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Abstract: In this article, we introduce a notion of size for sets, called the thickness, that can be used to
guarantee that two Cantor sets intersect (the Gap Lemma) and show a connection among thickness,
Schmidt games and patterns. We work mostly in the real line, but we also introduce the topic in
higher dimensions.
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1. Newhouse’s Thickness

In the 1970s, S. Newhouse [1,2] defined the thickness of a real line. Thickness is a
notion of size of a compact set, and Newhouse gave in his famous Gap Lemma a simple
condition involving thickness that ensures two compact sets intersect. Since then, many
mathematicians working on dynamical systems and fractal geometry have been interested
in this notion of size (e.g., [3–12]).

Before giving the definition of thickness and stating the Gap Lemma, we are going to
see any compact set C ⊂ R as the result of sequentially “poking holes”, starting with an
interval (the convex hull of the compact set).

Let C be a compact set in R. We denote by I1 the convex hull of C. There is a sequence
(Gn)n (that might be finite) formed by disjoint bounded open intervals that are the path-
connected components of I1 \ C.

Since these intervals are disjoint and contained in the finite interval I1, we can assume
that they are ordered by non-increasing length. (In fact, in case there are infinitely many
of them, we have limn→∞ |Gn| = 0.) If there are several intervals of the same length, then
we choose any ordering by non-increasing length. We can construct the compact set C by
removing these gaps in order (see Figure 1).

Figure 1. Construction of a compact set.

Math. Comput. Appl. 2022, 27, 111. https://doi.org/10.3390/mca27060111 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca27060111
https://doi.org/10.3390/mca27060111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://doi.org/10.3390/mca27060111
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca27060111?type=check_update&version=1


Math. Comput. Appl. 2022, 27, 111 2 of 22

When we remove Gn from an interval of the previous step, we obtain two new intervals
Ln (at the left) and Rn (at the right). Note that there may be degenerate intervals (singletons).

Thickness is a notion of size that looks at the smallest proportion of lengths of intervals
over the lengths of gaps:

τ(C) := inf
n

min{|Ln|, |Rn|}
|Gn|

.

Observation 1. When τ(C) ≥ c, then |Ln |
|Gn | ≥ c and |Rn |

|Gn | ≥ c for every n. Intuitively, this says
that the set is large around each point of the set at every scale.

Observation 2. In case C has at least an isolated point x, then there exists n such that Ln = {x}
or Rn = {x}, and thus τ(C) = 0.

Lemma 1. Newhouse’s thickness is well-defined, where any non-increasing order for the sequence
of gaps gives the same value.

Proof. One can prove that in case there are two gaps in the sequence with the same length
g := |Gn| = |Gn+1|, switching their order in the sequence gives the same thickness. When
the gaps are erased from different parents, the quotients do not change, and thus the
infimum does not change. In case the gaps Gn and Gn+1 are erased from the same parent,
the quotients may change, but the infimum is the same when removing them in any order.
Let us look at the latter case.

When we remove Gn and then Gn+1 (see Figure 2), the quotients appearing in the
definition of thickness are a

g , b+g+c
g , b

g and c
g . When we remove Gn+1 and then Gn instead

(see Figure 2), the quotients appearing in the definition of thickness are a+g+b
g , c

g , a
g and b

g .
Note that

inf{ a
g

,
b + g + c

g
,

b
g

,
c
g
} = inf{ a

g
,

b
g

,
c
g
} = inf{ a + g + b

g
,

c
g

,
a
g

,
b
g
}.

Now, observe that since there are finitely many gaps with a fixed length, in finite steps,
one can order all gaps with the same length as |Gn| through applying permutations, as
shown before.

Figure 2. Removing gaps of equal length in two possible orders.

After this, note that there is a sequence of steps (Nk)k, where |GNk | > |GNk+1| and
in which the thickness does not change when we reordering gaps with the same length up
to those steps. (We may reorder the first Nk terms of the sequence, but the sequence tails
remain the same.) We conclude that the thickness does not change:

Observation 3. In general, the order of the sequence of gaps matters (i.e., if we consider the
sequence of gaps in an order that is not by non-increasing length, we may obtain a different result).

Observation 4. The definition of thickness is invariant under homothetic functions, where τ(aC +
b) = τ(C) for any a 6= 0 because homothetic functions preserve the proportions. However,
in general, the thickness is not invariant under smooth diffeomorphisms.
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Example 1 (Thickness of the central Cantor sets). Given ε ∈ (0, 1), let Mε be the middle ε
Cantor set, which is obtained by starting with the interval [0, 1] and then iterating the process of
removing from each interval in the construction the middle open interval of a relative length ε (see
Figure 3).

Figure 3. The middle ε Cantor set.

Every time we remove a gap Gn to obtain the step m of the construction, we have

min{|Ln|, |Rn|}
|Gn|

=
λm

λm−1ε
=

λ

ε
=

1− ε

2ε
.

Then, we have

τ(Mε) := inf
n

min{|Ln|, |Rn|}
|Gn|

=
1− ε

2ε
.

2. The Gap Lemma
2.1. Why Thickness and the Gap Lemma?

Newhouse’s motivation for defining thickness was the Gap Lemma, giving conditions
for two compact sets in the real line to intersect. To motivate the definition of thickness and
the assumptions of the Gap Lemma, we start by looking at the most basic non-trivial case:
two sets where each of them is formed by a union of two closed disjoint intervals.

If the compact sets are disjoint, then we have the following possible cases:

• Their convex hulls are disjoint:

• One of the sets is contained in a gap of the other set:

• The sets are “interleaved”, as shown below:

Let us study the first interleaved case:
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We have |L2| < |G1| and |R1| < |G2|. Hence, |L
2||R1|
|G1||G2| < 1, and therefore

τ(C)τ(C′) :=
min{|L1|, |R1|}

|G1|
min{|L2|, |R2|}

|G2| < 1.

The same happens with the other interleaved case. Therefore, in this simple case, we
obtian the following:

Lemma 2 (Baby Gap Lemma). Let C and C′ be the disjoint unions of two compact inter-
vals. If their convex hulls intersect, then each set is not contained in a gap of the other one,
and τ(C)τ(C′) ≥ 1. Then, C ∩ C′ 6= ∅.

2.2. The Gap Lemma

Newhouse’s Gap Lemma (See, for example, ([1], Lemma 3.5 for a first version of it
or, in general, ([2], Lemma 4. See also ([13], page 63.) is a natural generalization of Lemma 2
but now considers the general compact sets in the line. We denote the convex hull of a set
C with conv(C):

Theorem 1 (Newhouse’s Gap Lemma). Let C1 and C2 be two compact sets in the real line
such that the following are true:

1. conv(C1) ∩ conv(C2) 6= ∅;
2. Neither set lies in a gap of the other compact set;
3. τ(C1)τ(C2) ≥ 1.

Then, we have
C1 ∩ C2 6= ∅.

Note that if we decide to consider the unbounded path’s connected components of the
complement of the compact set as “gaps”, then the second hypothesis would imply the
first one. However, in this survey, we do not consider them as gaps, since their lengths do
not appear in the denominator of the definition of thickness:

Observation 5 (Sharpness of Theorem 1). Given two positive numbers τ1 and τ2 such that
τ1τ2 < 1, we can construct compact sets C1, C2 with thicknesses τ1, τ2, respectively, that are not
contained in a gap of the other one, and their intersection is empty: Then, take

C1 := [0, 1] ∪ [1 + τ−1
1 , 2 + τ−1

1 ]

which is a compact set with a thickness τ1. Since, by the hypothesis, τ−1
1 > τ2 > 0, there is an

ε ∈ (0, τ−1
1
2 ) such that τ−1−2ε

1+2ε = τ2. Define

C2 = [−τ−1
1 + ε,−ε] ∪ [1 + ε, 1 + τ−1

1 − ε]

which is a compact set with a thickness τ2. It is easy to see that C1 ∩ C2 = ∅, their convex hulls
intersect, and none of them are contained in a gap of the other one.

