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Abstract: In this article, we are interested in the behavior of a three-dimensional model of periodic
perforated piezoelectric plate, when the thickness h of the plate and the size ε of the holes are small.
We study the dependence of displacements and electric potential on h and ε, and give equivalent
limits when h and ε tend towards zero. We compute analytical formulae for all effective properties of
the periodic perforated piezoelectric plate.
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1. Introduction

Piezoelectric plates and, more generally, structures containing piezoelectric materials
are widely used in engineering applications, such as sensors or actuators. The piezoelectric
effect is the capacity exhibited by some materials to convert a mechanical deformation to
electric field and vice versa. Application to the materials of an electric field produces a
mechanical deformation. The increased application of composite and perforated (lattice)
piezoelectric materials in ground-breaking Micro–Electro–Mechanical-Systems (MEMS)
has stimulated great interest in several studies (see Ikeda [1]).

In the literature, there are several papers concerning modeling on piezoelectric struc-
tures. We refer, in particular, to the works of Rahmoune [2,3] and Sene [4,5], who modeled
the behavior of a piezoelectric static thin plate not perforated with the thickness h tending
to zero. In [6], the authors modeled the thin piezoelectric shell. Kauffman and Saint Jean-
Paulin [7] studied the behavior of the displacement when the parameter of the thickness
of the plate, period of perforation, and the ration between the width of the bar and the
period tended to zero. Figueiredo and Leal [8] used asymptotic analysis to obtain a 2D
piezoelectric model.

The present paper is inspired by Rahmoune [2,3], and Sene [4,5], and again, we use
the asymptotic analysis and homogenization theory (see [9] or [10]) to derive a reduced
piezoelectric model and we give the homogenized system. Explicit formulae of elastic,
piezoelectric, and dielectric homogenized coefficients are reported.

2. Setting of the Problem

In this section, we first introduce some notations. Then, we recall the static three-
dimensional piezoelectric model of non-homogeneous anisotropic thin plate, and we
describe its formulation as a boundary value problem and the variational formulation.
Throughout this paper, L2(Ω) in the Sobolev space of real-valued functions that are mea-
surable and square summable in Ω with respect to the Lebesgue measure. We use C∞

] (Y) to
denote the space of infinitely differentiable functions in R3 that are periodic of Y. The sub-
script ] stands for Y-periodic functions in the last variable.

2.1. Geometric of the Medium

Let ωε be a bounded perforated domain of R2, the boundary of which ∂ωε is regular.
The three dimensional piezoelectric domain Ωhε is defined in the following way (see
Figure 1)

Ωhε = ωε×]− h,+h[, h ∈ R∗,
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where Ωhε is plate with middle surface ωε and thickness 2h. Thε = tε×]− h,+h[ is the set
of the cylindrical perforations. The upper (resp. lower) face is Γ+

hε = ωε × {+h} (resp.
Γ−hε = ωε × {−h}) and Γl

hε = γ×]− h,+h[ is the exterior lateral boundary of the plate. We
set Γhε = ∂Ωhε.

Figure 1. Perforated piezoelectric plate.

The plate is clamped on the exterior lateral boundary (the Dirichlet conditions) in
the placement in ΓmD

hε = γm0
ε ×]− h,+h[, with mes(γm0

ε ) > 0. We use ΓmN
hε to denote the

complementary portion of the lateral surface. We have

ΓmN
hε = Γ+

hε ∪ Γ−hε ∪ (γm1
ε ×]− h,+h[) = Γhε − ΓmD

hε , where γm0
ε ∪ γm1

ε = ∂ωε.

We have Neumann boundary conditions on the boundary of the holes on the top and
bottom faces.

2.2. Model Problem

The unknown of the piezoelectric plate model is the pair (uhε, ϕhε), where uhε =
(uhε

1 , uhε
2 , uhε

3 ) denotes the displacement vector field and ϕhε is the electric potential, which
is a scalar field. The current point in Ωhε is denoted by x = (x1, x2, x3). The plate under
consideration is made of linearly piezoelectric and anistropic body; the elastic, piezoelectric
and electric moduli are periodic for the variables x1 and x2. The period is the order of a
small-parameter ε.

