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Abstract: Reliable quantification of pulmonary arterial pressure is essential in the diagnostic and
prognostic assessment of a range of cardiovascular pathologies, including rheumatic heart disease,
yet an accurate and routinely available method for its quantification remains elusive. This work
proposes an approach to infer pulmonary arterial pressure based on scientific machine learning
techniques and non-invasive, clinically available measurements. A 0D multicompartment model of
the cardiovascular system was optimized using several optimization algorithms subject to forward-
mode automatic differentiation. Measurement data were synthesized from known parameters to
represent the healthy, mitral regurgitant, aortic stenosed, and combined valvular disease situations
with and without pulmonary hypertension. Eleven model parameters were selected for optimization
based on 95% explained variation in mean pulmonary arterial pressure. A hybrid Adam and limited-
memory Broyden–Fletcher–Goldfarb–Shanno optimizer yielded the best results with input data
including valvular flow rates, heart chamber volume changes, and systematic arterial pressure. Mean
absolute percentage errors ranged from 1.8% to 3.78% over the simulated test cases. The model was
able to capture pressure dynamics under hypertensive conditions with pulmonary arterial systole,
diastole, and mean pressure average percentage errors of 1.12%, 2.49%, and 2.14%, respectively.
The low errors highlight the potential of the proposed model to determine pulmonary pressure for
diseased heart valves and pulmonary hypertensive conditions.

Keywords: cardiovascular 0D model; pulmonary arterial pressure; gradient-based optimization;
automatic differentiation

1. Introduction

In sub-Saharan Africa (SSA), cardiovascular diseases account for approximately
1 million deaths per year [1]. Amongst these, rheumatic heart disease (RHD), ischemic
heart disease, and pulmonary arterial hypertension (PAH) are associated with high mortal-
ity rates [2]. RHD in SSA accounts for approximately 23% of worldwide deaths from this
disease, where RHD typically results in aortic and mitral valve lesions that lead to valvular
regurgitation and/or stenosis. Left untreated, these lesions result in cardiac decompensa-
tion through mechanisms of ventricular pressure and volume overload. In rheumatic heart
disease, the presence of PAH is an independent predictor of mortality [3]; therefore, patients
diagnosed with RHD and who have PAH are at higher risk compared to patients with RHD
and no PAH. The accurate estimation of PAH for RHD cases is crucial for clinical diagnosis
and prognostic purposes. The current gold standard for the quantification of pulmonary
arterial pressure (PAP) requires the use of invasive right-heart catheterization [4], which in
developing countries such as those in SSA is not readily available, remains costly, and is
not without risk to the patient [5]. The clinical standard for the non-invasive estimation of
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PAP utilizes transthoracic Doppler echocardiography and associated correlations, but these
approaches typically yield inaccurate results [6].

In the present work, a non-invasive computational approach to estimate pulmonary
arterial pressure and associated cardiovascular parameters—such as pulmonary arterial
impedance, left ventricular elastance, and systemic venous impedance—is proposed. The
approach utilizes non-invasive measurements, including transvalvular flow rates, systemic
arterial pressures, and heart volume changes over a single heartbeat cycle, along with
scientific machine learning techniques [7]. This, in turn, combines a mechanistic model
of the cardiovascular system along with gradient-based optimization and forward-mode
automatic differentiation.

Several researchers have recently investigated the efficacy of computational parameter
estimation strategies to find unknown physiological parameters of the human cardiovas-
cular system by using clinical measurements, 0D cardiovascular dynamic models, and
optimization routines. Bjordalsbakke et al. [8] developed a 0D computer model of a human
systemic loop and used non-invasive measurements and the trust-region-reflective algo-
rithm to estimate various parameters, such as systemic compliances and left ventricular
elastance. Synthetic data were generated using the 0D cardiovascular model with known
parameters to gauge the accuracy of the parameter estimation workflow. The mean abso-
lute percentage error (MAPE) between the true parameters and the estimated ones ranged
between 1 and 10%. Kershavarz-Motamed [9] developed a workflow to estimate circulatory
parameters using non-invasive measurements such as valvular flow rates measured using
Doppler echography and systemic arterial pressures measured using an arm-cuff device.
The 0D cardiovascular model was developed using MATLAB Simulink and the parameters
optimized using the built-in fmincon function. Similarly, Huang and Ying [10] developed
an online estimation algorithm used to infer the parameters of a five-component arterial 0D
simulation model. The unknown parameters were estimated by minimizing the squared
difference between the model predictions and the corresponding measurements, which
for this work was generated synthetically using the model and the known parameters.
The optimization was driven using the fmincon function in MATLAB. Colunga et al. [11]
used actual invasive and non-invasive patient data to estimate the cardiovascular system
parameters of a six-component 0D model by minimizing the differences between the model
predictions and measured data using the Levenberg–Marquardt optimization routine. The
workflow was capable of accurately recreating the measured pressure waveforms, but no
validation was performed.