In order to prove the Gap Lemma, we need to introduce two definitions:

Definition 1. We say that two open intervals are linked if each of them contains exactly one
endpoint of the other (see Figure 4).
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Figure 4. Linked intervals.

Definition 2. Let C be a compact set in the real line with a sequence of gaps (Gn)n ordered by
non-increasing length. Let v be an endpoint of Gn. We define the bridge B(v) associated with v to
be Ln or Rn, depending on whether v is the leftmost or rightmost point of Gn.

Proof of Theorem 1. We are going to prove the Gap Lemma by contradiction. Let C1 and
C2 be compact sets satisfying the assumptions of the Gap Lemma, and assume C1 ∩C2 = ∅.
Let (G1

m)m and (G2
n)n the sequences of gaps of the compact sets C1 and C2, respectively,

ordered by non-increasing length.
It is enough to construct a sequence of pairs (G1

mi
, G2

ni
)i of the linked gaps of C1 and

C2 (where we advance in n and m that ni < ni+1 and mi < mi+1). Then, by taking xi and
yi to be the leftmost points of G1

mi
and G2

ni
, respectively, we find that xi ∈ C1 and yi ∈ C2.

By passing to subsequences, if necessary, we may assume that xi → x, yi → y. When
observing that

dist(x, y) = lim
i→∞

dist(xi, yi) ≤ lim
i→∞

diam(G1
mi
∪ G2

ni
)

≤ lim
i→∞

diam(G1
mi
) + diam(G2

ni
) = 0,

we then find that x = y ∈ C1 ∩ C2, which is a contradiction.
We will construct the sequence of pairs of linked gaps by induction. To begin, ob-

serve the following:

• Any endpoint of the convex hull of Ci or a gap of Ci belongs to Ci.
• If a point belongs to conv(Ci) but does not belong to Ci, then it is in a gap Gi

m.
• If a point belongs to Ci, then (by the assumption C1 ∩ C2 = ∅) the point is either

outside of conv(Cj) (j := 3− i) or in a gap Gj
n.

In order to be able to handle the inductive step, we will prove a slightly stronger
statement: there is a sequence of pairs of gaps G1

mi
and G2

ni
that are linked such that there is

an endpoint of one, and thus its bridge is contained in the other gap.
First step. By the first assumption (Equation (1)) and symmetry, we may assume that

there is an endpoint of conv(C2) that belongs to conv(C1), and thus it is in C2 ∩ conv(C1).
However, since C1 ∩ C2 = ∅, then it belongs to G1

m1
∩ C2 for some gap G1

m1
. Thus, we have

G1
m1
∩ C2 6= ∅. (1)

Since the endpoints of G1
m1

belong to C1, each of them must be either outside of
conv(C2) or in a gap of C2. Since, by construction, G1

m1
contains an endpoint of conv(C2),

one of them is outside conv(C2). The other one must belong to conv(C2) (and therefore to
a gap of C2), because otherwise, C2 ⊆ G1

m1
, contradicting the assumption in Equation (2).

We have seen that there is an endpoint of G1
m1

in a gap G2
n1

, and there is an end-
point of G1

m1
outside conv(C2). This implies that there is an endpoint v2

n1
of G2

n1
such

that B(v2
n1
) ⊆ G1

m1
(in particular, G1

m1
and G2

n1
are linked). This is the starting point of

the induction.
The inductive step. Assume that G1

mi
and G2

ni
are linked gaps, where B(v2

ni
) ⊆ G1

mi

and v2
ni

is an endpoint of G2
ni

(the symmetric condition is identical). Let u1
mi

be the endpoint
of G1

mi
that is in G2

ni
.
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Let us see that B(u1
mi
) cannot be contained in G2

ni
. Otherwise, since B(u1

mi
) ⊆ G2

ni
and

B(v2
ni
) ⊆ G1

mi
, we would have

τ(C1)τ(C2) ≤
|B(u1

mi
)|

|G1
mi
|
|B(v2

ni
)|

|G2
ni
| < 1,

which contradicts the thickness assumption in Equation (3).
Then, the other endpoint u2

ni
of G2

ni
belongs to B(u1

mi
), and thus u2

ni
∈ C2 ∩ B(u1

mi
) ⊆

(C1)C ∩ B(u1
mi
). Therefore, u2

ni
∈ G1

mi+1
with mi+1 > mi.

Then, by taking G2
ni+1

:= G2
ni

and G1
mi+1

as above, we find linked gaps with a bridge of
an endpoint of G1

mi+1
contained in G2

ni
(because the bridge is contained between G1

mi
and

G1
mi+1

).

3. Connection to the Hausdorff Dimension

Thickness is a notion of the size of a set. The Hausdorff dimension is another more
classical notion of size. They are different but related. In this section, we explore the
connections between these concepts.

We begin by recalling the definition of the Hausdorff dimension (for a more complete
background on the Hausdorff dimension, see [14–16]):

Definition 3. The s-dimensional Hausdorff content of E is

Hs
∞(E) := inf

{
∑

k∈N
diam(Uk)

s : E ⊆
⋃

k∈N
Uk and {Uk}k is a family of open sets

}
.

The Hausdorff dimension of E is the supremum of all real-valued s, for which the s-
dimensional Hausdorff content of E is positive (see Figure 5).

Figure 5. Hausdorff dimension.

The following result shows that sets of large thicknesses also have large
Hausdorff dimensions:

Theorem 2. By letting C ⊂ R be a compact set with a thickness τ(C) > 0, then

dimH(C) ≥
log(2)

log(2 + 1
τ(C) )

.

In particular, dimH(C)→ 1 as τ(C)→ ∞.

Observation 6 (Sharpness of Theorem 2). Given τ ∈ (0, ∞), we can take C := Mε ⊆ R to be
the middle Cantor set with a relative gap length ε := ε(τ) := 1

2τ+1 . Then, the relative length of
each child in its parent is α := τ

1+2τ . Through Example 1, we have τ(C) = 1−ε
2ε = τ, and through

[16] (Example 4.4) (taking m = 2), we have dimH(C) =
log(2)

log(α−1)
=

log(2)
log(2+ 1

τ )
.
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Observation 7. Theorem 2 shows that sets with large thicknesses have large Hausdorff dimensions.
The converse does not hold. In fact, there are sets of positive Lebesgue measures (which imply full
Hausdorff dimensions) with thicknesses of 0. Consider, for example, the union of a closed interval
with an isolated point.

Proof of Theorem 2. We define

β :=
log(2)

log(2 + 1
τ(C) )

.

This is enough to prove that for any U := {Ui}i open covering of C, we have ∑i |Ui|β ≥
| conv(C)|β > 0.

Fix U := {Ui}i to an open covering of C. Since C ⊆ R is a compact set, and the sum
decreases while dropping elements of the sequence of U , we can assume that the covering
U is formed by finitely many elements.

The case in which U is formed by an interval U is trivial (because conv(C) ⊆ U
implies | conv(C)|β ≤ |U|β). Let us assume that we have at least two open intervals in U
and reduce inductively this case to the former case.