The equations of equilibrium and Gauss’s law of electrostatics, in the absence of free
charges, are written as: {

−div œhε(uhε, φhε) = fh in Ωhε,
−div Dhε(uhε, φhε) = 0 in Ωhε,

(1)

we complete the boundary conditions,
uhε = 0 on Γhε,
φhε = 0 on Γhε,
σhε(uhε, φhε).nhε = 0 on ∂Thε ∪ Γ±hε,
Dhε(uhε, φhε).nhε = 0 on ∂Thε ∪ Γ±hε,

(2)
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where fh ∈ L2(Ωhε) (in fact, fh refers to the restriction of f in Ωhε). The second-order stress
tensor σhε = (σhε

ij ) (In the following, we adopt the Einstein convention, with respect to the
summation of repeated indices, and the Latin indices run from 1 to 3, Greek indices (except
ε) taking values in {1, 2}) and the electric displacement vector Dhε = (Dhε

i ) are linearly
related to the second-order skl(u) = 1

2 (∂kul + ∂luk) and the scalar electric field ∂kφε by the
constitutive law strain tensor

œhε
ij (u

hε, φhε) = chε
ijklskl(uhε) + ehε

kij∂kφhε in Ωhε,

Dhε
i (uhε, φhε) = −ehε

iklskl(uhε) + dhε
ij ∂jφ

hε in Ωhε.
(3)

1 ≤ i, j, k, l ≤ 3

avec (div œhε)i = ∂jσ
hε
ij , div Dhε = ∂iDhε

i , ∂i =
∂

∂xi
, x = (xi) ∈ Ω, The material proper-

ties are given by the fourth-order stiffness tensor chε
ijkl measured at constant electric field.

The elastic coefficients satisfies the symmetries conditions, and ellipticity uniformly in ε,
and the bounded hypothesis. The coefficients of the third-order piezoelectric tensor ehε

ijk (the
coupled tensor), verifies the symmetry and bounded conditions. The second-order electric
tensor dhε

ij (dielectric permittivity), measured at constant strain, verifies the symmetry and
bounded conditions (see [11,12]).

We recall that the variational problem (1)–(3) has a unique solution (uhε, Φhε) ∈
Vhε(Ωhε)×Whε(Ωhε), corresponding to the saddle point of this functional (see [11,12]):

(v, Ψ)→ 1
2

∫
Ωhε

(
chε(v, v) + 2ehε(u, Ψ)− dhε(Ψ, Ψ)

)
dx−

∫
Ωhε

f v dx,

where 
chε(u, v) = chε

ijkl sij(u) skl(v),
ehε(u, Ψ) = ehε

ikl skl(u) ∂iΨ,
dhε(Ψ, Ψ) = dhε

ij ∂iΨ ∂jΨ,

and
Vhε(Ωhε) =

{
v ∈ H1(Ωhε), v = 0 on ∂Ωh

}
,

Whε(Ωhε) =
{

ψ ∈ H1(Ωhε), ψ = 0 on ∂Ωh

}
.

In order to study the different limit process (h or ε tends to zero).

3. The Thin Plate Behavior

We are interested in the limit of three-dimensional problem (1)–(3), when the thickness
h of the plate and the period ε size of holes goes to zero.

3.1. Limit as the Thickness Tends to Zero

The first goal objective is to establish the limit of the three-dimensional variational
problem associated with the problem (1) and (2), when h→ 0. We make a suitable choice of
the orders of magnitude of the data (4) and (5), and using similar to those of Rahmoune [2]
and Sène [4], in order to take into account the presence of holes, we can state the result
below, which describes the limiting behavior of the electromechanical state when the
thickness h tends to zero.

Theorem 1. For the piezoelectric variables (uhε
α , uhε

3 , ϕhε) solution of three-dimensional problem
associated the initial problem (1) and (2) defined in Ωhε. We make the following assumptions about
the magnitude of the data with respect to h{

f h
α (xhε) = h2 fα(xε), f h

3 (xhε) = h3 f3(xε)
gh

α(xhε) = h3gα(xε), gh
3(xhε) = h4g3(xε),

, α = 1, 2, ∀xhε ∈ Ωhε (4)
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where the couple ( f , g) is the element (independent of h) of (L2(Ωε))3 × (L2(Ωε))3. Moreover, we
assume that elastic, electric and piezoelectric constants are independent of h. We define the scaling
of the unknowns: 

uhε
α (xhε) = h2uε

α(h)(xε)
uhε

3 (xhε) = huε
3(h)(xε)

ϕhε(xhε) = h2 ϕε(h)(xε)

∀xhε ∈ Ωhε (5)

