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Abstract: In this paper, we study the multi-objective optimization of the viscous boundary condition
of an elastic rod using a hybrid method combining a genetic algorithm and simple cell mapping
(GA-SCM). The method proceeds with the NSGAII algorithm to seek a rough Pareto set, followed
by a local recovery process based on one-step simple cell mapping to complete the branch of the
Pareto set. To accelerate computation, the rod response under impulsive loading is calculated with
a particular solution method that provides accurate structural responses with less computational
effort. The Pareto set and Pareto front of a case study are obtained with the GA-SCM hybrid method.
Optimal designs of each objective function are illustrated through numerical simulations.

Keywords: multi-objective optimization; genetic algorithm; simple cell mapping; rod vibration;
mass–damper–spring termination; impulse response

1. Introduction

Structures with viscous boundaries have been applied to diverse areas for vibration
reduction [1], sound absorption [2], and boundary control [3]. One recent example is the
railway bridge design for high-speed trains where the soil interacting with the bridge has
been modeled as mass–damper–spring terminations of the structure [4]. The best design
of structures has always been the pursuit of engineers. The optimal structural design
must usually accommodate multiple objectives such as the settling time of vibrations, the
response amplitude, and the shaping of the frequency response, leading to multi-objective
optimization problems (MOPs). This paper presents a study of the multi-objective optimal
design of a one-dimensional elastic rod with a mass–damper–spring termination.

The multi-objective nature of the optimization problem leads to a set of optimal
solutions called the Pareto set, making set-oriented methods such as simple cell mapping
(SCM) [5] suitable for solving such problems. The cell mapping method was initially
developed by Hsu [6] for investigating the global behavior of nonlinear dynamical systems,
then extended by Sun and his coworkers [7–9] for MOPs. The method seeks optimal
solutions by constructing cell mappings based on the local dominance relation of cells in
the discretized design space until the optimal solutions are achieved. Although the method
is effective for low-dimensional problems, it suffers from the curse of dimensionality for
high-dimensional problems because the searching space grows exponentially with the
increase of the dimensions.

In terms of solving MOPs with relatively high dimensions, the evolutionary algo-
rithms such as the genetic algorithm (GA) [10], immune algorithm [11], particle swarm
optimization (PSO) [12], and ant colony optimization [13] are the mainstream methods
for MOPs. The evolutionary algorithms are stochastic methods that mimic the biological
evolutionary process using the evolution laws defined based on the Pareto dominance
of fitness functions. Such methods can escape the local optima and rapidly discover the
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domains containing the solutions. However, the results of evolutionary algorithms can be
sensitive to the selection of the hyperparameters.

Recently, Sun and colleagues [5,14] proposed a hybrid method that incorporates
NSGAII and simple cell mapping (SCM). The method begins with NSGAII to generate a
rough set from several generations such that the domains containing optimal solutions can
be outlined. Using the rough set, SCM performs a local recovery method to complete the
branches of the Pareto set through iterative refinement of the design space. With the power
of NSGAII, the searching domain of the simple cell mapping method has been substantially
reduced, making it possible to apply SCM for high-dimensional problems. On the other
hand, the SCM method can complement the GA since obtaining outlined optimal domains
using the GA is not very sensitive to the selection of the hyperparameters and is much
easier than obtaining detailed Pareto optimal solutions using the GA. This can reduce the
burden of parameter tuning with the GA. This paper will present a new case study of MOPs
by the hybrid GA-SCM method. For more discussions on the advantage of the GA-SCM
method and a comparison with different methods, the reader is referred to [5] and the
references therein.