As before, we define (Gn)n as the sequence of gaps in the definition of τ(C), and Ln
and Rn are the left and right intervals associated with Gn, respectively.

Since U is a covering of C with finitely many open sets, then the convex hull of C,
except for a few gaps, is covered by U (i.e., there exist N ∈ N and gaps Gm1 , · · · , GmN with
|Gm1 | ≥ · · · ≥ |GmN |), where

conv(C) \
⋃

1≤j≤N
Gmj ⊆

⋃
i

Ui and Gmj *
⋃

i
Ui.

We have LmN and RmN as the left and right intervals associated with GmN , respectively,
which is the smallest gap that is not covered. Then, there exist U(L) and U(R) in U such
that LmN ⊆ U(L) and RmN ⊆ U(R).

We define A := conv(U(L) ∪U(R)). By using LmN ⊆ U(L), the definition of τ(C)
and the definition of A, we obtain

|U(L)| ≥ |LmN | ≥ τ|GmN | ≥ τ(|A| − |U(L)| − |U(R)|). (2)

Analogously, by using that RmN ⊆ U(R), the definition of τ(C) and the definition of
A, we obtain

|U(R)| ≥ |RmN | ≥ τ|GmN | ≥ τ(|A| − |U(L)| − |U(R)|). (3)

We define x := |U(L)|
|A| and y := |U(R)|

|A| . The proportions x and y satisfy the following:

• x ≥ 0 and y ≥ 0;
• x + y ≤ 1 (because U(L) ∪· U(R) ⊆ A);
• τ(1 − x − y) ≤ x and, symmetrically, τ(1 − x − y) ≤ y (because of Equations (2)

and (3)).

Based on this, we define the region R by

R := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x + y ≤ 1, x ≥ τ(1− (x + y)), y ≥ τ(1− (x + y))}.

The intersection of the lines x = τ(1− (x + y)) and y = τ(1− (x + y)) is the point

P =

(
1

2+ 1
τ

, 1
2+ 1

τ

)
(see Figure 6).



Math. Comput. Appl. 2022, 27, 111 8 of 22

Figure 6. The region R.

Claim:
1 = min{xβ + yβ : (x, y) ∈ R}.

This is a standard calculation, but we provide the details. Let g(x, y) := xβ + yβ.
Observe that since g is increasing in x and y, the minimum is reached on the red sides of the
boundary of R in Figure 6. By symmetry, it is enough to study just one red side. We want
to find the minimum of g under the condition y = 1− (1 + 1

τ )x with 0 ≤ x ≤ 1
2+ 1

τ

. This is

the minimum of h(x) = xβ +
(

1− (1 + 1
τ )x
)β

with 0 ≤ x ≤ 1
2+ 1

τ

. A calculation shows that

the only critical point of h′ is a maximum, so the minimum is attained at some endpoint.

We have h(0) = 1 and h
(

1
2+ 1

τ

)
= 2

(
1

2+ 1
τ

)β

= 1 (where the last equality holds by

definition of β := log(2)
log(2+ 1

τ(C) )
). This gives the claim.

By applying the claim to x := |U(L)|
|A| and y := |U(R)|

|A| , we find

|U(L)|β + |U(R)|β ≥ |A|β.

This means that changing U(L) and U(R) by A in the covering U gives a new covering
U ′ with one less element by the disjoint open sets, with a smaller sum ∑i |U′i |β. By repeating
this process, we find that ∑i |Ui|β ≥ ∑i |U′i |β ≥ · · · ≥ | conv(C)|β.

Observation 8. Intuitively, the thickness looks at the smallest part of the set, while the Haus-
dorff dimension looks at the largest part (for example, if C =

⋃
k∈N Ck, then dimH(C) =

supk∈N dimH(Ck)). Therefore, it is reasonable to apply Theorem 2 to compact subsets of C. More
precisely, we can define the upper thickness of a set C as τ̃(C) := supA compact ⊆C τ(A). Then, of
course, Theorem 2 gives the same bound, replacing τ(C) by τ̃(C).

As a simple instance of this, if a set has isolated points, then the thickness is zero, while the
upper thickness “gets rid” of them and can take any value.

The upper thickness in usually larger than the thickness, but in some cases, they may be equal.
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4. Thickness and Patterns in Fractals

In this section, we investigate the connection between the thickness and patterns in
sparse sets:

Definition 4. We say that a set C ⊆ Rd contains a homothetic copy of P if there exist a ∈ R \ {0}
and b ∈ Rd such that aP + b ⊆ C.

For example, an arithmetic progression of a length N in the real line is a homothetic
copy of {1, · · · , N}.

The following result is well known:

Lemma 3. Any set C ⊆ Rd of positive Lebesgue measures contains homothetic copies of every
finite set.

Proof. Let P = {a1, · · · , aN} be a finite set and R := max1≤i≤N ‖ai‖.
We know by the Lebesgue Density Theorem that almost every point x ∈ C satisfies

lim
r→0

Ld(C ∩Qr(x))
Ld(Qr)

= 1

where Qr(x) is the cube with a center x and radius r. We fix a value of x satisfying this.

Then, there exists r0 such that
Ld(C∩Qr0 (x))
Ld(Qr0 )

> 1− 1
10N .

By rescaling and translating the set C and the cube Qr0(x), we can assume Qr0(x) =
[0, 1]d. Then, we know that Ld(C ∩ [0, 1]d) > 1− 1

10N .
This is enough to prove that

Ld

( ⋂
1≤i≤N

(C− ai
10RdN

)

)
> 0.

Then, in particular,
⋂

1≤i≤N(C−
ai

10RdN ) is non-empty, and any point y in the intersec-
tion satisfies

y + (10RdN)−1P ⊂ C.

Note that if B ⊆ [0, 1]d and ‖v‖2 ≤ r, then Ld
(
(B− v) ∩ [0, 1]d

)
≥ Ld(B)− dr. By

applying this to B := C ∩ [0, 1]d and vi := ai
10RdN whose norm is smaller than r := 1

10dN ,
we obtain

Ld
(
(C ∩ [0, 1]d − ai

10RdN
) ∩ [0, 1]d

)
≥ Ld(C ∩ [0, 1]d)− 1

10N

≥ 1− 2
10N

.

If A1, · · · , AN ⊆ [0, 1]d satisfy Ld(Ai) ≥ 1− εi for all i, then

Ld

( ⋂
1≤i≤N

Ai

)
≥ 1− ∑

1≤i≤N
εi.

We apply this to Ai := (C ∩ [0, 1]d − ai
10RdN ) ∩ [0, 1]d and εi =

2
10N to obtain

Ld

( ⋂
1≤i≤N

(C− ai
10RdN

)

)
≥ Ld

( ⋂
1≤i≤N

Ai

)

≥ 1− ∑
1≤i≤N

2
10N

= 1− 1
5
> 0.
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Since a positive Lebesgue measure guarantees homothetic copies of every finite set, it
is natural to ask whether a weaker notion of size guarantees copies too. A natural notion
of size to consider is the Hausdorff dimension. However, Keleti [17] proved that there
exists a compact set C ⊆ R, with a full Hausdorff dimension one, which does not contain
any arithmetic progression of a length of three. Afterward, Keleti [18] improved this by
constructing full Hausdorff dimensional compact sets in the real line, avoiding homothetic
copies of triplets in any given countable collection. Maga [19] generalized this result to the
complex plane. Máthé [20] constructed large Hausdorff dimensional compact sets avoiding
polynomial patterns. In particular, he generalized Keleti’s result to a countable amount of
many linear patterns. Finally, Yavicoli [21] studied what happens “in between” a positive
Lebesgue measure and Hausdorff dimension one by considering a more general notion of
Hausdorff measures.

