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Abstract: In this work, we study a capital-labor model by considering the interaction between the
new proposed and the confirmed free jobs, the precariat labor force, and the mature labor force by
introducing Brownian motion and Lévy noise. Moreover, we illustrate the well-posedness of the
solution. In addition, we establish the conditions of the extinction of both the free jobs and labor
force; subsequently, we prove the persistence of only the free jobs, and we also show the conditions
of the persistence of both the free jobs and labor force. Finally, we validate our theoretical finding by
numerical simulation by building a new stochastic Runge-Kutta method.
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1. Introduction

It is widely believed that the world’s income inequality has increased over past
decades [1,2]. Many different theories seek to explain this phenomenon, such as the
evolution of the shares of capital-labor [3], changing returns to human capital and skill-
driven technological change [4-7], and market concentration resulting from corporate
market power and oligopoly [8,9]. Other work has concentrated more on the relationships
between employers and workers and changing institutions [1,10-13]. Still others have
focused on the potential changes to the economic class structure and the importance of
economic class [1,14-16]. The evolution of institutions and the evolution of class structure
can be seen as related rather than concurrent phenomena. The relation of workers to
their work focused on a transformation of an old working class into a new working
class, the precariat. The precariat is different from the old working class by its instability;
they are a source of flexible labor, dependent on money wages due to a loss of labor
rights and a weakened ability to access the welfare state, and without long-term stable
employment [15,17,18]. In [19], Greenstein showed how the precarious class diagram can
be applied empirically to data for the US labor force to help understand the changing nature
of working-class jobs and who occupies those jobs. Moreover, he also explored to what
extent this class structure can explain rising income inequality in the United States. Wage
employment has also been on a downward trend in rich economies [20]. In [21], Breman et
al. suggest that a trend of casualization in the rich world is inevitable due to a stagnant
economy, a dismantled welfare state, and the decline of labor unions, among other causes.

The mathematical modeling of dynamics of capital-labor is an important tool to
understand and study the behavior of interaction between free jobs and the labor force;
for example, in [22], Riad et al. gave a deterministic model with logistic growth rate
to established the condition of the existence and the stability of the equilibrium. More
recently, in a stochastic study of the interaction between the free jobs and the labor force by
introducing the white noise [23], also they found some conditions of the persistence and
the extinction of labor force.

Motivated by the previous studies, we proposed the following capital-labor model
with a Lévy jump:

Math. Comput. Appl. 2022, 27, 93. https:/ /doi.org/10.3390/mca27060093

https://www.mdpi.com/journal /mca


https://doi.org/10.3390/mca27060093
https://doi.org/10.3390/mca27060093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0001-7080-9743
https://doi.org/10.3390/mca27060093
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca27060093?type=check_update&version=2

Math. Comput. Appl. 2022, 27,93 2 of 20

dur(H) = (Sua(t) — pyunn (1) —Kul(t))dt—i—alul(t)dwl(t)+/UH1(u)u1(t—)N(dt,du),

dus(t) = (Kul(t) — poun(t) — Tud(t) )dt + opup (£)dW, ()
—i—/uﬂz(u)uz(t—)N(dt,du),

doy (t) = < 1612;’;2 — w301 (t) — le(t)>dt + o301 (£)dWs (1)
+./UH3(u)vl(t7)N(dt,du),

dua(t) = (001(t) — pavp(t) — 03 (t))dt + ogva () dWy(t) + /u [Ty (u)vp (t—)N(dt, du),

CUpUp
1+ auy

)

where 1 represents the new proposed jobs, 1, the confirmed free jobs, v; the labor force in
the training period and the precariat individuals (or the prematuration labor force), v, the
maturation labor force, ¢ is the rate of new proposed free jobs, « is the rate of confirmed
free jobs, 1 is the loss rate of new free jobs, yy is the loss rate of confirmed free jobs, T is
the competition rate between confirmed free jobs, 6 is the maturity rate of the immature
labor force, y3 is the loss rate of the jobs of the prematuration labor force, ji4 is the loss rate
of the jobs of the mature labor force, 1, is the competition rate between a mature labor force,
c is the rate that a labor force hunts a free job, and « is the effects of the recruitment rate on
free jobs.