To accelerate the MOP algorithms for structural design, a fast and accurate solver
that can predict structural response under external loading is needed. Traditional meth-
ods such as the finite-element method for calculating structural response can result in
considerable computational load. However, obtaining such a solver for structures with
viscous terminations is not an easy task. This is because viscous boundary conditions
lead to non-self-adjoint boundary value problems that cannot be solved by the traditional
method of eigenvalue expansion. To address this issue, several analytical methods have
been developed. Hull et al. [15] presented a method that applies modal expansion in the
augmented spatial interval where orthogonal eigenmodes exist. Jayachandran and Sun [16]
transformed the problem into a self-adjoint boundary value problem in Hilbert space.
Oliveto et al. [17] proposed a complex modal expansion method, which requires formulat-
ing new orthogonality conditions. Jovannovic [18] formulated the steady-state solution in
the form of Fourier series in the state space by reconstructing the differential operator of
the equations of motion. Recently, Xing and Sun [19] applied a particular solution method
to study the impulsive response of a 1D elastic rod subject to a mass–damper–spring
termination.

In this study, we will continue the effort in [19] to optimize the viscous termination
of a 1D elastic rod under impulsive loading using the GA-SCM method. The solution
of this problem has many potential applications in structural and acoustic design. The
dynamic response of the rod will be predicted by the particular solution method. Firstly,
we will define the multi-objective optimization problem, followed by the introduction
of the GA-SCM hybrid method. Then, we will formulate the impulse response of the
structural problem using the particular solution method and introduce the multi-objective
functions for the structural optimization problem. We will demonstrate the effectiveness of
the GA-SCM method through a case study.

2. Multi-Objective Optimization

A continuous multi-objective optimization problem (MOP) can be defined as

min
x∈Rn

F(x),

with gi(x) ≤ 0, i = 1, . . . , l,

hj(x) = 0, j = 1, . . . , m,

(1)

where x is a variable of the design space and gi and hj are the design constraints. F is a map
comprised of objective functions fi (i = 1, 2, . . . , k), i.e.,

F(x) = { f1(x), . . . , fk(x)}, (2)
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where fi : Q→ R. Herein, Q is the feasible set represented by

Q = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . , l,

and hj(x) = 0, j = 1, . . . , m}. (3)

The optimal solution of the multi-objective problem is defined in the sense of Pareto
optimality, which requires the introduction of the following definitions.

Definition 1 (Dominance relation [5]).

(a) A vector y ∈ Q is called strictly dominated (or simply dominated by a vector x ∈ Q (x ≺ y)
if

F(x) <p F(y) and F(x) 6= F(y),

where <p is an elementwise less-than-or-equal-to relation.
(b) A vector y ∈ Q is called weakly dominated by a vector x ∈ Q (x � y) if F(x) ≤p F(y).

The dominance relation defines the “good” solution in the sense of Pareto optimality.
This is a strong relation, which can lead to many optimal solutions, because objective func-
tions are considered as equally “good” solutions when they partially satisfy the inequality
relations. To define the sets of optimal solutions and their objective functions, we introduce
the Pareto set and Pareto front.

Definition 2 (Pareto point, Pareto set, Pareto front [5]).

(a) A point x ∈ Q is called Pareto optimal or a Pareto point of (1) if there is no y ∈ Q that
dominates x.

(b) A point x ∈ Q is called locally (Pareto) optimal or a local Pareto point of (1) if there exists a
neighborhood Nx of x such that there is no y ∈ Q ∩ Nx that dominates x.

(c) A point x ∈ Q is called a weak Pareto point or weakly optimal if there exists no y ∈ Q such
that F(y) <p F(x).

(d) The set of all Pareto optimal solutions is called the Pareto set, i.e.,

P = PQ := {x ∈ Q : x is a Pareto point of (1)}. (4)

(e) The image F(P) of P is called the Pareto front.

3. GA-SCM Hybrid Method

We apply a hybrid method combining genetic algorithms (GAs) and cell mapping
methods [14] to solve an MOP with multi-objective performance indices to be defined in
Section 4. The hybrid method is initiated with a genetic algorithm (NSGAII) to generate a
rough Pareto set in the design space, which is then used by a cell-mapping-based recovery
method to seek a complete branch of the Pareto set through iterative refinement of the
cellular space of the design parameters, which will be defined in Section 5. The pseudo
code of the GA-SCM method is listed in Algorithm 1. The pseudo code for recovering the
Pareto optimal solution is listed in Algorithm 2.