Then, when the thickness h tends to 0, we obtain
uε

α(h) ⇀ u0ε
α (x) = u0ε

α (x1, x2)− xε
3∂αu0ε

3 (x1, x2),
uε

3(h) ⇀ u0ε
3 (x1, x2),

ϕε(h) ⇀ ϕ0ε(x1, x2).
(6)

where the limits u0ε
α (x1, x2), u0ε

3 (x1, x2) and ϕ0ε(x1, x2) satisfy the solution of the variational
problem

Find (u0ε
α , u0ε

3 , ϕ0ε) ∈ Vε(ωε)×Wε(ωε)× H1(ωε)/R, such as∫
ωε

{
Nαβ(u0ε

α , u0ε
3 , ϕ0ε)sαβ(vε

α) + Qα(u0ε
α , ϕ0ε)Eα(ψε)−Mαβ(u0ε

3 )∂αβvε
3

}
dxε

=
∫

ωε

{
pαvε

α + p3vε
3 + mα∂αvε

3

}
dxε,

∀ (vε
α, vε

3, ψε) ∈ Vε(ωε)×Wε(ωε)× H1(ωε)/R,

(7)

where
Vε(ωε) =

{
vα ∈ H1(ωε), vα = 0 on γm0

ε

}
Wε(ωε) =

{
v3 ∈ H2(ωε), v3 = 0 and ∂νv3 = 0 on γm0

ε

}
,

mα =
∫ +1

−1
(x3 fα + (g+α − g−α ))dx3, pα =

∫ +1

−1
fα dx3 and p3 =

∫ +1

−1
f3 dx3,

g± = g|Γ±ε , Eα(ψ) =
∂ψ

∂xα
,


Nαβ(u0ε

α , u0ε
3 , ϕ0ε) =

∫ +1

−1

{
ĉε

αβδτ

[
sδτ(u0ε

α )− x3∂δτu0ε
3

]
− êε

γαβEγ(ϕ0ε)
}

dx3,

Qα(u0ε
α , ϕ0ε) =

∫ +1

−1

{
êε

γαβsαβ(u0ε
α ) + d̂ε

γαEα(ϕ0ε)
}

dx3,

Mαβ(u0ε
3 ) =

∫ +1

−1

{
− (x3)

2 ĉε
αβδτ∂δτu0ε

3 + x3 ĉε
αβδτsδτ(u0ε

α )− x3 êε
γαβEγ(ϕ0ε)

}
dx3,

(8)

where



ĉε
αβδτ = cε

αβδτ − cε
3jαβ b̃ε

3j3k c̃ε
k3αβ +

eε
3αβ h̃ε

3γδ

dε
33

,

êε
γαβ = eε

γαβ − cε
3jαβ b̃ε

3j3k ẽε
3k3 +

eε
3αβd̃ε

3γ

dε
33

,

d̂ε
γα = dε

γα + eε
γj3b̃ε

3j3k ẽε
γk3 −

dε
α3d̃ε

γ3

dε
33

,

where



c̃ε
k3αβ = cε

k3αβ +
eε

3k3 ẽε
3αβ

dε
33

,

ẽε
γk3 = eε

γk3 +
eε

3k3dε
γ3

dε
33

,

h̃ε
3αβ = eε

3αβ −
eε

3k3b̃ε
k3j3eε

3αβ

dε
33

,

d̃ε
3α = dε

3α + eε
3k3b̃ε

3k3je
ε
αj3,

(9)

b̃ε is the inverse of 3× 3 matrix
(

cε
3j3k +

eε
3j3eε

3k3

dε
33

)
3×3

.

The proof of Theorem 1 is exactly the same as in Rahmoune [2,3] and in Sene [4,5]. We
refer to Mechkour [12] for details.
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3.2. Limit as the Period Tends to Zero

We now study the limit electrodynamic state when the period of perforation ε tends to
zero. Since the perforated plate has a periodic structure with period ε, this is a homoge-
nization problem. We denote by x the macroscopic variable and by y = x

ε the microscopic
variable. Let us define Ωε of periodically perforated subdomains of a bounded open set
Ω. The period of Ωε is εY∗, where Y∗ is a subset of the unit cube Y = (0, 1)3, which
represented the solid domain. We use the two-scale convergence approach as introduced
by Nguesteng [13] and Allaire [14]; we obtain

Theorem 2. The sequences (uε
ι )ε>0, (φε

ι )ε>0, (ι = 1, 2) two-scale convergences in u00
ι , φ00

ι ,
respectively, where (u00

ι , φ00
ι ) is the unique solution of two-scale homogenized problem (Membrane

plate equations) 

−div œH(u00
ι , φ00) = θ f in ω,

−div DH(u00
ι , φ00) = 0 in ω,

u00
ι = 0 on ∂ω,

φ00 = 0 on ∂ω,

(10)

where θ =
∫

Y∗
1Y∗(y)dy represents the volume fraction on reference element. The new homogenized

law is defined by 
σH

αβ(u
00
ι , φ00) = cH

αβζηsζη,x(u00
ι ) + eH

ζαβ
∂φ00

∂xζ
,

DH
α (u00

ι , φ00) = −eH
αζηsζη,x(u00

ι ) + dH
αζ

∂φ00

∂xζ
.