On a complete probability space (Q), F, (F¢)i>0,P), we define W;(t) as the standard
Brownian motion, with the filtration (F;);> satisfying the classical conditions. Note that
uq(t=), up(t—), v1(t—), and vy (t—), respectively, are the left limits of uq (), ua(t), v1(f),
and v, (t); N(dt,du) = N(dt,du) — v(du)dt, with N(dt, du) is a Poisson count measurement
with the stationary compensator v(du)dt, and on a measurable subset U of the positive
half-line we define v under the assumptions v(U) < oo and the intensity of W;(t) is 03, q; (1)
represents the jump intensities fori =1, ...,4.

The organization of our study as follows. In the Section 2, we prove the well-posedness
of the solution of the model (1). The extinction of both free jobs and the labor force is shown
in Section 3. In Section 4, we show the persistence of free jobs and the extinction of the
labor force. The stochastic persistence of both the free jobs and the labor force is studied
in Section 5. Section 6 gives some numerical results in order to validate our theoretical
findings.

2. Properties of the Solution
2.1. The Global Positive Solution Existence and Uniqueness

In this subsection, we will prove that the solution of the model in (1) exists and is
unique.

Theorem 1. If the initial value (u1(0),u2(0),v1(0),02(0)) € R4, then the model (1) admits a
unique global solution (uy(t), uz(t), v1(t),v2(t)) € R4 fort > 0 as.

Proof. The diffusion and the drift are locally Lipschitz, so for any initial data
(11(0),u2(0),01(0),v2(0)) € R%, fort € [0, T) the system (1) admits a unique local solution
(up(t), ua(t), v1(t), v2(t)), where 7, represents the explosion time.

For the purpose of proving that this solution is global, we must show that 7, = o a.s.
First, we demonstrate that for a finite time, (u1(t), ua(t),v1(t), v2(t)) do not tend to infinity.
Let a sufficiently large number 1y > 0, such that (u7(0), u2(0),v1(0),v2(0)) belong to the

1
interval [n—, np]. For each integer n > ny, the stopping time is defined as follows:
0

T, = inf{t € [0, %) /u1(t) & <111,n> orup(t) ¢ (111,71> orvi(t) ¢ <111,71) orvy(t) ¢ (711/”> 1%
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with 7, when 7 1 o0, is an increasing number. Let Teo = lim;, 00 T, Where 7o < 7 a.s. If

we prove that T, = oo then 7, = oo and (u1 (), u

2(t),v1(t), 02

(t)) € R% as. Suppose the

contrary case is verified, i.e., Teo < o0 a.s. Therefore, there are two constants T > 0 and
0<e<lsuchthatP(te <T) >e.
Now, consider the functional

V(ur(t), up(t), 01 (t), 02(1)) = ) (ui — 1 —log(uy)) +

i=2 i=2

i=1 i=1

Using ItO’s formula, we obtain

av(x,y,z)

with

LV = (1 - ull) (Bua(t) — e (1) — ma (1) +

then, we have

LV<—T1u2() ((5+T1+c)u2+p+y1+y2+y3+y4—T202+(c+rz)v2+4c
0
Lv §w+K+M1+H2+}13+H4+ﬂ+4C’
4Ty £10)
LV <C,
with

C’ = max { /qu(u) —log(1+ Hl(u))v(du),/u(Hz(u) —log(1+ Iy (u)))v(du),

J, s () ~tog(1-+ T1au))) v, (TTa() ~tog(1-+ Ty ()l .

=LV dt + Z o; (u;

i=2

i=2
1) dW; + ) 0i2(v
i

=
+/U[H1(u)u1—log(1+H1(u))]N(dt,du)
+/u[l'[2(u)u2—log(l—i—Hz(u))]N(dt,du)
—i—/u[l_[g,(u)vl ~log(1 + Ty (u) )| N(dt, du)
+ /U[H4(u)vz ~log(1 + Ia(u))|N(dt, du),

)
71

+ <1 — 1) <Ku1( ) — poun (t) — Tua(t) —

1+ auy
2
CUp0Up _ _ 0'73
+ (1 > (1 T u3v1(t) 901(t)) +5
+ 1—l Ov1 ( U()—Tvz(t)>+0i
- 1(t) — pav2 20) >

+/UH1(u)—log(1+H1( u))]v(du)
+ / [Tz (1) — log (1 + T (u))]v(du)
+/ I3 (u
+ M

—log(1 +II3(u))|v(du)

—log(1+ Iy (u))]v(du),

i— 1) dWa +o3(z — 1) dWiy

@
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and

(6 + 11 +c)? (12 +¢)?

— /
C= yes + K+ p1+ p2+ Pz + pa + 10 +4C".

Then, Equation (2) implies that

0 <E(V(ur(tu AT),uz(tu AT),01(ty AT),v2(ty AT)))
< V(ul(O),Mz(O),Ul(O),Uz(O)) + CT.