To minimize the difference between the 0D model predictions and the measure-
ments (actual or synthetic) using gradient-based optimization methods such as Levenberg–
Marquardt, a trust-region-reflective algorithm or MATLAB’s fmincon requires the calcu-
lation of the loss function–parameter gradients. In the discussed research works, the
authors applied finite differences [12,13] to calculate the required gradients. As shown
in [14], the use of finite differences leads to computationally expensive and numerically
unstable results due to the numerical approximation of the gradients, as discussed in [15].
Numerical instability is due to the amplification of ODE solution errors through finite
difference approximations. Furthermore, for variable-timestep ODE solvers, such as the
one used in the present work, finite differences can lead to incorrect derivative estimates
due to the different number of timesteps used in the perturbed value evaluation F(x + δ)
and actual value evaluation, F(x). An alternative approach to estimate the gradients is to
use automatic differentiation (AD) [15]. AD can calculate the analytical gradients using
chain rules and computational graphs constructed from the mathematical operations in
the computer model. The major limitation of AD is that the 0D cardiovascular model and
ordinary differential equation (ODE) solver should be fully differentiable, meaning that the
mathematical operations should be tracked and stored to calculate the gradients.

In the present work, a fully differentiable multicompartment cardiovascular 0D ODE
computer model was developed using the Julia 1.7.0 programming language. The pro-
posed parameter inference model solves the specified set of equations and minimizes the
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squared differences between the model predictions and non-invasive measurement data
by adjusting important cardiovascular parameters. Various optimization algorithms were
investigated, such as conjugate gradient descent, Adam, and limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS). The loss function gradients used in the majority of
these optimizers were determined using forward-mode automatic differentiation.

The purpose of the present work was to infer the PAP waveforms for healthy cases,
mitral regurgitation, and aortic valve stenosis cases from synthetic, non-invasive data
generated using known parameters and the 0D model. In addition, to determine the
reduced set of parameters with a significant effect on the mean PAP, a local sensitivity
analysis was performed. To the best of the authors’ knowledge, this is the first work
to directly investigate the ability of a scientific machine learning model to infer PAP
values using non-invasive, clinically available measurements and a 0D cardiovascular
system model accounting for the dynamics of the heart valves. To reduce the costs of
deploying the proposed algorithm and to enable reproducibility, the computer models were
developed using free and open-source Julia libraries, namely, DifferentialEquations.jl [16],
ForwardDiff.jl [17] (automatic differentiation), Optim.jl [18] (optimization framework), and
Flux.jl [19] (first-order gradient descent optimizers).

2. Materials and Methods

Figure 1 depicts the parameter inference model workflow. The model starts by ini-
tializing the unknown cardiovascular model parameters θ such as the left ventricle (LV)
elastance, pulmonary arterial resistance, and systemic venous impedance; it should be
noted that only the model parameters that have a significant effect on the mean PAP will be
optimized, as discussed in Section 2.3. Once initialized, the important model parameters
are used to simulate a single cardiac cycle using a fully differentiable 0D cardiovascular
system model H(θ). Next, the model predictions x̂ corresponding to the available non-
invasive measurements x̃ are extracted. The extracted model predictions along with the
synthetic non-invasive measurements are then fed to a loss function L(x̂, x̃) that calculates
the sum-squared difference. If the loss function is above the prescribed convergence crite-
rion ε, the model then calculates the loss function gradients using forward-mode automatic
differentiation and then adjusts the parameters using this information, and the process
is then repeated. In the subsections below, more information relating to the 0D model,
datasets, optimization parameters, and optimizers is provided.

Figure 1. Computer model flowchart.
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2.1. Mechanistic Model of the Cardiovascular System

Central to the pulmonary inference computer model (shown in Figure 1) is the 0D
ODE model of the human cardiovascular system. In the present work, a multicompartment
model including the four heart chambers—corresponding to the heart valves, pulmonary
loop, and systemic loop—is developed. A layout of the cardiovascular network model is
shown in Figure 2. The model is based on the work of Korakianitis and Shi [20].

Figure 2. Zero-dimensional cardiovascular network model layout. Aortic—AO, mitral—MI,
pulmonary—PO, tricuspid—TI, aortic sinus—AS, systemic arteries—SAT, systemic veins—SVN,
pulmonary sinus—PS, pulmonary arteries—PAT, pulmonary veins—PVN.