These facts indicate that Hausdorff measures and Hausdorff dimensions cannot
by themselves detect the presence or absence of patterns in sets of a Lebesgue measure of
zero, even in the most basic case of arithmetic progressions. Thus, it is natural to seek a
different notion of size that is able to detect patterns in sets of zero Lebesgue measures.

One of the ideas behind Keleti’s construction is avoiding the given proportion every-
where at some scales of the construction (see Figure 7). This picture happens on a “zero
density” set of scales. Thus, the Hausdorff dimension can still be large (at “almost all”
scales, the set is large). The notion of thickness is useful to avoid such examples. Even one
scale that looks like the one in Figure 7 makes the thickness small.

Figure 7. One step in Keleti’s construction of a compact set that avoids progressions.

Before studying the patterns in arelationship with thick sets, let us mention that
the Hausdorff dimension can be useful to detect some nonlinear patterns (see [22]) or to
detect the arithmetic progressions of a length of three, assuming additional Fourier decay
hypotheses, which are often not explicit or hard to check (see [23–25]). This suggests that it
is natural to try to find explicit checkable conditions on a compact set that ensure that it
contains arithmetic progressions, as well as other patterns.

Before studying arithmetic progressions, let us consider a different pattern—distances—
using Newhouse’s thickness and the Gap Lemma. We define the set of distances of a set
C ⊆ R as

∆(C) := {|y− x| : x, y ∈ C}.

Lemma 4. Let C ⊆ R be a compact set with conv(C) = [0, 1] and τ(C) ≥ 1. Then, ∆(C) =
[0, 1].

Proof. We know that ∆(C) ⊆ [0, 1], 0 ∈ ∆(C) because C 6= ∅ and 1 ∈ ∆(C) because
0, 1 ∈ C. It remains to be seen whether any t ∈ (0, 1) belongs to ∆(C).

The sets C and C− t satisfy the hypotheses of the Gap Lemma. Since conv(C) = [0, 1]
and conv(C− t) = [−t, 1− t], the convex hulls of C and C− t intersect, and each set cannot
be contained in a gap of the other set. Finally, using τ(C) ≥ 1 and the invariance of the
thickness under translation, we obtain τ(C)τ(C − t) = τ(C)2 ≥ 1. By the Gap Lemma,
there is x ∈ C ∩ (C − t), and thus t = (x + t)− x ∈ C − C (which means that t ∈ ∆(C)
because t > 0).
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Now, we are going to see that, unlike the Hausdorff dimension, the set of large
thicknesses contains three-term progressions:

Proposition 1. Let C ⊆ R be a compact set with τ(C) ≥ 1. Then, C contains an arithmetic
progression of a length of three.

Proof. Since the thickness of the compact set and arithmetic progression are invariant
under homothetic functions, we can assume that conv(C) = [0, 1].

This is the idea: if we prove that C ∩ C+C
2 6= ∅, then there are a, b, c ∈ C such that

c = a+b
2 . Then, {a, a+b

2 , b} ⊆ C. The problem is that a priori, we could have a = b. To avoid
this issue we, are going to consider two disjoint subsets of C (A and B below) and prove
that C ∩ A+B

2 6= ∅.
Let G := (a1, a2) be the longest gap of C. Since τ(C) > 0, then 0 < a1 < a2 < 1. The

set [0, 1] \ G consists of two intervals: L = [0, a1] and R = [a2, 1]. We can assume that

a1 ≤ 1− a2,

Otherwise, we would work with −C + 2 instead.
Let A := C ∩ [0, a1] and B := C ∩ [a2, 1]. Since we want to show that C ∩ A+B

2 6= ∅,
we want to understand A + B.

Claim: A + B = [a2, 1 + a1]
Clearly, A+ B ⊆ [0, a1] + [a2, 1] = [a2, 1+ a1], and so we need to see the other inclusion.

We have that
| conv(−A)| = | conv(A)| = a1

and
τ(−A) = τ(A) = τ(C ∩ [0, a1]) ≥ τ(C) ≥ 1.

Observe that τ(C ∩ [0, a1]) ≥ τ(C) holds because G1 is the largest gap (otherwise,
this may not be true since, in general, the thickness is not well behaved with respect
to intersections).

Analogously with B− t, we have

| conv(B− t)| = 1− a2 and τ(B− t) ≥ 1.

We are going to apply the Gap Lemma to −A and B− t for any t ∈ [a2, 1 + a1]. Let us
see whether the assumptions are satisfied.

Note that

conv(−A) ∩ conv(B− t) 6= ∅

⇔ ∃ an endpoint of − A between the endpoints of B− t

⇔ −a1 ∈ [a2 − t, 1− t] or 0 ∈ [a2 − t, 1− t]

⇔ t ∈ [a1 + a2, 1 + a1] or t ∈ [a2, 1]

⇔ t ∈ [a2, 1 + a1],

where the last equivalence holds, since we assume a1 + a2 ≤ 1.
Then, we have the following:

• −A is not contained in a gap of B− t. This is true because, since τ(C) ≥ 1, | conv(−A)|
≥ |G| ≥ |any gap of B− t|. Analogously, B− t is not contained in a gap of A.

• conv(−A) ∩ conv(B− t) 6= ∅, since we are considering values of t ∈ [a2, 1 + a1].
• τ(−A)τ(B− t) ≥ 1.

Then, the Gap Lemma yields that for all t ∈ [a2, 1 + a1], there is xt ∈ (−A) ∩ (B− t),
and then t = (−xt) + (xt + t) ∈ A + B, giving the claim.

Claim: C ∩ A+B
2 6= ∅

We are going to prove that, in fact, a2 ∈ A+B
2 (note that a2 ∈ C).
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Since A + B = [a2, 1 + a1], we know that

a2 ∈
A + B

2
⇔ a2 ≤

1 + a1

2
.

Where are the pairs (a1, a2) that we are working with?

• We have a1 = | conv(A)| ≥ |G| = a2 − a1 such that 2a1 ≥ a2.
• We are assuming that a1 ≤ 1− a2.
• 0 < a1 < a2 < 1.

As we can see in Figure 8, the blue region of pairs (a1, a2) is contained in the yellow
region {a2 ≤ 1+a1

2 }. In particular, we must have a2 ≤ 1+a1
2 so that a2 ∈ A+B

2 , as claimed.

Figure 8. The region of possible pairs (a1, a2).

We have seen that C contains an arithmetic progression {a, (a+ b)/2, b}. This is indeed
a non-degenerate progression since a ∈ A, b ∈ B and A and B are disjoint, so the proof is
complete.

What about longer arithmetic progressions? For example, what is the length of the
longest arithmetic progression that is contained in the middle ε Cantor set?

Lemma 5. The middle ε Cantor set Mε does not contain an arithmetic progression of a length
b 1

ε c+ 2.

Proof. Take λ := 1−ε
2 . The length of any interval of step k of the construction is λk

(for k ≥ 0), and the length of any gap of the step k of the construction is λk−1ε (for
k ≥ 1). Assume that there is an arithmetic progression a + ∆j, j = 1, . . . , N (with ∆ > 0)
contained in Mε. Then, by self-similarity, there is a first step k ∈ N ∪ {0} such that the
arithmetic progression is contained in an interval of step k but splits in step k + 1. Hence,
|(a + ∆N)− (a + ∆)| = ∆(N− 1) ≤ λk and ∆ ≥ λkε. Therefore, λk ≥ λkε(N− 1), and thus
1
ε + 1 ≥ N.