For any h > 0, we define
1
H(h) = inf{V(xq,x2,x3,%4),%; > horx; < W i=1,...,4},
where x1 = uq, Xp = Uy, x3 = v1 and x4 = vp. Therefore, we obtain
lim H(h) = co.
h—o0
Then, letting n — oo, we find
o > V(ul(O),Mz(O),Ul(O),Uz(O)) + CT = oo,

which is a contradiction with the previous assumption. Therefore T, = co. Moreover, our
model admits a unique global solution (u1 (), up(t), v1(t),v2(t)) a.s. O

2.2. Stochastic Ultimately Boundedness

In the previous subsection, we have proven that the solution of the model (1) is positive.
Nevertheless, this non explosion property in a dynamical system is often insufficient.
Therefore, the stochastic ultimate boundedness is more desired.
Theorem 2. If we have the following conditions

o? +/ 112 (u)v(du) — 2uy — 2k +1 <0,
u

o3+ / 113 (u)v(du) —2up +1 <0,

o3 +/ 113 (u)v(du) — 2u3 — 20 +1 < 0,
u

o2 + /unﬁ(u)u(du) — 2y +1<0.

Then, for an initial data (u1(0), u2(0),v1(0),v2(0)) € R, the solution of model (1) is stochastic
ultimately bounded.

Proof. Define the following function:
i=2 ) i=2 )
V(uy,up,v1,02) = Y ui + Y 03
i=1 i=1

By ItO’s formula, we get
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dV (uy, up,v1,v2) =LV dt + 207utdWy (t) + 205 u3dWo () + 20503dWs(t) + 205705d W, (t) 4)
+ /u (20T (u) + T2 ()2 N (dt, du) + /u (20T (1) + TB(u) 2 N (dt, du) 5)
n /u (2005 (1) + T13(u) )02 N (dt, dut) + /u (2T () + T2 (u) Y03 N (dt, du), ©)

with

CUp0p
LV =2u; (6uy — — 2 — —nuj —
uq (Oup — pqug — xuq) + 2up (KM1 Holly — TyU5 T+ ocu2>

Clipv
+ 204 (1 +2 z U3V — 62}1) + 20, (62}1 — MgV — TzZJ%)
+ ouf + ooud + 0303 + 0403 + / [3u3v(du)
—I—/ [3ubv(du) —I—/ 1303 (du) +/ [1503v(du),

u

S0,

LV = —2nju} — 2105 + (012 + / T3 (u)v(du) — 2py — 2k + 1> u?
u
+ (022 + /u 113 (u)v(du) — 2us + 1) us + (032 + /u 113 (u)v(du) — 2u3 — 26 + 1) v?

+ (Uf + /u IT3 (u)v(du) — 2p4 + 1) 0% 4 2(a + p)uyuy 4 20010,

2CUr V10V 2611%02
1+ aup 1+ auy

— (1B + w3+t +03),

then,

LV < ((712 + /u 112 (u)v(du) — 2y — 2K + 1) ul + ((722 + /u 115 (u)v(du) — 2u + 1) us

+ ((T% + /uflg(u)v(du) —2u3 — 20+ 1) v? + <(TZ + /u 13 (u)v(du) — 2puq + 1) v3
+2(a+ p)uuy +2(h +c)vivy — (u% +ub + o3 + v%),

we denote

f(uy, up,01,03) = (1712 + /u H%(u)v(du) — 21 — 2k + 1) u% + ((722 + /u H%(u)v(du) — 24y + 1> u%

+ ((732 —l—/ 113 (u)v(du) — 2u3 — 26 + 1) 02+ ((TZ + / 13 (u)v(du) — 2uy + 1) v3
u u
+ 2(61 + P)Mluz + 2(]1 + C)Ulvz.

Since we have condition (3), we obtain that the function f(u1, up,v1,v;) admits an
upper bound. We put

M= sup fuq,up,v1,v7) and L = M + 1.

(11,12,01,02) ERY.