To simulate the pressure and volume changes of the heart chambers, the mathematical
model of Suga et al. [21] was applied, as shown in Equation (1), where PLV(t) [mmHg]
is the LV pressure at time t, PLV,0 is the unstressed LV pressure (set to a value of 1 for all
heart chambers [22]), eLV(t) [s] is the LV time-varying elastance function, VLV(t) [mL] is
the instantaneous LV volume, and VLV,0 is the unstressed LV volume.

PLV(t) = PLV,0 + eLV(t)(VLV(t)−VLV,0) (1)

To simulate the changes in ventricle blood volume, the mass conservation equation
for an incompressible fluid can be applied to the ventricle control volume, yielding a set of
ODEs for each heart chamber. The change in ventricle blood volume for the LV is shown in
Equation (2), where QMI(t) and QAO(t) are the mitral and aortic valve volume flow rates
at timestep t, respectively.

dVLV
dt

= QMI(t)−QAO(t) (2)

The time-dependent elastance function for the LV is calculated using Equation (3),
where ELV,s [mmHg/mL] is the LV systolic elastance and ELV,d is the diastolic ventricular
elastance. A similar equation is used to predict the changes in right ventricle (RV) elastance.

eLV(t) = ELV,d +
ELV,s − ELV,d

2
f (t) (3)

The ventricular activation function used to simulate the heart muscle contraction and
relaxation was taken from the work of Bozkurt [23], and is shown in Equation (4):

f (t) =


1− cos

(
t

T1
π
)

i f 0 ≤ t < T1

1 + cos
(

t−T1
T2−T1

π
)

i f T1 ≤ t < T2

0 i f T2 ≤ t < T

(4)

In Equation (4), the end time of systole is set to T1 = 0.3 T [s] and the end time of
ventricular relaxation is set to T2 = 0.45 T [23], where T is the heartbeat period, which in the
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present work was fixed to a value of 1 [s]. The RV is also simulated using Equations (1)–(4),
but with corresponding RV parameters (Table 1).

Table 1. Nominal heart model parameters (values in parentheses indicate upper and lower boundaries
for sensitivity analysis and normalization) [20].

Parameters Left Heart Right Heart

Atria
Left and right atria maximum elastances (ELA,max, ERA,max ) 0.25 (0.0, 1.0) 0.25 (0.0, 1.0)
Left and right atria minimum elastances

(
ELA,min, ERA,min ) 0.15 (0.0, 0.5) 0.15 (0.0, 0.5)

Left and right atria unstretched volumes (VLA,0, VRA,0 ) 4.0 (1.0, 20.0) 4.0 (1.0, 10.0)
Ventricles

Left and right ventricle systole elastances (ELV,s, ERV,s ) 2.5 (0.5, 5.0) 1.15 (0.5, 5.0)
Left and right ventricle diastole elastances

(
ELV,d, ERV,d ) 0.1 (0.0, 1.0) 0.1 (0.0, 0.5)

Left and right ventricle unstretched volumes (VLV,0, VRV,0 ) 5.0 (1.0, 20.0) 10.0 (1.0, 50.0)

To simulate the left and right atrium (LA and RA, respectively) pressure and blood
volume changes, Equations (1) and (2) are used similarly to the ventricle calculations, but
with corresponding atrium parameters, as seen in Table 1. The time-dependent elastance
of the left atrium is calculated as seen in Equation (5), where ELA,min and ELA,max are
the minimal and maximal LA elastances, respectively. and fa(t) is the atrial contractility
activation function:

eLA(t) = ELA,min +
ELA,max − ELA,min

2
fa(t− D) (5)

The atrial contractility activation function, in turn, is calculated using Equation (6),
where D = 0.04 [s] is the time of atrial relaxation:

fa(t) =

{
0 i f 0 ≤ t < Ta

1− cos
(

2π t−Ta
T−Ta

)
i f Ta ≤ t < T

(6)

where Ta = 0.8 T is the time at the onset of atrial contraction. Table 1 presents the
cardiovascular parameters used in the heart chamber models.

Typically, heart valves are modelled as simple diodes in 0D cardiovascular system
models. For diode models, the valve-opening and -closure processes are assumed to be
instantaneous; therefore, the inertia of the valve cusps (leaflets) is ignored. Ignoring the
valve leaflet motion for diseased heart valves can lead to the prediction of higher right
ventricle and pulmonary arterial pressures, as shown by [22]. Therefore, to accurately
capture the pressure drop and, thus, the fluid flow through the valve, the leaflet motion
should be included in the system model. The valve model implemented in the present work
stems from the paper by Korakianatis and Shi [22], which includes the simulation of the
valve leaflet motion by solving an angular momentum equation for each heart valve. The
heart valve parameters used in the present work were tuned by the previously mentioned
authors to replicate actual pressure and flow waveforms in an adult human.