As shown in Algorithm 2, the recovery process firstly discretizes the design space and
then iterates through elements of the rough Pareto set from the GA or the previous cell
partition, performing a one-step simple cell mapping to search local Pareto points. If a cell
is mapped to itself (i.e., a local sink is found), then the cell is pushed into the candidate set,
followed by an operator to gather nearby solutions into the set to be visited (Stovisit) as long
as they dominate some elements in the Pareto set Ps. Otherwise, the destination cell of the
cell mapping is pushed to Stovisit. Then, the same iterative procedure will be performed on
the set Stovisit until no new cells can be brought into Stovisit. At last, a dominance check is
carried out to remove non-dominant points from the Pareto set. More detail on the method
can be seen in [5].
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Algorithm 1 GA-SCM algorithm.

Input: Design space Q, cell space partition N, refinement partition sub, GA population
size n, objective functions F, refinement number k

Output: Pareto set Ps, Pareto front P f
1: Initialization Sr ←− GA(n, Q) {finding a rough candidate set using the GA}
2: Sc ←− cell creation(Sr, F)
3: while i ≤ k do {seeking Pareto set and front using SCM-based local recovery processes}
4: Ps, P f ←− recover(Sc, F, N, Q)
5: Sc ←− refine(Ps, N, sub)
6: N ←− N × sub {refining cell space}
7: i←− i + 1
8: end while

Algorithm 2 SCM-based recovering algorithm.

Input: Rough Pareto setPs, rough Pareto frontP f , objective functions F, cell space partition
N, design space Q, max iteration n

Output: Pareto set Ps, Pareto front P f (under the cell space partition N)
1: Initialization Discretize design space Q based on the cell space partition N
2: Svisiting, Svisited ←− Ps, Sc ←− ∅ {Sc stores candidate solutions.}
3: while Svisiting 6= ∅ do
4: Stovisit ←− ∅
5: for q ∈ Svisiting do
6: Cd ←− simple cell mapping(q, Svisited)
7: if Cd 6= q and Cd /∈ Ps then
8: Stovisit ←− Stovisit ∪ {Cd}
9: else

10: Sc ←− Sc ∪ {Cd}
11: Stovisit ←− Stovisit ∪ {x|x ∈ neighbor(q) and x ≺ y where y ∈ Ps} {collecting

neighbors that dominate some element(s) in Ps}
12: end if
13: end for
14: Svisiting ←− Stovisit
15: Ps ←− Ps ∪ Sc, P f ←− P f ∪ F(Sc)
16: end while
17: Ps,P f ←− dominance check(Ps, P f )

The detail of the one-step simple cell mapping algorithm is listed in Algorithm 3. The
method finds the local optimal solution by checking the dominance relation between a cell
and its neighbor. The optimal solution is defined as the most distant cell that dominates
the source cell.

Algorithm 3 Simple cell mapping algorithm.

Input: Objective functions F, cell Cs, visited cell set Svisited
Output: Destination cell Cd, visited cell set Svisited

1: Snbr ←− neighbor(Cs)
2: for N in Snbr do
3: if N ≺ Cs and constraints satisfied then {F(N) can be fetched from visited set directly

if N is visited.}
4: Store N
5: Svisited ←− Svisited ∪ {N}
6: end if
7: end for
8: Cd ←− arg{max‖qs − qnbr‖2} {qs and qnbr are the cell centers of Cs and Snbr}
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Given the numerical computation of the impulse response of the rod is the most
time-consuming subroutine in this problem, we record all visited cells using a dictionary
structure, whose key is the cell index and whose values consist of the multi-objective
functions. This way, the algorithm can search for the values in the dictionary with a time
complexity O(1), eliminating the repeated computation for cells that have been visited. In
addition, the key of a dictionary is unique. Pushing a visited cell to the dictionary will
automatically replace the repeated one. Therefore, our implementation, different from that
in [14], does not require combining the repeated cells in the visited set.