Since £(0,0,0,0) = 0, then L > 0. Formula (4) implies that
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dv < [L — (U ui v+ vg)] dt + 207 uZdWy (t) + 205u3d W (t) + 20307 d W5 (t) 4 20205d Wy (t)
+ /u(znl(u) + 112 (u))u3N(dt, du) + /U(ZHZ(u) + 113 (u))us N (dt, du)

+ /u (20T5 (1) + TR2(u) )2 N (dt, dut) + /u (20Ta (1) + T2 (u) )O3N (dt, du),

therefore, we use ItO’s formula to get

d[e'V] =e'V dt +e'dV
<Ne' dt + 202 u3dWi (t) + 205u3d W, (t) + 20202 d W5 (t) 4 205 v5d Wy (t)
+ /u (2T () + T12(u) )N (dt, du) + /u (2T (u) + T (u))udN(dt,du) )
+ /U(ZH3(u) + TR ()2 N (dt, du) + /u(zm(u) + TR2(u)) 2N (dt, du),
then,
e'E[V(X)] <V (uq(0),u2(0),v1(0),v2(0)) + Le* — L.
with X = (uq, up, v1,v2).
Therefore

limsup E[V(X)] <L.

t—c0
We know that V(X) = ij ulz + ij vlz, then

limsup E[|(X)|?] < L.

t—oc0
By Chebyshev’s inequality, for any # > 0, let B = ﬁ we get
E[(X)]*] _ L
p(x) > < X L)
n

O

3. Stochastic Extinction of Free Jobs and the Labor Force
Now, we prove that free jobs and the labor force becomes extinct with probability one.
We put

¢ =21 +p—op— /UH%(u)v(du),

cy =2y — 05 — /UH%(u)v(du) —6—x,
c

c3=2uz+h—o%— /uflg(u)v(du) 0

c
Cy =2y — 05 — /ul'li(u)v(du) - 6.
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Theorem 3. For any initial data (u1(0),u2(0),v1(0),v2(0)) € R%, we obtain

1 L
limsup — (—l—u% + u% + v% + v%) < —l,
t—o0 t Q
when, min{cy, ¢y, c3,c4} > 0.
Proof. We define
i=2 i=2
P(ul,uz,vl,vz) = Mlz'f— 12+M1+u2+01,
i=1 i=1

By ItO’s formula, we get
dF =LF dt + o7 (2u? + uq )dWy (t) + 05 (2u3 4 up)dWa (t) + 03 (207 + v1)dWs(t)
+ 20203d Wy (t) + /U(ZI'Il(u) + 112 (u))u3 + Tyuy N(dt, du)
¥ /u (20 () + T3 (1)) 2 + Toun N(dt, duc) + /u (2015 (1) + T3 (1)) 0 + T30, N(dt, dun) ®)
—l—/u(ZH4(u) + 115 (u) ) 03N (dt, du),

where

LF =2uq (dup — pqug — ki) + 2up <Ku1 — Uplp — Tlu% — 1612‘22)

1+ au

+ duy — Tlu% — Uy — poup — (uz + 0)vy + 0'1Ll1 + 0'2M2 + 0301

+0402+/ [12u3v(du) —|—/ 113u3v(du) —|—/ 1130%v(du) +/ 11203v(d

Clipv
+ 204 ( 222 U3vy — hvl> + 20, (901 — UaU2 — Tzv%)
2

so,
LF = —2nju} — 21003 + (012 + / 112 (u)v(du) — 2u1 — 21() u?
u

+ (022 + /UH%(u)U(du) - 2;{2) uz + (a% + /uflg(u)v(du) — 23 — 29) v?

+ ((TZ + /u Hi(u)v(du) - 2y4> v% +2(6 + ) uqup + 2600107 — (p3 + 0) vy

2CUr V102 2611%02
1+ aup 1+ auy

+ duy — Tluz UiU] — Holip,

then,
LF < ((712 + /UH%(u)v(du) — 2 — ZK) u?
+ (022 + /u 113 (u)v(du) — 2y2> u3 + ((7% + /u T3 (u)v(du) —2u3 — 29) v?
+ ((TZ + / 113 (u)v(du) — 2;44) 0 4 (8 4+ K)u? + (6 + ) + 003 + 603
2

C
(% ’U
+ ot 2+4T1

this fact implies that,
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LF §<(712+/UHZ( yv(du) — 2‘111—1()1/[%
+<(722+/UH2( u)v (du)+25+1<—2y2>u2+(03+/ﬂ2 (du)+;—2y3—6)v%

+<UZ+/UH2( W (du)+ +6— 2y4>vl+L1,

with L1 = % Then
1

LF < — clu% — czu% — C3v% - C4U% + L,

Equation (8) implies that

0 < E(F(uq(t), ua(t), v1(t),v2(1))) §]E{ /Ot( clu% — czu% — C3ZJ% — 0402) } + Lyt
+ F(u1(0),u2(0),v1(0),v2(0))

let ¢ = min{cy, 3, ¢3,¢4}, SO

IE{ /Ot(m +u3 + v} —|—Uz)} < Lgt-i- (u1(0),uz(O)évl(O),vz(O)).