To estimate the blood-flow rate through each of the four heart valves, pressure gradi-
ents across the heart valve and the valve opening area are used, as shown in Equation (7),
where i = AO, PO, TI, MI. In Equation (7), CQ is the valvular flow coefficient, which is set
to 400

[
mL

s mmHg0.5

]
for the atrioventricular valves and 350

[
mL

s mmHg0.5

]
for the semilunar valves.

Qi = CQ · Ar(t)
√

∆P(t) (7)

In the previous equation, the pressure gradient across the valve ∆P(t) is calculated
using Equation (8), where Pin(t) is the valve’s upstream static pressure and Pex(t) is the
valve’s downstream pressure. For example, the aortic valve inlet pressure would be the LV
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pressure PLV(t) and the exit pressure would be the aortic sinus pressure PAS(t), as shown
in Figure 2.

∆P(t) =
{

Pin(t)− Pex(t) i f Pin ≥ Pex
Pex(t)− Pin(t) i f Pex > Pin

(8)

In Equation (7), Ar(t) is the area opening ratio of the heart valve and is defined as the
fraction of flow area at a given timestep divided by the area of the valve when fully open.
For the present work, the valve’s opening fraction is calculated as a function of the valve’s
opening angle βv, as shown in Equation (9), where βv,max is the maximum opening angle
of the valve cusps:

Ar(t) =
(1− cos[βv(t)])

2

(1− cos[βv,max])
2 (9)

To estimate the time-dependent valve-opening angle for each heart valve, the angular
momentum equation is solved. To ensure that the selected ODE integrator can solve the
dynamics of the valve cusp, the second-order angular momentum equation for the valve
dynamics is expressed as two ODEs, as shown in Equation (10):

dϕv
dt = [Pin(t)− Pex(t)]·Kpcos(βv)

dβv
dt = ϕv

(10)

The valvular force coefficient Kp

[
mmHg·s2

mL

]
was set to a constant value of 5500 for all

valves, as recommended by [20]. In Equation (10), ϕv is the valve cusp’s angular velocity.
The systemic and pulmonary vasculatures are modelled using the electrohydraulic ana-

logue equations for fluid flow in a 0D network. Each loop is modelled using 5 components
that consist of inductive, capacitive, and resistive components, as shown in Figure 2. For
the sake of brevity, only the systemic loop equations are provided; for more detail on the
model equations, please see [24]. The flow rate through the aortic sinus and associated
sinus inlet pressure are calculated using the following ODEs:

LAS
dQAS

dt
= (PAS − PSAT)− RASQAS (11)

CAS
dPAS

dt
= QAO −QAS (12)

where LAS

[
mmHg·s2

mL

]
is the blood flow inertia through the sinus, QAS is the volume

flow rate of blood through the sinus, PAS is the inlet sinus static pressure, PSAT is the
arterial inlet pressure, RAS

[
mmHg·s

mL

]
is the sinus flow resistance, and CAS

[
mL

mmHg

]
is

the sinus compliance. The arterial pressure and volume flow rate are simulated using
Equations (13) and (14):

LSAT
dQSAT

dt
= (PSAT − PSVN)− RSATQSAT (13)

CSAT
dPSAT

dt
= QAS −QSAT (14)

The inlet venous pressure is calculated using Equation (15), and the venous flow rate
using Equation (16):

CSVN
dPSVN

dt
= QSAT −QSVN (15)

QSVN RSVN = PSVN − PRA (16)

The vasculature parameters such as resistance and capacitance for the systemic and
pulmonary loops can be found in Table 2.
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Table 2. Systemic and pulmonary loop parameters (values in parentheses are used for the upper and
lower boundaries) [20].