4. Multi-Objective Optimization of Mass–Damper–Spring Termination
4.1. Impulse Response

The one-dimensional elastic rod with a mass–damper–spring termination is shown in
Figure 1. An impact loading f (t) = f0δ(t) is applied to its free end. Young’s modulus, the
cross-section area, and the length of the rod are denoted by E, A, and L, respectively. We
split total response u(x, t) into the sum of rigid-body and elastic responses such that

u(x, t) = ur(x, t) + ue(x, t), with 0 ≤ x ≤ L, t ≥ 0. (5)

where ur is the rigid-body response and ue is the elastic response. From [19], the equations
of motion of the system in Figure 1 are in the form

ρALür + Mür + cu̇r + kur+ (6)

ρA
∫ L

0

∂2ue(x, t)
∂t2 dx + Müe(L, t) + cu̇e(L, t) + kue(L, t) = 0,

c2
p

∂2ue

∂x2 = ür +
∂2ue

∂t2 , (7)

where ρ is the density and cp =
√

E/ρ is the speed of the longitudinal stress wave. The
corresponding boundary conditions are

EA
∂ue(0, t)

∂x
= 0, (8)

EA
∂ue

∂x
(L, t) = −M[ür +

∂2ue

∂t2 (L, t)]

− c[u̇r +
∂ue

∂t
(L, t)]− k[ur + ue(L, t)]. (9)

M

k

c

E, A
f(t)

x=0

L

Figure 1. A uniform elastic rod with a mass–damper–spring termination. An impact loading f (t) is
applied to the free end. The material coordinate system is fixed to the free end of the rod.

The non-homogeneous boundary condition of Equation (9) leads to a non-orthogonal
eigenvalue problem. We attack this problem using a method of a particular solution, which
expresses the elastic motion ue(x, t) in the form

ue(x, t) = uh(x, t) + up(x, t), (10)

where uh(x, t) is the homogeneous solution with free–free boundary conditions such that



Math. Comput. Appl. 2022, 27, 94 6 of 13

uh(x, t) =
n

∑
i=1

φi(x)yi(t), (11)

where ∫ L

0
φi(x)φj(x)dx = δij, (12)

and up(x, t) is the particular solution such that

up(x, t) =
( x

L

)2
α(t). (13)

Substitution of Equations (10)–(13) into Equations (5)–(9) yields a state space form [19]

Ż = AZ, (14)

where
Z = [z(t); ż(t)], (15)

A =

[
0 I

−M−1K −M−1C

]
, (16)

z(t) = [ur(t), α(t), y1(t), y2(t), . . . , yn(t)]. (17)

The formal solution of Equation (14) reads

Z(t) = eAtZ0, (18)

where Z0 is the initial condition generated from the impulsive input (see Appendix A). The
numerical error analysis of the method was performed in [19]. We incorporate this method
into the GA-SCM method to optimize the termination of the structure.

4.2. Objective Functions

We define the multi-objective performance indices of terminal response as

F = (te3
s , |u(L)|max, 1/δ), (19)

where te3
s is the settling time of the third elastic mode, |x(L)|max is the maximal absolute

displacement at termination, and δ is the log decrement of the strain response at termination.
te3
s is an indirect indicator for the settling time of the rod response. The reason for using

te3
s is twofold. Firstly, the settling time of higher modes produced by the model cannot

properly capture the physical phenomena that the response of high-frequency modes
usually decays more rapidly than that of low-frequency modes. Secondly, identifying the
settling time of the total response from the numerical simulation could lead to extensive
computational load. Therefore, the settling time of the third elastic mode is used and
defined in the form

te3
s =

4
|Real(λe3)|

, (20)

where e3 stands for the third elastic mode. The selection of the third mode is based on trial
and error.

δ is also an indirect indicator to estimate the decay of the impact wave. After the
impact load is applied, an impulsive wave will be produced at the left terminal and a
response wave due to the rigid-body motion will be generated at the right terminal. The
two waves will propagate along the rod and be reflected at both ends. Although the strain
response is the superposition of two waves, the impact wave dominates the response when
it is propagated to the right terminal for the first few times. We define δ in the form
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δ =
1

n− 1
log
|ux(t1, L)|
|ux(tn, L)| , (21)

where t1 and tn represent the first and n-th time when the impulse wave is propagated to
the right end, respectively. The larger δ is, the more the impact wave is suppressed. We let
n = 3 in this study.