Then,

1 t L
lim sup tE{/o (u%—i—u%—l—v%—i—v%)} < ?1

t—00

O

4. Stochastic Extinction of Capital Labor

In this section, we established some conditions to proving the extinction of the labor
force with probability one.
First, we denote

C3:2;13—1-9—032—/L1H5(u)1/(du)—£

c
€4 =24y — T — aj — /UHZ(u)v(du) - h,
i=2 ;2
N; = 271+2N{ — (p1 + %+ u2),
i=1

where
N{—min{/ T, (1) — In(1 + T (u /nz ~In(1 + Ty (u ))}
u

Theorem 4. For any initial data (u1(0),u2(0),v1(0),v2(0)) € R%, when min{cs, Icy, Ny} >0
02 ap .

and —= < ——, we obtain
ui c

lim sup %]E(v% + v%) < zz
1

t—o0
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then, all the prey persistence in the mean. Moreover, we have

t
%/ uy(n)dny > M a.s.
T

/ 0Ny
— a.S.
t 71 (p1 +x)

Proof. We consider

1=
Fi(vi,v) = Y 07+,
by 1tO’s formula, we obtain

dPl(Ul, Uz) =LF dt+ 0'§ (2‘0% + U1)dW3(t) + 20}%0%5”/\/4(15)

N . 9
+ /U (2013 (1) + T13(u))0? + T30, N(dt, du) + /U (20Ta (1) + T2 (u) )O3N (dt, du),
with
- CUp0y . . . B 2
LF =2v; (1 T U301 901> + 20p (901 HaU2 Tzvz)
(6175 X %)
1+ aup (3 + 1)o
+ 0303 + 0403 —l—/ [1Z03v(du) / 11303v(du),
SO,
_ 3 2 2 2
LF = — 2105 + ((73 + / I15(u)v(du) — 2us — 29> vy
((74 / 13 (u 2y4> v] + 200107
2cUr V107 CUr Ty
1+ auy 1+ auy (VB + 9)02,
Therefore,
LF <[ %+ / 113 (u)v(du) — 2u3 — 29> v?
u
+ (Uf + /UHZ( Yv(du) — 2;14) 02 4 ho? 4 13
c c
+ &U% + &Uz — (]/l3 + 9)02,
then,
LF < ((732 + / 113 (u)v(du) + g — 243 — 9) 02
u
+ (UZ + /u 113 (u)v(du) + 7 — 2;44) v 4 Ly,
0_ ¢
with L, = % Therefore,

LF, <— C3U% — 040% + Lo,
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Using Equation (9), we obtain

0 < B(Ry(o1(0)22(0) < B ["(~ea0f — cid) } + Lat + F(0n(0),22(0),
Noting 01 = min{c3, ¢4}, so
]E{ /Ot(v%+v%>} < zft+1w1(()g>l’w(())),
then,

ot
lim sup 1E{ /0 (ZJ% + v%)} < IQQ
. 1

t—c0

Let
Gi(uy,up) = In(uquy),

by ItO’s formula, we get

i=2
dG) = LGy dt—l—Z(Ul aAW; —|—/ gi(u —ln(l—i—qi(u))N(dt,du)),
i=1
with
LG 5&—( +K)+—— Ty — 2
1= 1 H1 H2 —TiU2 1+ auy

( +/ gi(1) —In(1 + g (u ))u(du)>.

v XK
We know —2 < —. Therefore,
ux C

i=2 ;2
a-
LGy > —tjup — (1 + K+ pa) + ) 71+2N{
i=1

where Nj —min{ Ju T (u) —In(1 +1ITy (u)), [, TI2(u) ln(1—|—H2(u))},so

LGl > —nuy + Np

with
i=2 2

T
Ny =} 5 +2N[ = (i1 +x+ o).
Therefore,

In(is (F2(1)) 2 (s (0)2(0)) — 71 [ w2y + Kot

P (v + =m0 S, ) )
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Therefore,
ln(ul(tt)uz(f)) zln(ul(Ot)Mz(O)) —Tlf/ u (17)dn + K

+2 /(o—l AW, (1 +/ gi ()it — In(1 + g; (u ))N(dq,du)).