Compartment Resistance (R)
[

mmHg·s
mL

]
Inductance (L)

[
mmHg·s2

mL

]
Capacitance (C)

[
mL

mmHg

]
Systemic loop

Aortic sinus (AS) 0.003 (0.0003, 0.03) 0.000062 (1 × 10−4, 1 × 10−3) 0.08 (0.008, 0.8)
Systemic artery (SAT) 0.05 (0.005, 1.0) 0.0017 (1.7 × 10−3, 0.017) 1.6 (0.16, 3.2)
Systemic vein (SVN) 0.075 (0.0075, 0.75) 0 20.5 (5.0, 50.0)

Pulmonary loop
Pulmonary sinus (PS) 0.002 (2 × 10−3, 2 × 10−2) 0.000052 (1 × 10−4, 1 × 10−3) 0.18 (0.018, 2.0)

Pulmonary artery (PAT) 0.05 (0.001, 0.1) 0.0017 (1.7 × 10−3, 0.017) 3.8 (0.38, 6.0)
Pulmonary vein (PVN) 0.006 (6 × 10−4, 0.01) 0 20.5 (5.0, 50.0)

To solve the abovementioned ODEs of the cardiovascular system, the explicit Runge–Kutta
solver with the Bogacki–Shampine 3/2 method was applied. The solver’s relative and
absolute tolerances were set to 1 × 10−4 and 1 × 10−6, respectively, and the maximum
allowable iterations per timestep were set to 1 × 106. To numerically integrate the ODEs,
certain physical constraints must be enforced on the dynamic valve model. To incorporate
the discontinuities that result from the valve motion limits (fully open or closed), the
following conditions were included in the simulation procedure for each valve.

βv =


βv = βv,max, dβv

dt = 0 i f βv ≥ βv,max

βv = βv,min, dβv
dt = 0 i f βv ≤ βv,min

βv i f βv,min < βv < βv,max

(17)

2.2. Data and Measurements

In the present work, synthetic data were generated using the 0D cardiovascular model
and used as pseudo-clinical measurements. The benefit of this approach is that the true
underlying parameters being optimized are known, and the obvious disadvantage is that
one assumes that the model can capture the dynamics of an actual cardiovascular system.
Nonetheless, other published authors have also followed this approach [8].

In the present work, two datasets were used as synthetic measurements. The first
dataset (D1) contained the transvalvular flow rates QAO, QPO, QTI , and QMI and the
systemic arterial pressure PSAT for a single cardiac cycle. The second dataset (D2), in
addition to the transvalvular flow rates and systemic arterial pressure, contains the heart
chamber volume changes, VLV , VRV , VLA, and VRA. The motivation for using two datasets
was to investigate the effects of additional non-invasive data on the model parameters’
inference accuracy, as discussed in Section 3.2.

For each dataset generation run, the ODE integrator solves for multitudes of timesteps
dictated by the numerical integrator accuracy control, but to replicate the actual use of
the model, only N = 200 samples are stored and used during the parameter optimization
phase. Additionally, an arbitrary amount of noise is added to the pseudo-measurement
results. The standard deviation used for the normally distributed noise generation of the
chamber volumes, flow rates, and arterial pressure was set as follows:

σVlv = 3.2 mL, σVla = 2.5 mL, σVrv = 2.9 mL, σVra = 2.2 mL, σPSAT = 1.1 mmHg

σQAO = 2.7 mL/s, σQPO = 2.6 mL/s, σQMI = 2.5 mL/s, σQTI = 2.54 mL/s

Figure 3 shows the data generated for the four non-hypertensive cases analyzed in
the present work, namely, the healthy case, aortic stenosis (AS) case, mitral regurgitation
(MR) case, and combined AR and MR case. It should be noted that only the ventricular
volume changes, valvular flow rates, and systemic arterial pressure are used as pseudo-
measurements during pulmonary pressure inference, and the ventricular pressures and
pulmonary pressures are merely shown for the sake of completeness.
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Figure 3. Generated data for different cases. vol—volume; SAT P—systemic arterial pressure; PAT
P—pulmonary arterial pressure; LV P—left ventricular pressure; RV P—right ventricular pressure,
AO Q—aortic valve flow rate, PO Q—pulmonary valve flow rate, MI Q—mitral valve flow rate, TI
Q—tricuspid valve flow rate.

To clinically measure the data shown in Figure 3, different equipment can be utilized. For
the present work, the following clinical measurements are proposed for further retrospective
clinical studies: The brachial arterial pressure can be measured continuously using a CNAP
monitor and volume clamp method, as discussed in [25]. The transvalvular flow rates should
be measured using Doppler echocardiography, and the heart chamber volumes should be
measured using either 3D magnetic resonance imaging (MRI) or Doppler echocardiography.