Finding the lower bounds for the length of the longest arithmetic progression in Mε is
more difficult. Broderick, Fishman and Simmons [26] proved the following result:

Theorem 3 (Broderick, Fishman and Simmons). For when ε > 0 sufficiently small, the Mε

middle ε Cantor set contains an arithmethic progression of a length c
1
ε

log( 1
ε )

, where c is a very

small constant.
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By the two previous results, we know that for ε > 0 to be sufficiently small, then

1
ε

log( 1
ε )

. longest AP contained in Mε .
1
ε

.

The precise asymptotic behavior remains an open problem.
We will not give a proof of Theorem 3. The very rough idea behind the proof is

as follows:

C contains an arithmetic progression of length n and gap length λ

⇔ there is x so that x + kλ ∈ C ∀1 ≤ k ≤ n

⇔
⋂

1≤k≤n

(C− kλ) 6= ∅

Then, the existence of arithmetic progressions of a length n is reduced to proving
that intersections of certain n sets are non-empty. Unfortunately, the Gap Lemma does not
generalize in any simple way to intersections of three or more sets, and for this reason, the
authors use a different approach: the potential game, which is a game of the Schmidt type.

The classical Schmidt game was defined in 1966 by Wolfgang Schmidt to study badly
approximable numbers, and since then, many variants of the original game have been
developed, mainly to study problems in diophantine approximation.

As a general idea, the potential game is a game in which there are certain rules and two
players: Bob, who decides where we are going to zoom in, and Alice, who decides what
to erase there. Bob has limits on how far to zoom in, and Alice has limits on how much
to erase. There are also special sets called winning sets, which are subsets of the “board
game”. A set W is winning if Alice has a strategy guaranteeing that if she does not erase
the limit point of convergence for Bob’s moves during the game, then that point belongs
to W. Being a winning set (for certain parameters) can be considered another notion of a
“large size” for the set.

Broderick, Fishman and Simmons showed that a slight modification of a middle ε
Cantor set is a winning set with certain parameters. Then, they used the intersections of the
winning sets (for certain other parameters) and found a result that gave a (positive) lower
bound for the Hausdorff dimension of a winning set inside certain balls. In particular,
the intersection was non-empty.

As a remark, winning sets for the classical Schmidt’s game and many variants have a
full Hausdorff dimension. This is not the case for the potential game (with fixed parameters).
This makes it useful for studying fractal sets that do not have a full Hausdorff dimension.

We will define now the potential game in a restricted context (on the real line, where
Alice is able to erase neighborhoods of points and the game can be extended to higher
dimensions and more general sets).

Definition 5 (Potential game in R). Given α, β, ρ > 0 and c ≥ 0, Alice and Bob play the
(α, β, c, ρ) potential game in Rd under the following rules:

• For each m ∈ N0, Bob plays first, and then Alice plays.
• On the mth turn, Bob plays a closed ball Bm := B[xm, ρm]. The first ball must satisfy ρ0 ≥ ρ.

The following moves must satisfy ρm ≥ βρm−1 and Bm ⊆ Bm−1 for every m ∈ N.
• On the mth turn, Alice responds by choosing and erasing a finite or countably infinite collection

Am = {Aρi,m}i of balls with radii ρi,m > 0. Alice’s collection must satisfy the following:

∑
i

ρc
i,m ≤ (αρm)

c if c > 0

ρ1,m ≤ αρm if c = 0 (in this case, Alice can erase just one set).

• Alice is not allowed to erase any set or, equivalently, to pass her turn.
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• Bob must ensure that limm→∞ ρm = 0.

There exists a single point
{x∞} =

⋂
m∈N0

Bm

called the outcome of the game.
We say a set S ⊂ Rd is an (α, β, c, ρ)-winning set if Alice has a strategy guaranteeing that

if x∞ /∈
⋃

m∈N0

⋃
i

Aρi,m then x∞ ∈ S.

The potential game has several elementary but very useful properties:

Lemma 6 (Countable intersection property). Let J be a countable index set, and for each j ∈ J,
let Sj be an (αj, β, c, ρ)-winning set, where c > 0.

Then, the set S :=
⋂

j∈J Sj is (α, β, c, ρ)-winning, where αc = ∑j∈J αc
j (assuming that the

series converges).

To see this, it is enough to consider the following strategy for Alice: in the turn m, she
plays the union over j of all the strategies of turn m. For each j, we know that for each turn
m, we have ∑i ρi,m(j)c ≤ (αjρm)c. Now, we can see that playing all the strategies together
is legal. In turn m, we have

∑
j

∑
i

ρi,m(j)c ≤∑
j
(αjρm)

c = (∑
j

αc
j )ρ

c
m = αcρc

m.

Lemma 7 (Monotonicity). If S is (α, β, c, ρ)-winning and α̃ ≥ α, β̃ ≥ β, c̃ ≥ c and ρ̃ ≥ ρ, then
S is (α̃, β̃, c̃, ρ̃)-winning.

Indeed, one can check that Alice can answer in the (α̃, β̃, c̃, ρ̃) game using her strategy
from the (α, β, c, ρ) game:

Lemma 8 (Invariance under similarities). Let f : Rd → Rd be a similarity with a contraction
ratio λ. Then, a set S is (α, β, c, ρ)-winning if and only if the set f (S) is (α, β, c, λρ)-winning.

This follows by mapping Alice’s strategy with f .
In [10], we established a new connection between Schmidt’s games and thickness in the

real line and generalized the result with the findings of Broderick, Fishman and Simmons:

Theorem 4. Let C ⊂ R be a compact set. Then, C contains a homothetic copy of every set P with
at most

N(τ) :=
⌊

log(4)
4e(720)2

τ

log(τ)

⌋
elements. Moreover, for each such set P, the compact set C contains λP + x for some λ > 0 and a
set of x positive Hausdorff dimensions.

Note that this result gives non-trivial information only when N(τ) ≥ 3, which requires
the thickness to be larger than some large absolute constant. The main usefulness of
the theorem is for large values of N(τ). Theorem 4 generalizes the results of Broderick,
Fishman and Simmons, since Mε is a compact set with a thickness ∼ 1/ε and the arithmetic
progression is a homothetic copy of {1, . . . , N}.
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Let us see the main ideas behind the proof of Theorem 4. Given a finite set P :=
{p1, · · · , pn}, we have the following:

C contains a homothetic copy of P

⇔ ∃λ 6= 0, there is x so that x + λpk ∈ C ∀1 ≤ k ≤ n

⇔ ∃λ 6= 0 so that
⋂

1≤k≤n

(C− λpk) 6= ∅.

Then, to guarantee a pattern of a size n, we need to check that a certain intersection of
n sets is non-empty (in fact, the proof shows that the intersection has a positive Hausdorff
dimension count). We know from Lemma 6 that winning sets have certain stability under
intersections. It is not obvious that winning sets intersect a given interval, but Broderick,
Fishman and Simmons ([26], Theorem 5.5) proved that, depending on the parameters,
the intersection of a winning set with an interval is not only nonempty but has a positive
Hausdorff dimension count. While [26] (Theorem 5.5) involves some non-explicit constants,
in the context relevant to Theorem 4, this result was made completely explicit in [10]
(Theorem 19).

What remains to prove Theorem 4 is the link between thick sets and winning sets. This
is provided by the following result:

Proposition 2. Let C be a compact set with conv(C) = [0, 1] and τ := τ(C) > 0. Then,
S := (−∞, 0) ∪ C ∪ (1,+∞) is

(
1

τβ , β, 0, β
2

)
-winning for all β ∈ (0, 1).