The strong law of large numbers for local martingales implies that

1 rt
0 > —’L'lz/o le(?])di?+N1,

then,

1 rt Ny
— > — a.s.
t/o uy(n)dn > - a.s

The first equation of system (1) implies that

duq(t) =(Suy(f) — pqup (£) — xuq (£))dt + oyuqg (H)dW1 (1) + /uﬂl(u)ul(t—)N(dt, du),

SO,

wy () — ur (0) =5 /Ot ua(i7)dny — (1 + x) /Ot )y + /ot 7 A o)
n /Ot /Unl(u)m(n—)N(d’?/d“)f

then,
O=O 53 sy — G407 [ mlpdn+ ] [ o pawa(y)

b [ TG ()N e, ),

. 1 ¢ Ny
— > =
Since ; jb uz(ﬂ)dﬂ ) , SO

ui (t) —uq(0) _ 6Ny

7 _T—(V1+K)1/Otu1(17)d17+t/ o1 (17)dWs (17)

t//H1 Jui (7—)N(dy, du),

using the strong law of large numbers for local martingales, we get

ON 1t
02 L= (u+x)7 [ mlndy,

T
then,

1

t 0Ny
2 dn > 91
t/o w()dy = 7 (g +x) a-s
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5. Stochastic Persistence

In order to prove the stochastic persistence of both the free jobs and the capital labor,
we define the following constant

i=2 ;2
Ni=) -+ 2N —
i=1

(1 + x4 p2),

i=4 ;2

I,
Ny =) 5 +2No— (3 + 0+ pa),
=3
with
N{me{/nl( —In(1 +TTy (u /H2 —In(1 + T (u ))}
u
and
Ng_min{/ Tl (1) — In(1 + I3 (u /H4 —In(1 + ITy(u ))}
u

Theorem 5. If min{Nj, N} > 0 and 22 < — then all the free jobs and labor force persistence
Uy

in the mean. In addition, we have

~

uy(n)dn > M as.
(51
0Ny
7 (p1 +x)
N a.s.
(%

HalNp
9’['2

a.s.

-~

N I
=
=
—~
S
S~—
[
=
A%

—_
<
N
—
=
~—
=
=
v

a.s.

o1 (n)dny >

~

Proof. We consider the following function:
Gi(u1,up) = In(uguy),

1tO’s formula implies that

i=2
dGy = LGy dt + Z(Ul dw; + /uqi(u)ul —

In(1 + g; () N(dt, du)),

with

_ dup cvy
LG =—= — + K +7f — Ty —
1= 1 (‘ul ) Uus ]/‘2 172 1+DCM2

<+/qz —In(1+g;( >>v<du>).

Since s < %, then,
uq C
i=2 ;2
LGi > —Tjuy — (]/11 +K+ﬂ2)+ 271+2N{

i=1
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where N —min{ JuTh(u) —In(1+1ITy (u)), [; T2 (u) ln(l—l—Hz(u))},then

LGy > —myup + Ny

with
i=2 ;2 ,
Np =) - +2Ni = (i +x+ ).
i=1

Then,
In(ay (602 (1)) 2 0)2(0)) 71 [ ma )y + N

+2/ (al AW; (1 +/ g (u)u; — In(1 + g;(u ))N(d;y,du)).
Thus fact implies that

ln(u1(tt)uz(t)) Zln(u1(0t)uz(0)) - T1% Ot u (17)dn + Ny

i=2

i=1

Using the strong law of large numbers for local martingales, we get

1 t
0> —T1¥/0 uz(ﬂ)dﬂ —|-N1,

therefore,

1t Ny
— > — as.
t/o up()dy 2 — - as

Using the first equation of system (1), we get

) (0 6/ uy(n)dn — 1+K)/ M1(’7)d7]+/0t(71u1(;7)dwl(,7)
+/0 /unl(”)”l(ﬁ_)N(dU,du),
then,

M :(5% /Ot uy(n)dn — (u1 + K)% /Otul(ry)diy + % /Ot ayuy (7)dWa (17)

+%/Ot/unl(u)ul(n—)N(dW/d”%

N-
we know that % fé up(n)dn > T—l, so
1

up (t) — u1(0) >f5ﬁ_

; - (#1+K)1 /()tul(ﬂ)d77+%/Otglul(ﬂ)dwl(ﬂ)

t//n1 Jui(n (d;y,du),
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The strong law of large numbers for local martingales implies that

SN 1t
> st
02—~ —(m +K)t/0 wr (17)d,

then,

a.s.