To simulate the 0D cardiovascular model and solve for the model-dependent variables
such as systemic arterial pressure (Equation (14)) and aortic sinus flow rate (Equation (11))
requires the initial conditions to be known. The initial conditions vector is shown in
Equation (18):

x̂init =

[
Vinit

LV , Vinit
LA , Pinit

AS , Qinit
AS , Pinit

SAT , Qinit
SAT , Pinit

SVN , Vinit
RV ,

Vinit
RA , Pinit

PS , Qinit
PS , Pinit

PAT , Qinit
PAT , Pinit

PVN , βinit
AO, βinit

MI , βinit
PO , βinit

TI

]
(18)

In a clinical application of the proposed parameter inference model, these initial con-
ditions should be extracted from the available non-invasive measurements. The initial
transvalvular flow rates and heart chamber volumes can be directly taken as the initial
entries in D1 and D2 for the respective data streams. Similarly, the initial cycle’s systemic ar-
terial pressure can be extracted from D1 and D2, and in the present work it is assumed that
the initial aortic sinus pressure is equal to the initial systemic arterial pressure. The initial
systemic and pulmonary arterial flow rates are approximated using Equations (19) and (20),
respectively, where SVLV and SVRV are the left and right ventricular stroke volumes, re-
spectively, which can be non-invasively estimated using Doppler echography.

Qinit
SAT =

SVLV
T

(19)
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Qinit
PAT =

SVRV
T

(20)

The remaining initial conditions—namely, Pinit
SVN, Pinit

PVN, Pinit
PS , and Pinit

PAT—are difficult to
accurately measure non-invasively; therefore, these parameters are optimized in conjunction
with selected important model parameters (Tables 1 and 2) that significantly affect mean
pulmonary arterial pressure, as discussed in Section 2.3. Since there is no substantial pressure
drop between the pulmonary sinus and the pulmonary artery, the initial pulmonary arterial
pressure and pulmonary sinus pressures were assumed to be equal, i.e., Pinit

PVN = Pinit
PS .

2.3. Local Sensitivity Analysis

A local sensitivity analysis was performed using the 0D cardiovascular model to
identify model parameters (Tables 1 and 2), with a significant effect on the mean PAP. These
identified parameters were then used in the optimization phase of the present work to infer
the PAP waveform and estimate the true cardiovascular parameters.

To find these important parameters, the sensitivity percentages of each parameter,
(designated SPPAP,i for the d parameter) were calculated as shown in Equation (21). The
top parameters making up 95% of the variance in mean PAP were then selected as the
important parameters to be optimized.

SPPAP,i = 100% · SIPAP,i

∑ntot
j=1 SIPAP,j

(21)

where SIPAP,i is the ith parameter’s sensitivity index, which is calculated using Equation (22).
To estimate the required gradients of the mean PAP, forward-mode AD was utilized.
Forward-mode AD is capable of traversing any native Julia code and, therefore, is able to
differentiate through the ODE integrator solution to calculate the required gradients in a
computationally efficient manner [17]. The gradients were calculated around the nominal values
shown in Tables 1 and 2, but seeing as the model parameters varied in orders of magnitude and
units, each mean PAP gradient was multiplied by the difference between the upper θi,ub and
lower θi,lb parameter boundaries to normalize the calculated parameter gradients.

SIPAP,i =

∣∣∣∣∣∣
∂
(

1
N∗t

∑
N∗t
j=1 Pj

PAP

)
∂θi

∣∣∣∣∣∣ · (θi,ub − θi,lb) (22)

2.4. Parameter Optimization

To estimate θ, which minimizes the difference between the 0D model’s predictions and
the synthetic (pseudo)-measurements in the present work, the sum-squared error (SSE) loss
function was minimized using selected optimizers. The SSE for the jth measurement (e.g., LV
volume, systemic arterial pressure, or mitral valve flow rate) was calculated using Equation (23):

J
(
x̂j, x̃j

)
=

(
N

∑
i=1

(
x̂i

j
(
θ
)
− x̃i

j

)2
)

j

(23)

where x̂i
j is the jth simulation output at timestep i, and x̃i

j is the jth synthetically measured

value (e.g., arterial pressure or LV volume) at timestep i. Furthermore, θ is the parameter
vector containing all of the selected important parameters, x̂j is the vector of model predic-
tions for measurement j, and x̃j is the vector of synthetic measurements for measurement j.
The loss function minimized by the computer model is then simply the summation of the
different measurement losses J

(
x̂j, x̃j

)
, as shoen in Equation (24), where d is the number of

measurement streams (5 and 9 for D1 and D2, respectively, as mentioned in Section 2.2).

L
(

X̂
(
θ
)
, X̃
)
=

d

∑
i=1

(J(x̂i, x̃i)) (24)
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To speed up optimization convergence, the parameter and measurement datasets were
normalized using min–max scaling. For the parameter vector, the upper and lower bound-
aries listed in Tables 1 and 2 were used. The scaling transformation of the optimization
parameters can be seen in Equation (25), where θ

∗
is the scaled parameter vector, θlb is a

vector of the lower boundary parameter values, and θub is a vector of the upper boundary
parameter values.