5. A Case Study

We considered an elastic rod with Young’s modulus E = 10, density ρ = 10, length
L = 2, cross-section area A = 0.1, and excitation force magnitude f0 = 1.0. The design
space was chosen as

Q = {x|x ∈ [0.1, 2.0]× [1.0, 6.0]× [10, 20]}, (22)

subject to a constraint
δ > 0, (23)

where x is the tuple (m, c, k). We calculated the first 15 s rod response under the impact
loading through the numerical integration of Equation (14), because the max displacement
appears quickly after impact, and the impact wave dominates the terminal response when
it is propagated at the right end during this time period. Thirty elastic modes were adopted,
which, based on our observation, are sufficient to approximate the values of performance
indices within the design space.

We first discover a rough Pareto set using the NSGAII algorithm with a population size
1000, number of generations 10, and mutation rate 0.05. Other configurations of NSGAII
can be seen in Table 1. With the numerical predictor, the NSGAII algorithm was completed
in 66 s on a desktop with an Intel core i-7 CPU, producing a rough Pareto set as the input
to the SCM method. In the SCM method, the m− c− k design space is discretized into a
10× 20× 20 cellular grid as shown in Table 2. The elements of the Pareto set are the cells in
the design space. The local search and recovery algorithm are performed twice, the first
time with the initial grid and the second time with the refined grid, which divides the initial
grid by three. We stop the program after the refinement because the desired resolution 0.06
× 0.08 × 0.166 in the parameter space is achieved. The computational time was 36 s with
the initial grid and 2000 s with the refined grid.

Table 1. Configuration of NSGAII.

Encoding Population Mutation Rate Crossover Generation Number

Binary 1000 0.05 two-point 10

Table 2. Configuration of SCM.

Initial Cell Partition Sub Partition

10 × 20 × 20 3

There are 5392 cells in the Pareto set. The Pareto set and front of the mass–damper–
spring termination are presented in Figure 2. Generally, either larger stiffness or damping
will lead to better design. The majority of optimal design is achieved with either moderate
or small mass. The Pareto front can be divided into three regions, labeled in Figure 2b.
Region 1 minimizes displacement at the cost of long settling time and moderate damping
performance. Region 2 balances the performance of three objective functions. Region
3 achieves premium damping performance at the expense of large displacement and
moderate settling time.
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Mass, m

(a)

t
s

1

2

3

(b)

Figure 2. The Pareto set and front of the m− c− k termination design of the elastic rod. (a) Pareto set.
(b) Pareto front. Design parameters m ∈ [0.1, 2.0], c ∈ [1.0, 6.0], k ∈ [10.0, 20.0]. The labels “1”, “2”,
and “3” indicate the regions where optimal terminal displacement, balanced performance of objective
functions, and optimal damping performance are achieved.

The optimal designs of each performance index are presented in Figures 3–5. The
corresponding design parameters, as well as performance indices are listed in Table 3.

Table 3. Design parameters and performance indices of optimal designs in Figures 3–5.

Figure
Design Parameters Performance Indices

M c k δ te3
s |u(L)|max

3 1.4617 4.9583 18.7500 0.1103 103.4239 0.0482
4 1.0183 1.0416 19.9167 0.2428 324.5931 0.0648
5 0.1316 5.9583 19.9167 0.0414 724.9264 0.0088
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(a)

(b)

Figure 3. The optimal design of settling time. The corresponding (a) terminal displacement and
(b) strain responses of the rod. The response is computed with N = 30.

5.1. Optimal Design: Minimal Settling Time

Figure 3 shows the optimal design of the settling time. The settling time of the
total response approximates 1200 s. While the performance index of the settling time is
significantly smaller than this number, it still correctly reflects the trend of the settling time
change in comparison to other designs such as those in Figures 4 and 5. The large mass in
this design can increase the portion of energy transmitted to the mass after impact, which
can be more effectively dissipated through the heavily damped boundary condition.

