decrease when there is an increase in the velocity ratio
parameter V. For a wide range of physical characteristics, tables and charts are often
assembled to ascertain and describe the nature of flow, temperature, concentration, skin
friction coefficient, and local Nusselt and Sherwood numbers. We check the following
values across the exploration, apart from renovated quantities, as presented in the tables
and charts.

M = m = 0.5, V = 2.0, Nb = 0.3, Nt = 0.2, R = Q = 0.1, Pr = Le = 1.0, γ = 0.2, Ω = 0.1.

Table 1. Convergence of SLM solution when M = m = 0.5, V = 2.0, Nb = 0.3, Nt = 0.2, R = Q = 0.1,
Pr = Le = 1.0, γ = 0.2, Ω = 0.1.

Order −f”(0) −θ’(0) −φ’(0)

1 1.615243564 0.591309575 0.807258968

2 1.615264958 0.588594177 0.808486096

5 1.615264959 0.588587567 0.808488879

10 1.615264959 0.588587567 0.808488879

20 1.615264958 0.588587567 0.808488879
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Table 1. Cont.

Order −f”(0) −θ’(0) −φ’(0)

30 1.615264958 0.588587567 0.808488879

35 1.615264958 0.588587567 0.808488879

40 1.615264958 0.588587567 0.808488879

45 1.615264958 0.588587567 0.808488879

Table 2. Comparison of skin friction for different values of M, V and m.

m M V Uddin et al. [28] SLM (Present)

−0.6 1 −1.2465 1.831134 1.829965702

−0.6 1 −0.3 0.754875 0.754875083

−0.6 1 0.5 0.147122 0.147122313

−0.6 1 1.1 0.008662 0.008662160

−0.7 2 −1.2465 2.8552230 2.855222907

−0.7 2 −0.3 1.4340566 1.434056645

−0.7 2 0.5 0.4700876 0.470087557

−0.7 2 1.1 −0.0799084 −0.079908545

−0.6 2 −1.2465 2.8886778 2.888677771

−0.6 2 −0.3 1.5013537 1.501353678

−0.6 2 0.5 0.5167744 0.516774431

−0.6 2 1.1 −0.093447 −0.093446596

Table 3. Comparison of − f ′′ (0) when M = V = Ω = 0.0.

m Uddin et al. [28] Yih [31] (Finite Difference) SLM (Present)

−0.05 0.213483 0.213484 0.213483741

0.0 0.33206 0.332057 0.332057336

1/3 0.75745 0.757448 0.757447581

1.0 1.23259 1.232588 1.232587657

Table 4. Skin friction coefficients, local Nusselt numbers and local Sherwood numbers for various
values of parameters involved using SLM.

m M V Nb Nt R Q Pr Le γ Ω |f”(0)| −θ’(0) −φ’(0)

0 0.5 2 0.3 0.2 0.1 0.1 1 1 0.2 0.1 1.036818487 0.466696358 0.727197663

0.5 1.615264958 0.588587567 0.808488879

1 2.037891791 0.691219392 0.884779820

2 2.691867471 0.861726041 1.022496729

1 2.782432421 0.858913310 1.020208245

2 2.955494943 0.853763691 1.016051769

3 3.119202610 0.849151404 1.012365107

4 3.274896834 0.844984821 1.009063514

−0.6 3 3.065259197 0.239179732 0.626117442

4 4.274052296 0.291595855 0.647177685

5 5.241191366 0.344251921 0.669459499

0.2 5.388545930 0.341608410 0.668515318

0.3 5.532218947 0.339072211 0.667615489

0.7 6.074769939 0.329858959 0.664392561

1.0 6.453114860 0.662297603 0.662297603



Math. Comput. Appl. 2023, 28, 21 8 of 20

Figures 2–4 illustrate the impression of magnetic parameter M on distributions. It is
insinuated that as M strengthens, the velocity distribution of the fluid degrades. Whenever
a magnetic field is imparted to an electrically conducting fluid, the Lorentz force generates,
and this energy contradicts the flow pattern, forcing velocity drawings to deteriorate. This
is because an increase in the Lorentz force creates resistance to fluid flow, resulting in a drop
in the velocity profile, while the thermal and solutal boundary layer thickness improves.
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Fluid velocity amplifies as the velocity ratio parameter V grows, whereas fluid tem-
perature and concentration drop as the velocity ratio parameter boosts. This is observed in
Figures 8–10.
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Figure 10. Effect of different values of V on φ(η).