1 gt 5Ny
- dn > 91
t/o w(7)dry = 71 (1 + 1)

We use the following function:
Ga(v1,v2) = In(v107),

1tO’s formula implies that

i=4
dGy = LGydt + ) (07 dW; + /uqi(u)y,»,z —In(1+ g;(u))N(dt, du)),
i=3

with
1 cupvy 01
LGy =— - 0) + Ly —
2 v1 1+ aup (13 +0) + Uo Ha =002
i=4 [ 2
F LT+ [ i) ~n(1+g,(0)v(du) ).
i=3
Therefore,
i=4 ;2
LGy > —Thvy — (}13 +60+ ]14) + Z 71 +2Nﬁ,
i=3

where N} = min { JuTa(u) —In(1 +T13(u)), [; Tla(u) — In(1 4 TT4(u)) }, then

LGy > —1uy + Np
with
i=4 ;2
Ny =} - +2N; — (3 + 0+ pua).
i=3

Therefore,
In(v1(t)va(t)) =1n(v1(0)v2(0)) — /Ot 02 (n)dn + Nat
i=4 ot
+z—23/0 (m AW (1) +/u%‘(”)yi—21n(1+qi(u))N(d17,du)).

Thus fact implies that

In(ovy (H)va(t)) _ In(v1(0)02(0))
t - t

1 t
— Tz? /0 Uz(ﬂ)dﬂ + N

i=4
* _23 % /Ot <‘71‘ dWi() + /u 9:()yi—2 — In(1 + q;() )N (d, du))
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Using the strong law of large numbers for local martingales, we have

1 t
0 Z *TZ?/O 7)2(17)6117 + Nz,

then,

1 gt N,
— > —= a.s.
t/o vp(n)dny > 5 a.s

The last equation of system (1) implies that

0a(t) ~02(0) <0 [ ox iy — s [ o2y + [ sonl)amy ()
+/0t/ul’l4(u)vz(17—)1<](d17,du),
then,
202200 <ot [Corgyin -~ pag [ valmin+ [ ovoalnyamin

+%/()t/LIH4(u)vz(17—)N(d77,du)/
Oy ety ey

b [ ety N an du)

. 1 ¢ Ny
— > _Z
Since : Jo v2()dy > o then

HalN> n vy (1)

—02(0) 1/* 1/*
<f= —
o ; <6 A o1 ()d + 5 A o402 (17)dWa(17)

- % /(;t /u T4 (u)v2 (17— )N (d, du),

Using the strong law of large numbers for local martingales, we have

paly l/t
o =07 ), nlmdn,

then,

1 t ]/l4K2
— > ——=a.s.
t /0 U1(17)d17 - 0n as
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6. Numerical Simulations

Now, our main objective is to give numerical simulations of the model in (1); further-
more, we consider the equation

dY(t) = h(t, Y(£))dt + o (t, Y (£))dW; + /uH(t,u)f(t—,Y(t—))N(dt,du). (10)
Then, the solution of (10) is

Y(t) = Y(O)—|—/Oth(s,Y(s))ds+/Ota(s,Y(s))dWS

Part I

+f / / (s,u)N(ds,du). (11)

Part I1

For approximation of part I in (10), we will use the Runge-Kutta method

1
Yipr =Y+ 2

5 (K1 +2K; 4+ 2K3 + Ky)

where

Ky = h(ty, Yi)) At + o (te, Yi) W1 — We),

At K At Kq
Kth(tk+ 2 —t, Y+ 21))At+0'(tk+ 2 Y+ — 5 )(Wk+l_wk)
K> K

K3 —h(tk-l- Yk+ ))At-l—U(tk-l- Yk+ 5 )(Wk+1 —Wk),

Ky =h(t + At, Y, + K3))At +o(te + At, Yi + K3) (Wi 1 — Wy).

For part 11, we will have two cases.
Consider any infinitesimal interval [T}, T 1) C (¢, tit1)-
If there is no jump on this interval:

H—l
/ / (s,u)N(ds,du) =

If there is only one jump point t; € [T}, Tj11), so

/M/ N(ds,du) = f(t;i—, Y (t;—))I1(t;, (1)),
then,

-)) /Ot/l.ll_l(s,u (ds,du) Zf( —N)II(t;, T(t:)).