Proof. In order to prove that a set S is winning, we have to see that Alice is able to erase
the complement of S where Bob is zooming in.

If Bob plays B, how does Alice respond? Let (Gn)n be the sequence of complementary
open gaps of S, ordered by non-increasing length.

Alice’s strategy: If there exists n ∈ N such that B intersects Gn and |B| ≤ min{|Ln|, |Rn|},
then Alice erases Gn if it is a legal movement. In any other case (if B does not intersect any
gap of S or if |B| > min{|Ln|, |Rn|}), Alice does not erase anything.

To show that this strategy is winning, suppose that Alice does not erase x∞ during the
game. We want to see that x∞ ∈ S. Let us make a counter-assumption that x∞ /∈ S. Then,
there exists n such that x∞ ∈ Gn. We will show that Alice erases Gn at some stage of the
game (which is a contradiction). By definition, x∞ ∈ Bm for all m ∈ N0, and we assumed
x∞ ∈ Gn. Thus, we have

x∞ ∈ Bm ∩ Gn for all m ∈ N0.

Since τ > 0, we have that min{|Ln|, |Rn|} > 0, and we also know that limm→∞ |Bm| =
0. Thus, we take mn to be the smallest integer such that

min{|Ln|, |Rn|} ≥ |Bmn |,

Therefore, we know that

Bmn ∩ Gn 6= ∅ and then Bmn ∩ Gk = ∅ ∀1 ≤ k < n.

Then, |Bmn | ≥ β min{|Ln|, |Rn|}. Indeed, we find the following:

If mn = 0, then |B0| = 2ρ0 ≥ 2ρ = β ≥ β min{|Ln|, |Rn|}.

If mn > 0, then |Bmn | ≥ β|Bmn−1| > β min{|Ln|, |Rn|}.
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Recall that we proved that Bmn ∩ Gn 6= ∅ and Bmn ∩ Gk = ∅ ∀1 ≤ k < n, while
β min{|Ln|, |Rn|} ≤ |Bmn | ≤ min{|Ln|, |Rn|}. Hence, we have

|Gn| ≤
1
τ

min{|Ln|, |Rn|} ≤
1

τβ
|Bmn | = α|Bmn |.

Since Gn is the first gap intersecting Bmn , the gap Gn is uniquely defined (there are not
two gaps that Alice should erase in the same turn). In conclusion, it is legal for Alice to
erase Gn in the mnth turn, and her strategy specifies that she does so.

For a sketch of proof of Theorem 4, we can assume without loss of generality that
conv(C) = [0, 1] and also that the pattern with n elements is {b1, · · · , bn} ⊆ [0, 1

8 ]. We
define

Si := (−∞,−bi) ∪ (C− bi) ∪ (1− bi,+∞).

Using Propositions 2, 6, 7 and 8, we find that S :=
⋂

1≤i≤n Si is
(

n
1
c

τβ , β, c, β
2

)
-winning

for all β ∈ (0, 1) and all c > 0. We define α := 1
τβ and take β := 1

4 , c := 1− 1
log(α−1)

and B := [ 3
8 , 5

8 ], which is an interval of a length 1
8 = β

2 =: ρ. Then, by applying [10]

(Theorem 19) (which is a very technical result from where we obtain the constant log(4)
4e(720)2 ),

one finds the following condition:

dimH(S ∩ B) > 0

if
nαc ≤ 1

7202 (1− β1−c).

Therefore, to guarantee the presence of a homothetic copy of a set of a size n, it is
sufficient that n satisfies the hypothesis of the theorem.

For those values of n, we have seen dimH(S ∩ B) > 0. For each x ∈ S ∩ B, using
0 ≤ bi ≤ 1

8 , we have

x + bi ∈ (B + bi) ∩ (S + bi) ⊂
[

3
8

,
6
8

]
∩ ((−∞, 0) ∪ C ∪ (1,+∞)).

Since [ 3
8 , 6

8 ] is disjoint from (−∞, 0) and (1,+∞), we have that x + bi ∈ C.
Thus, x + {b1, · · · , bn} is a translated copy of the given finite set, which is contained

in C.

5. Extensions of Thickness to Higher Dimensions

The definition of thickness and the proof of the Gap Lemma strongly use the order
structure of the real lines. It has been an open problem to find a satisfactory extension to
higher dimensions. Some of the existing attempts include the following:

• S. Biebler [27] defined a notion of thickness that applies to dynamically defined sets in
the complex plane.

• De-Jun Feng and Y. Wu [28] defined another notion of thickness that is useful for
studying arithmetic sums (they did not, however, study the Gap Lemma).

In the rest of the article, we describe two more recent notions developed in [5,11].

5.1. Thickness in Rd (Useful for the Cut-out Set Type)

With Kenneth Falconer [5], we gave a different definition of thickness in Rd that is
useful for sets of the cut-out type (see Figure 9 for an example).

Let E ⊂ Rd be an open path-connected set whose complement is a non-empty compact
set, and let (Gn)n be a sequence of disjoint path-connected open sets contained in EC. In the
special case d = 1, the set E is formed by the union of two disjoint open unbounded sets
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(this is the only case in which E is not a path-connected set). We say that E is the external
component and (Gn)n is the sequence of gaps associated with the cut-out type of set

C := EC \
⋃
n

Gn.

We can consider the sequence of gaps ordered by non-increasing diameter.

Figure 9. Step 4 of construction of a cut-out type of set.

We define

τ(C) := inf
n∈N

dist(Gn,
⋃

1≤i≤n−1 Gi ∪ E)
diam(Gn)

.

provided that there is at least one gap Gn. In case there are no gaps, we define

τ(C) :=


+∞ if C◦ 6= ∅

0 if C◦ = ∅
(4)

This definition has certain advantages: it can take any value in [0, ∞], it is invariant
under homothetic functions, and on the real line, it coincides with the classical one. In [5],
we obtained a first extension to the Gap Lemma to Rd and also studied the intersections
of countably many thick sets. However, there is a significant drawback: sets of positive
thicknesses look like cut-out sets (“poking holes”). In particular, totally disconnected sets,
which are of special interest in dynamical systems and fractal geometry, have a thickness of
zero, and so this notion is not suitable for studying them.

5.2. Thickness in Rd (Useful in General, Even for Totally Disconnected Sets)

In [11], we were able to give a definition of thickness that is also useful for many totally
disconnected sets and proved a higher-dimensional Gap Lemma, among other results.

From now on, we will work on Rd equipped with the distance dist∞ coming from the
infinity norm, and all cubes (balls for this distance) will be closed. Recall that dist∞(x, y) :=
‖x − y‖∞ := max1≤i≤d |xi − yi|. In fact, the notion of thickness and the results extend
to any norm, but the infinity norm is the most useful one because cubes can be used to
efficiently pack larger cubes (as opposed to, for example, Euclidean balls).

Given a word I (a finite sequence of natural numbers), we denote the length of I with
`(I) ∈ N0. We say that (SI) is a system of cubes for a compact set C if

C =
⋂

n∈N0

⋃
`(I)=n

SI (Moran construction),

where the following are true:

• Each SI is a cube and contains {SI,j}1≤j≤kI . No assumptions are made on the separa-
tion of the SI,j.
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• Every infinite word i1, i2, · · · of indices is of the construction

lim
n→+∞

rad(Si1,i2,··· ,in) = 0.

Note that any compact set arises from multiple systems of cubes, but for any d ≥ 2,
there is no canonical way to choose a system of cubes for a given set.