Figures 11 and 12 reveal the implications of the Brownian motion parameter Nb on
temperature and concentration fields. Brownian motion, in particular, aids in the heating
of the fluid in the boundary layer and the restriction of particle evacuation from the fluid
on the surface. As a result, the temperature increases while the concentration decreases.
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Math. Comput. Appl. 2023, 28, 21 13 of 20
Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 14 of 21 
 

 

 

Figure 12. Effect of different values of Nb  on ( )φ η . 

The inclusion of nanoparticles externally allowed the thermophoresis parameters 
Nt  to appear. The inclusion of nanoparticles is correlated to the thermal conductivity of 
liquids. When the amplitude of Nt  is improved, the thermal conductivity of the fluid 
boosts, and this greater thermal conductivity leads to a high temperature. We also identi-
fied that relatively high Nt  values result in greater nanoparticle concentrations. This is 
shown in Figures 13 and 14. 

 

Figure 13. Effect of different values of Nt  on ( )θ η . 

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2
Nb=0.30
Nb=1.00
Nb=1.50
Nb=2.00

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1 Nt=0.30
Nt=1.00
Nt=1.50
Nt=2.00

Figure 12. Effect of different values of Nb on φ(η).

The inclusion of nanoparticles externally allowed the thermophoresis parameters Nt
to appear. The inclusion of nanoparticles is correlated to the thermal conductivity of liquids.
When the amplitude of Nt is improved, the thermal conductivity of the fluid boosts, and
this greater thermal conductivity leads to a high temperature. We also identified that
relatively high Nt values result in greater nanoparticle concentrations. This is shown in
Figures 13 and 14.
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Figure 14. Effect of different values of Nt on φ(η).

Figure 15 highlights temperature recuperation for diverse levels of the radiation pa-
rameter R. With altered measurements of R, temperature sketches accelerate as well. This
is owing to the belief that heightened radiative heat transmission makes the establishment
of thermal boundary layers simpler. The deviation of Prandtl number Pr on temperature is
interpreted in Figure 16. It is clear from the figure that increasing values of Pr accelerates
temperature. Heat energy is accomplished in the flow region when the heat source parame-
ter Q increases, allowing the temperature to rise rapidly; Figure 17 reflects this. Figure 18
strongly suggests that as the Lewis number Le increases, the concentration profiles actu-
ally reduce. As formed from the reaction in this system, chemical dissipation develops,
resulting in a drop in the concentration profile; Figure 19 depicts this. Finally, Figures 20–22
demonstrate that the fluid-flow resistive force reduces as the porosity parameter grows, i.e.,
as the porosity parameter increases, the fluid-flow velocity increases.
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Figure 15. Effect of different values of R on θ(ζ).
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Assessments of f ′′ (0) using the recent literature are undertaken in Table 2, and the
statistics indicate a strong and positive correlation. Tables 2 and 3 compare skin friction
and − f ′′ (0), respectively, for various combinations of M, V and m.

5. Conclusions

This paper presents the Brownian motion effects of nanoparticles through porous me-
dia with chemical reaction and numerical solutions of MHD Hiemenz flow over a nonlinear
stretching sheet. The analytical exploration of two-dimensional steady forced convective
flow of a Newtonian fluid past a convectively heated vertically moving plate towards the
face of a variable magnetic field and the radiation factor is reviewed in this report using
SLM. The impact of the Prandtl number Pr, magnetic parameter M, permeability parameter
Ω, radiation parameter R, Brownian motion parameter Nb, thermophoresis parameter
Nt, heat generation/absorption parameter Q, Lewis number Le, and chemical reaction
parameter γ are investigated and presented in tables. The validity of the current results
was tested and compared with those that had been previously published [28,31]. Tables 2
and 3 show limited examples where there is strong agreement.

The crucial insights reached from the graphical and numerical solutions to the problem are:

• The temperature profile is significantly driven by the heat source parameter.
• Thermal radiation and thermophoresis parameters lead enhanced temperature.
• The concentration profile lowers as both the Lewis number and the chemical reaction

parameters expand.
• The rate of heat transfer elevates with R and Pr.
• The rate of mass transfer elevates with Le and γ.
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