5.2. Optimal Design: Maximal Decay of Impact Wave

The time response of the optimal design maximizing the decay of the impact wave is
presented in Figure 4. The impact wave propagates to the right end when t = 2, 6, 10 . . .. The
suppression of the impact wave is evident. However, this is at the cost of at least a five-times
longer settling time and a slight increase of the maximal displacement. When compared
to the other two designs, this design considerably reduces the damping coefficient. This
could be attributed to the velocity change of the mounted mass in response to the impact
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wave hitting the terminal. Such a change will immediately alter the viscous force produced
by the damper, which in turn can lead to higher strain at the terminal. A small damping
coefficient can reduce the magnitude of the reflected impact wave.

(a)

(b)

Figure 4. The optimal design of the decay of the impact wave. The corresponding (a) terminal
displacement and (b) strain response of the rod. The response is calculated with N = 30.

5.3. Optimal Design: Minimal Peak Displacement at Termination

The optimal design of terminal peak displacement in Figure 5 has the same stiffness,
but much smaller mass and larger damping as the design in Figure 4. This makes sense
because the terminal displacement is identical to the displacement of the mounted mass.
Using small inertia and large stiffness and damping, one can effectively reduce the maximal
terminal displacement. However, smaller inertia also leads to less energy distributed to the
mass. Because the energy can only be dissipated through the damper attached to the mass,
this choice can also significantly amplify the settling time.
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(a)

(b)

Figure 5. The optimal design of the maximal terminal displacement. The corresponding (a) terminal
displacement and (b) strain responses of the rod. The response is calculated with N = 30.

6. Conclusions

In this paper, a multi-objective optimization problem of the terminal response of an
elastic rod with a viscous boundary condition was formulated. The terminal response of
the rod was predicted through a computationally effective and accurate particular solution
method. The Pareto set and front of the MOP were obtained with the GA-SCM hybrid
method. The proposed objective functions can effectively capture the dynamic response of
the structure. The optimal design strategies were presented and analyzed. The amount of
energy distributed to the terminal mass after impact was significant for the optimization of
the terminal design.

The computational load of this work was due to the repeated computations of the
impulse response with different parameter sets. Although the solver adopted in this paper
can be computationally more effective and accurate than finite-element methods, it still
requires a sufficient number of modes to capture the non-smooth impulsive response when
highly accurate results are desired. The computational load can be further reduced using a
surrogate (metamodel) model [20]. One future direction is to use neural operators such as
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DeepONet [21] to approximate the impulsive response, with the neural operator trained
using data from the adopted solver.
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Appendix A

From [19], the initial conditions of Equation (18) are

ρALu̇r0 + Mu̇r0 = f0, (A1)

u̇r0 +
n

∑
i=1

φi(0)ẏi0 =
f0

ρA
, (A2)

ur0 +
n

∑
i=1

yi0 +
( x

L

)m
α0 = 0, 0 ≤ x ≤ L, (A3)

n

∑
i=1

φi(x)ẏi0 +
( x

L

)m
α̇0 = 0, 0 < x ≤ L, (A4)

where ur0 = ur(0), α0 = α(0), and yi0 = yi(0). Equation (A1) leads to

u̇r0 = f0/(ρAL + M). (A5)

By uniformly sampling spatial points on the rod and applying the least-mean-squares
method, the initial conditions of the particular solution and response of elastic modes can
be obtained in the form

ẏ0 = (ΦTΦ)−1ΦTF, (A6)

where ẏ0 = [ȧ0, ẏ10, · · · , ẏn0], F = [ f0/(ρA)− u̇r0, 0, 0, ...0]T and

Φ =


0 φ1(0) φ2(0) · · · φn(0)

(x1/L)m φ1(x1) φ2(x1) · · · φn(x1)
...

...
...

. . .
...

(L/L)m φ1(L) φ2(L) · · · φn(L)

. (A7)
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