Let us fix a system of cubes (SI) for C. The main issue with extending the notion of
thickness to compact sets in Rd is that there is not a suitable notion for a “gap”. We use the
following notion as a substitute for the gap size (see Figure 10):

hI := max
x∈SI

dist∞(x, C).

Hence, hI is characterized by the properties that if z ∈ SI and r ∈ [hI ,+∞), then the
closed cube B(z, r) intersects C, but on the other hand, for every r < hI , there is z ∈ SI such
that B(z, r) ∩ C = ∅.

Figure 10. The radius hI of the blue square is the substitute of the notion of the gap size.

Definition 6 (Thickness of C associated with the system of cubes {SI}I).

τ(C, {SI}I) := inf
n∈N0

inf
`(I)=n

mini rad(SI,i)

hI
.

This definition preserves some of the basic properties of the Newhouse thickness.
Indeed, on the real line, it agrees with Newhouse’s thickness (for the natural system of cubes
arising in Newhouse’s definition). Thickness is invariant under homothetic functions (for
the system of cubes obtained via mapping with the corresponding function). As in the real
line, if a set has a large thickness, then it also has a large Hausdorff dimension, assuming
that each cube has at least M0 ≥ 2 non-overlapping children (a mild and reasonable
assumption that is automatic on R):

dimH(C) ≥
d

1 + log(1+ 1
τ )

log(M0)

.

See [11], Lemma 4 for more information.
Unlike Newhouse’s definition, the above notion of thickness depends on the system

of cubes used to generate C. If the cubes provide a “bad approximation”, then the resulting
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value for τ can be artificial. To understand this, consider the example C := {0} ⊆ R and the
system of cubes that has just one cube in each level: {[− 1

n , 1
n ]}n∈N. Then hn = 1

n , and thus

τ(C, {[−1/n, 1/n}n∈N) = inf
n∈N

1
n+1

1
n

= inf
n∈N

n
n + 1

=
1
2

.

However, intuitively, one expects the thickness of a singleton to be zero.
In order to state the Gap Lemma in Rd, we need an additional condition which says

that the children of any cube in the system are “well spread out”. Part of the motivation for
this definition is to avoid pathological systems of cubes such as the above example:

Definition 7. We say that a system of cubes {SI}I is r-uniformly dense if, for every I and
for every cube B ⊆ SI with rad(B) ≥ r rad(SI), there is a child SI,i ⊆ B.

Let us consider an example. Fix n ≥ 2 and ` ∈ (0, 2
n ). We consider a corner Cantor set

C = C`,n ⊆ (Rd, dist∞), as in Figure 11. Let g = 2−n`
n−1 . One can check that the thickness is

given by τ(C) = `
g = `(n−1)

2−n` , and the set is r := 1
2 (2`+ g) =

(
`+ 2−n`

2(n−1)

)
-uniformly dense.

Figure 11. A corner Cantor set.

Theorem 5 (Higher dimensional Gap Lemma [11]). Let C1 and C2 be two compact sets in
(Rd, dist∞), generated by systems of cubes {S1

I}I and {S2
L}L, respectively, and fix r ∈ (0, 1

2 ). As-
sume the following:

(1) τ(C1, {S1
I}I)τ(C2, {S2

L}L) ≥ 1
(1−2r)2 ;

(2) {S1
I}I and {S2

L}L are r-uniformly dense;
(3) C1 ∩ (1− 2r)S2

∅ 6= ∅ and rad(S1
∅) ≥ r rad(S2

∅).

Then, we have
C1 ∩ C2 6= ∅.

Some remarks on this statement are in order. Unlike Newhouse’s Gap Lemma, we
need the additional “uniform denseness” assumption. As mentioned above, this is partly
for the above systems of cubes that yield artificially large values for the thickness.

Assumption (3) is quite mild, and it can be seen as a stronger version of the hypotheses
(in the original Gap Lemma) that the convex hulls intersect and that each Cantor set is not
contained in a gap of the other.

There is a balance between assumptions (1) and (2), as the first condition is stronger
when r is close to 1

2 , and the second condition is stronger when r is close to 0. Note also
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that as r → 0, assumption (1) reduces back to the product of the thicknesses being larger
than one, as in the original Gap Lemma.

An important feature of Newhouses’s Gap Lemma is that the hypotheses are robust
under perturbations of the Cantor sets. This is also the case for Theorem 5. For exam-
ple, the assumptions are robust under C1 perturbations whose derivatives are close to
the identity applied to the sets, and if the sets are self-homothetic, they are also robust
under perturbations of the generating iterated function system (see ([11], Lemmas 7 and 8
for details).

Recall that S. Biebler [27] defined a notion of thickness and proved the Gap Lemma
for a class of dynamically defined compact sets in the plane. Even in this restricted context,
Theorem 5 applies in many more cases (roughly speaking, Biebler has a more restrictive
version of each of the assumptions). The definition of thickness and proof of the Gap
Lemma are also significantly simpler than Biebler’s.

5.3. An Application to Directional Distance Sets

Given E ⊆ Rd, the distance set of E is

∆(E) := {‖x− y‖2 : x, y ∈ E} ⊆ [0, ∞).

It is a major open problem to understand the relationship between the sizes of E
and ∆(E):

Conjecture 1 (Falconer’s distance conjecture). If E is a compact set with dimH(E) > d/2,
then ∆(E) has a positive Lebesgue measure.

There are many partial results and variants. One of them involves investigating the
conditions under which the distance set has a non-empty interior. The best result in this
direction was due to Mattila and Sjölin:

Theorem 6 (Mattila and Sjölin [29]). If E is a compact set with dimH(E) > d+1
2 , then the

distance set ∆(E) has a non-empty interior.

This result does not give quantitative bounds on the size of a ball in ∆(E), nor does it
guarantee that zero is an interior point of ∆(E).

We know that sets with large thicknesses have large Hausdorff dimensions. Therefore,
one can ask whether we can get stronger consequences for sets of large thicknesses. We
will see that the Gap Lemma provides such a result.

For a fixed direction v ∈ S(d−1), we say that t ≥ 0 is a distance between points of E in
direction v if there are e1 and e2 in E such that e1 − e2 = tv. We define ∆v(E) as the set of
all distances between points in the set E in direction v. Of course, ∆v(E) ⊆ ∆(E).

By applying the Gap Lemma to E and E− tv, one can find that ∆v(E) contains an
explicit uniform interval for any direction v:

Corollary 1. Let E =
⋂

n≥0
⋃
`(I)=n SI be a compact set in Rd such that there exists r ∈ (0, 1

3 ],
satisfying the following:

• τ(C, {SI}I) ≥ 1
1−2r ;

• {SI}I is r-uniformly dense with respect to C.

Then, there is a > 0 (depending only on r and the radius of S∅) such that for any direction
v ∈ S(d−1), we have

[0, a] ⊆ ∆v(C).

Proof. We can assume without loss of generality that S∅ = B[0, 1].
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Let v be any vector in S(d−1). We are going to show that the sets C and C + tv satisfy
the hypothesis of the Gap Lemma (Theorem 5) for t ∈ [ −2r

1−2r , 2r
1−2r ]. Then, we will have

C ∩ (C + tv) 6= ∅ for any t ∈ [0, 2r
1−2r ], and thus [0, 2r

1−2r ] ⊆ ∆v(C).
By assumption, {SI}I is uniformly dense with respect to C. Since the thickness is

preserved by translations (also translating the system of balls), we have

τ(C, {SI}I)τ(C + tv, {SI + tv}I) ≥
1

(1− 2r)2 .