(11)

The homogenized coefficients cH
αβζη , eH

ζαβ and dH
αζ are defined by

cH
αβλµ =

〈
ĉαβζη [τ

ζη
λµ + sζη,y(w

λµ
ι )] + êζαβ

∂qλµ
ι

∂yζ

〉
(12)

eH
δαβ =

〈
ĉαβζηsζη,y(ϕδ) + êζαβ[δζδ +

∂ψδ

∂yζ
]
〉

=
〈

êδλµ[τ
ζη
λµ + sζη,y(w

λµ
ι )]− d̂αβ

∂qλµ
ι

∂yβ

〉
(13)

dH
αδ =

〈
− êαζηsζη,y(ϕδ) + d̂αβ[δβδ +

∂ψδ

∂yβ
]
〉

(14)

we use
〈
.
〉
=
∫

Y . dy to denote the mean value over the basic cell Y. The local functions (wζη
ι , qζη

ι )

and (ϕδ, ψδ) are Y∗-periodic functions in y, independent of x, with solutions to these two local
problems in Y∗

− ∂

∂yβ

{
ĉαβζη(x, y)[τζη

λµ + sζη,y(w
λµ
ι )] + êζαβ(x, y)

∂qλµ
ι

∂yζ

}
= 0 in Y∗,

− ∂

∂yα

{
− êαζη(x, y)[τζη

λµ + sζη,y(w
λµ
ι )] + d̂αβ(x, y)

∂qλβ
ι

∂yβ

}
= 0 in Y∗,

wλµ
ι , qλµ

ι Y∗-periodic,

(15)
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where
τ

ζη
λµ =

1
2
[δζλδηµ + δζµδηλ] 1 ≤ λ, ζ, µ, η ≤ 2,

− ∂

∂yβ

{
ĉαβζη(x, y)sζη,y(ϕδ) + êζαβ(x, y)[δζδ +

∂ψδ

∂yζ
]
}
= 0 in Y∗,

− ∂

∂yα

{
− êαζη(x, y)sζη,y(ϕδ) + d̂αβ(x, y)[δβδ +

∂ψδ

∂yβ
]
}
= 0 in Y∗,

ϕδ, ψδ Y∗-periodic.

(16)

Furthermore, the sequence (uε
3)ε>0 is the solution to problem (7) and (8). Two-scale conver-

gence for u00
3 ∈ H2

0(ω) shows that u00
3 is unique solution for the two-scale homogenized problem

(flexural plate equations):

∂2

∂xα∂xβ

(
bH

αβγτ

∂2

∂xγ∂xτ
(u00

3 )
)

= θ(p3 + ∂αmα) in ω,

u00
3 = 0 on ∂ω,

∂u00
3

∂xν
= 0 on ∂ω.

(17)

The homogenized coefficient bH
αβγτ is described by :

bH
αβγτ = 〈ĉαβζν(x, y)

∂2

∂yζ∂yν
(Πγτ

3 + χ
γτ
3 )〉, (18)

where Πγτ
3 (y) = 1

2 yγyτ . The local functions χ
γτ
3 are defined by the solutions of cell problems

− ∂2

∂yα∂yβ

{
¯̄cαβνζ(x, y)

∂2

∂yν∂yζ
(χγτ

3 + Πγτ
3 )
}

dy = 0, on Y∗

χ
γτ
3 Y∗ − periodics,

Πγτ
3 (y) =

1
2

yγyτ .

(19)

The demonstration of Theorem 2 is exactly the same as in Mechkour [12]. We refer to
Mechkour [11,12] for details.

The following result complements the two-scale convergence result by providing a
strong convergence, which is very useful from a theoretical and numerical point of view. It
is based on remarks that are admissible test functions (in the sense of Allaire [14]).

Proposition 1. The following convergence holds when ε goes to 0
1ωε

( ∂2u0ε
3

∂xα∂xβ
(x)− ∂2u3

∂xα∂xβ
(x)−

∂2u2
3

∂yα∂yβ
(x,

x
ε
)
)
−→ 0 in L2(ω) strongly,

1ωε

(
u0ε

3 (x)− u3(x)− u2
3(x,

x
ε
)
)

−→ 0 in H2(ω) strongly.

4. Final Remarks

In this paper, we mathematically justify a reduced piezoelectric plate model, and we
have rigorously established the limiting equations modeling the behavior of piezoelectric
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plate in a periodically perforated domain, i.e., we have explicitly described forms of the
homogenized coefficients of the elastic, dielectric and coupling tensors.
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