Consequently, the Runge-Kutta method of problem (10) will be

1
Yerr =Y+ ¢ (K7 + 2K5 + 2K5 + Kj)
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where

K} = h(te, Yi)) At 4 o (te, Yie) Wier — W)

+ f(tk—,
Ké = h(fk + = At

t
+f(tk+—,

K}

+f(tk+*/

K
—t, Yk + —
Y(tk) +

Yk +

Y (4) )TI(tx, G (),

/

2

1)) At + ot + 2

Ky
2

))At+(7(tk+

Y,
AL

Tk + ;,mk +3),

Yk + =

LY (Wi — We)

K )(Wk+1 - W)

Y () + %)H(tk + o G+ %)),

K = h(t; + At Y + K5)) At + ot + At, Yy + K5) (Wi — Wy)
+ f(te + A, Y () + KE)TI(t + AL, (t + At)).

We use the previous method to solve the system in (1) and the parameters values in

Table 1.

Table 1. The values of the used parameters.

Parameters Figure 1 Figure 2 Figure 3
5 0.7 0.1785 0.305
T 0.92 0.37 0.47
c 0.75 0.17 0.63
K 0.32 0.19 0.4
6 0.53 0.048 0.048
o 0.84 0.037 0.037
1 0.91 0.0342 0.034
1 0.532 0.0401 0.0401
13 0.483 0.0481 0.058
1y 0.489 0.0432 0.0432
o 10~° 104 104
o) 3x107° 3x107° 3x107°
o3 3x107° 3x107° 3x107°
o4 3x107° 3x107° 3x107°

Ty (u) —0.051 —0.051 —0.052
IT)(u) —0.007 —0.007 —0.007
IT3(u) —0.009 —0.006 —0.007
Ty (u) —0.009 0.008 0.007

In Figure 1, we show the dynamics of u1, 13, v1, and v, and we observe that both free
jobs and the total labor force in the deterministic and the stochastic curves tend to zero;

furthermore, we have the extinction of free jobs and the total labor force.
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Figure 1. The behavior of free jobs and the labor force.

2 25 30

Figure 2 represents the behavior of u1, uy, v1, and v;. We remark that the labor force is
extinct and the free jobs stay non negative; this means that the population of the labor force

will be extinct and the free jobs will persist.

35 ;
— Deterministic
9t —Léwy noise
0
Q
025 ]
]
92 ]
0
Q
015 1
Q
3
o ! 1
Z
05 1
G | | |
1 2 % 30
Time t
25 :
— Deterministic
—Léwy noise
2, |
15 1
[\
0
0
£ ]
05r 1
G | | | |
0 5 10 15 2 % 3
Time t
b ;
— Deterministic
—Lévy noise
5 -
0
Q
2
U4
0
0
89
0
-
Q
32
0
z
1,
0 | |
0 5 10 18 2 % 30
Timet

Figure 2. Cont.

10

P

Confirmed free jobs
=

~
T

~>
T

— Deterministic
— Lévy noise

2 % 30



Math. Comput. Appl. 2022, 27,93

19 of 20

;Deterministic ;Deterministic
19 —Lévy noise —Lévy noise
o —
00, |
2
it 1 g
§ g
§ 08 ] 5 ]
c
Qogt 1 0 |
(i 7
—
04r 1 3
g ]
02r ]
G L | | | | | |
0 5 10 18 20 25 Kl 15 20 25 30
Timet Timet
Figure 2. The behavior of free jobs and the labor force.

In Figure 3, we illustrate the interaction between u1, up, v1, and v. We show that both
free jobs and and the labor force stay strictly positive in the two cases of stochastic and
deterministic, then we have the persistence of both the free jobs and the labor force.
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Figure 3. The behavior of free jobs and the labor force.

7. Conclusions and Discussion

In this paper, we have studied the interaction between free jobs and the labor force
by decomposing each class into two subclasses. For the free jobs, we have considered the
proposed new free jobs by the recruiting company and the confirmed free jobs. For the
labor force, in order to account for labor force seasonality or internship periods, we divide
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the labor force into the precariat population and the mature labor force. Moreover, we have
studied the well-posedness of the solution, by proving the existence, uniqueness, and the
stochastic ultimate boundedness. In addition, we examined the behavior of our model in
three cases. The first of them concerns the extinction of both free jobs and the labor force;
the second concerns the extinction of the labor force and the persistence of free jobs; and
the last concerns the persistence of both free jobs and the labor force. Finally, our study is
supported by a numerical simulations in order to validate our theoretical findings. In a
possible follow-up to our investigation in this article, we can extend problem (1) to different
fractional derivatives, which rely on several fractional derivative operators, such as the
Liouville-Caputo, Riemann-Liouville, and other fractional derivative operators [24,25]. In
addition, we can extend our system to an impulsive problem such as that studied in [26].

Funding: This research received no external funding.
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