It remains to be shown that C ∩ (1− 2r)(B[0, 1] + tv) 6= ∅. Since r ∈ (0, 1
3 ], we have

that (1− 2r)(B[0, 1] + tv) is a ball with a radius of at least r, and since t ∈ [0, 2r
1−2r ], we

have (1− 2r)(B[0, 1] + tv) ⊆ B[0, 1]. Hence, by the r denseness, there is a child Si of S∅
contained in (1− 2r)(B[0, 1] + tv). In particular, C ∩ (1− 2r)(B[0, 1] + tv) 6= ∅.

What is new compared with Mattila and Sjölin’s result is that this holds in every
direction, and we obtain a uniform explicit interval containing zero. The assumptions,
however, are much stronger.

5.4. Patterns in Thick Sets in Rd

Recall from Theorem 4 that sets of large Newhouse thicknesses τ contain homothetic
copies of all finite sets of certain explicit cardinality N(τ), and that this result is based on
showing that thick sets are winning for the potential game. Both the result and the approach
generalize to both our definitions of thickness in Rd. In the case of Definition 6, the proof
uses a variant of the game in which Alice erases neighborhoods of cube boundaries (spheres
in the d∞ metric) instead of balls. Since the Gap Lemma is not used in the arguments, no
denseness assumption is needed for these results. See [5], Theorem 7 and [11], Theorem 20
for details.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Newhouse, S.E. Nondensity of axiom A(a) on S2. In Global Analysis; American Mathematical Society: Providence, RI, USA, 1970;

pp. 191–202.
2. Newhouse, S.E. The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci.

Publ. Math. 1979, 50, 101–151. [CrossRef]
3. Astels, S. Cantor sets and numbers with restricted partial quotients. Trans. Am. Math. Soc. 2000, 352, 133–170. [CrossRef]
4. Boone, Z.; Palsson, E.A. A pinned Mattila–Sjölin type theorem for product sets. arXiv 2022, arXiv:2210.00675.
5. Falconer, K.; Yavicoli, A. Intersections of thick compact sets in Rd. Math. Z. 2022, 301, 2291–2315. [CrossRef]
6. Hunt, B.R.; Kan, I.; Yorke, J.A. When Cantor sets intersect thickly. Trans. Am. Math. Soc. 1993, 339, 869–888. [CrossRef]
7. McDonald, A.; Taylor, K. Finite point configurations in products of thick Cantor sets and a robust nonlinear Newhouse gap

lemma. arXiv 2021, arXiv:2111.09393.
8. Simon, K.; Taylor, K. Interior of sums of planar sets and curves. Math. Proc. Camb. Philos. Soc. 2020, 168, 119–148. [CrossRef]
9. Williams, R.F. How big is the intersection of two thick Cantor sets? In Continuum Theory and Dynamical Systems (Arcata, CA, 1989);

American Mathematical Society: Providence, RI, USA, 1991; pp. 163–175.
10. Yavicoli, A. Patterns in thick compact sets. Israel J. Math. 2021, 244, 95–126. [CrossRef]
11. Yavicoli, A. Thickness and a gap lemma in Rd. arXiv 2022, arXiv:2204.08428.
12. Yu, H. Fractal projections with an application in number theory. Ergod. Theory Dyn. Syst. 2020. [CrossRef]
13. Palis, J.; Takens, F. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. In Cambridge Studies in Advanced

Mathematics; Cambridge University Press: Cambridge, MA, USA, 1993; Volume 35.
14. Falconer, K.J. The Geometry of Fractal Sets. Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, MA,

USA, 1985.
15. Falconer, K. Techniques in Fractal Geometry; John Wiley & Sons, Ltd.: Chichester, UK, 1997.
16. Falconer, K. Fractal Geometry, 3rd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014.
17. Keleti, T. A 1-dimensional subset of the reals that intersects each of its translates in at most a single point. Real Anal. Exchange

1998/1999, 24, 843–844. [CrossRef]

http://doi.org/10.1007/BF02684771
http://dx.doi.org/10.1090/S0002-9947-99-02272-2
http://dx.doi.org/10.1007/s00209-022-02992-y
http://dx.doi.org/10.1090/S0002-9947-1993-1117219-8
http://dx.doi.org/10.1017/S0305004118000580
http://dx.doi.org/10.1007/s11856-021-2173-6
http://dx.doi.org/10.1017/etds.2022.2
http://dx.doi.org/10.2307/44153003


Math. Comput. Appl. 2022, 27, 111 22 of 22

18. Keleti, T. Construction of one-dimensional subsets of the reals not containing similar copies of given patterns. Anal. PDE 2008, 1,
29–33. [CrossRef]

19. Maga, P. Full dimensional sets without given patterns. Real Anal. Exchange 2010/2011, 36, 79–90. [CrossRef]
20. Máthé, A. Sets of large dimension not containing polynomial configurations. Adv. Math. 2017, 316, 691–709. [CrossRef]
21. Yavicoli, A. Large sets avoiding linear patterns. Proc. Am. Math. Soc. 2021, 149, 4057–4066. [CrossRef]
22. Sahlsten, T.; Kuca, B.; Orponen, T. On a continuous Sárközy type problem. arXiv 2022, arXiv:2110.15065.
23. Chan, V.; Łaba, I.; Pramanik, M. Finite configurations in sparse sets. J. Anal. Math. 2016, 128, 289–335. [CrossRef]
24. Henriot, K.; Łaba, I.; Pramanik, M. On polynomial configurations in fractal sets. Anal. PDE 2016, 9, 1153–1184. [CrossRef]
25. Łaba, I.; Pramanik, M. Arithmetic progressions in sets of fractional dimension. Geom. Funct. Anal. 2009, 19, 429–456.
26. Broderick, R.; Fishman, L.; Simmons, D. Quantitative results using variants of Schmidt’s game: Dimension bounds, arithmetic

progressions, and more. Acta Arith. 2019, 188, 289–316. [CrossRef]
27. Biebler, S. A complex gap lemma. Proc. Am. Math. Soc. 2020, 148, 351–364. [CrossRef]
28. Feng, D.-J.; Wu, Y.-F. On arithmetic sums of fractal sets in R. J. Lond. Math. Soc. 2021, 104, 35–65. [CrossRef]
29. Mattila, P.; Sjölin, P. Regularity of distance measures and sets. Math. Nachr. 1999, 204, 157–162. [CrossRef]

http://dx.doi.org/10.2140/apde.2008.1.29
http://dx.doi.org/10.14321/realanalexch.36.1.0079
http://dx.doi.org/10.1016/j.aim.2017.01.002
http://dx.doi.org/10.1090/proc/13959
http://dx.doi.org/10.1007/s11854-016-0010-3
http://dx.doi.org/10.2140/apde.2016.9.1153
http://dx.doi.org/10.4064/aa171127-8-11
http://dx.doi.org/10.1090/proc/14716
http://dx.doi.org/10.1112/jlms.12422
http://dx.doi.org/10.1002/mana.19992040110

	Newhouse's Thickness
	The Gap Lemma
	Why Thickness and the Gap Lemma?
	The Gap Lemma

	Connection to the Hausdorff Dimension
	Thickness and Patterns in Fractals
	Extensions of Thickness to Higher Dimensions
	Thickness in Rd (Useful for the Cut-out Set Type)
	Thickness in Rd (Useful in General, Even for Totally Disconnected Sets)
	An Application to Directional Distance Sets
	Patterns in Thick Sets in Rd

	References