θ
∗
=

θ − θlb

θub − θlb
(25)

The measurements and model predictions were scaled using the maximum and mini-
mum measured values, e.g., for parameter i, max(x̃i) and min(x̃i). For example, Equation
(26) shows the scaling of the systemic arterial pressure input waveform PSAT for timestep i:

x̂∗PSAT ,i =
x̂PSAT,i −min

(
x̃PSAT

)
max

(
x̃PSAT

)
−min

(
x̃PSAT

) (26)

In the present work, three optimization strategies were employed. The first used the
adaptive moment estimation (Adam) first-order optimizer. The Adam algorithm is shown
in Equation (27):

m← β1m + (1− β1)∇θ L
(
θ
)

s← β1s + (1− β2)∇θC
(
θ
)
⊗∇θ L

(
θ
)

m← m
1− βt

1

s← s
1− βt

2

θ
new ← θ − ηm⊗

√
(s + ε)−1

(27)

The scaling s and momentum m matrices are initialized to 0 at the start of the Adam
training algorithm, t is the iteration counter, ε = 1× 10−8 is the smoothing term, β1 is the
momentum decay hyperparameter (and is set to 0.9), and β2 is the scaling hyperparameter
and is set to 0.999 [19]. In Equation (26),∇θL(θ) represents the gradients of the cost function
with respect to the optimization parameters. For the optimization runs, the learning rate
parameter η is fixed to a value of 0.005.

The second strategy uses the conjugate gradient descent [26] optimizer to minimize
the loss function. The conjugate gradient optimizer update algorithm for the parameters is
shown in Equation (28):

θ
new ← θ − ηd

new

d
new ← ∇θ L

(
θ
)
− γnewd

old (28)

For the first iteration, d = ∇θL(θ). In the present work, the learning rate parameter η
was estimated per iteration using the line search proposed by Hager and Zhang [27]. The
scalar variable γnew was also calculated using the method proposed by Hager and Zhang.

The third strategy applies a combination of Adam and L-BFGS [28] optimizers to minimize
the loss function. For this strategy, the first 50 iterations of the optimization phase were
completed using Adam, after which the model switched over to the L-BFGS. The interested
reader can see [26] for more information about the L-BFGS optimization algorithm.

3. Results

To find the best optimization strategy and to demonstrate the ability of the proposed
method to infer the PAP waveforms for diseased heart valve cases, two investigations were
performed: The first looked at the effects of selected optimizers and dataset contents on the
parameter estimation accuracy and pulmonary pressures for healthy heart valves. Using
the best-performing optimizer of this study, we then investigated the ability of the model to
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capture the PAP waveforms for synthetic data generated with induced mitral regurgitation
and aortic stenosis, with and without increased pulmonary arterial impedance.

3.1. Local Sensitivity Analysis

Before the two above sets of results are discussed, the important model parameters
selected using the local sensitivity analysis must be provided. Figure 4 shows a histogram
of all of the model parameters and their respective sensitivity percentages, as calculated
using Equation (21). The legend for Figure 4 is shown in Table 3.

Figure 4. Model parameter sensitivity percentages.

Table 3. Legend for sensitivity analysis results.

ELVS LV systolic elastance SASL SAS inertia

ELVD LV diastolic elastance SATC SAT compliance

VOLV LV unstressed volume SATR SAT resistance

EMALA LA maximal elastance SATL SAT inertia

EMILA LA minimal elastance SVNC SVN compliance

VOLA LA unstressed
volume SVNR SVN resistance

ERVS RV systolic elastance PASC PAS compliance

ERVD RV diastolic elastance PASR PAS resistance

VORV RV unstressed
volume PASL PAS inertia

EMARA RA maximal elastance PATC PAT compliance

EMIRA RA minimal elastance PATR PAT resistance

VORA RA unstressed
volume PATL PAT inertia

SASC SAS compliance PVNC PVN compliance

SASR SAS resistance PVNR PVN resistance

From the results, it can be seen that the parameter with the largest effect on the mean
PAP is the pulmonary arterial resistance (28.8%), followed by the left ventricular diastolic
elastance (28.1%), systemic venous resistance (12%), and right ventricular diastolic elastance
(8.3%). In total, 11 parameters were selected to be optimized in subsequent sections, along
with the aforementioned initial conditions (Section 2.2). Equation (29) shows the important
parameter vector:

θ = [ RPAT ELV,d RSVN ERV,d ELA,min ERA,max RSAT ERA,min ERV,s

ELA,max ELV,s Pinit
PVN Pinit

SVN Pinit
AS Pinit

PAT ]
(29)
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The local sensitivity analysis was also performed for both diseased heart valve con-
ditions, and the analysis identified the same parameters as shown in Equation (28), but
with differences in the sensitivity percentages allocated to each parameter. Similarly, the
local sensitivity analysis was performed using the systolic PAP as the objective. The same
important parameters were identified, except for a single parameter pair. The left atrium’s
maximal elastance was not on the list of the most important parameters—the pulmonary ar-
terial compliance. These parameters only contribute to approximately 1.5% of the variance
in their respective pulmonary arterial pressure values. Therefore, it was decided to use
the parameters identified with the mean PAP, since mean PAP is typically used to identify
pulmonary arterial hypertension.

3.2. Healthy Cardiovascular System Results

Using the nominal model parameters shown in Tables 1 and 2, synthetic datasets
(D1 and D2) were generated and used as pseudo-measurements. The proposed inference
model was tasked to recover the important model parameters (Equation (28)), while the
remaining parameters were fixed to their respective nominal values. The goal of this
investigation was to quantify the effects of the addition of heart chamber volume data and
optimizer selection on parameter inference and pulmonary waveform prediction accuracy.

To estimate the parameter inference errors, the absolute percentage error (APE) metric
was used. The equation used to calculate the APE for the ith important parameter is shown
in Equation (30):

APE = 100%· |θi − θi,true|
θi,true

(30)

Table 4 contains the APEs calculated for the different important parameters using the
different datasets and optimizers. Additionally, the mean APE (MAPE) is also provided.
The results indicate that the addition of the heart chamber volume data (D2) significantly
improves the inference accuracy for all of the applied optimizers. Studying Equation (2)
and Figure 2, it becomes clear that the heart chamber volume trends indirectly contain
information about the atrial upstream flow rates (Qsvn and Qpvn), which is needed to
integrate the mass continuity equation to find the time-dependent changes in chamber
volume. The indirect addition of these flow rates positively impacts the ability of the
inference model to accurately predict the unknown model parameters.

Table 4. Absolute percentage errors (APEs—Equation (30)) per parameter for datasets generated
using nominal model parameters.

Parameters SP D1 + ADAM D1 + CGD
D1 +

L-BFGS
(hybrid)

D2 +
ADAM D2 + CGD

D2 +
L-BFGS
(hybrid)

ELV,s 1.42 7.1 3.2 8.8 0.4 1.7 2.1
ELV,d 28.18 10.3 9.9 3.4 2.0 2.0 1.3

ELA,max 1.62 155.7 141.7 109.6 5.3 4.3 1.3
ELA,min 4.11 89.3 86.3 64.1 5.8 3.8 1.9
ERV,s 2.04 1.9 1.4 0.2 1.0 2.0 0.8
ERV,d 8.33 12.8 29.9 26.7 1.9 2.6 2.1

ERA,max 3.43 22.1 46.5 41.3 1.8 2.4 0.9
ERA,min 2.39 12.4 14.0 13.9 1.7 1.4 2.3

RSAT 3.17 8.5 6.7 7.1 4.3 2.1 0.3
RSVN 11.95 20.6 10.3 18.6 14.3 14.7 12.6
RPAT 28.83 5.0 39.0 2.9 2.7 3.8 3.0
Pinit

PVN - 3.8 23.8 17.4 4.4 6.3 8.0
Pinit

SVN - 14.1 2.5 12.4 2.1 8.2 0.9
Pinit

PS , Pinit
PAT - 5.4 16.6 15.3 0.0 1.2 1.4

MAPE - 26.4 30.8 24.4 3.4 4.0 2.8

Of the three model configurations trained using D2, the Adam-L-BFGS hybrid opti-
mization approach resulted in the lowest overall MAPE, followed by the Adam optimiza-
tion approach. For the hybrid optimization approach, all parameters had APEs between
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0 and 5%, except for the systemic venous resistance and the initial pulmonary venous
pressure parameters. Although these two parameter inference errors are high, they have
a small effect on the ability of the model to accurately recover important PAP values, as
shown in Table 5. It is interesting to note that the Adam optimization approach more
accurately predicts the pulmonary pressures but has a higher overall MAPE compared to
the hybrid optimization approach. An explanation of this is that the estimated pulmonary
arterial resistance parameter has a lower APE for the Adam approach when compared to
the value predicted using the hybrid optimizer approach. Nonetheless, since the hybrid
optimizer produces the most accurate parameter estimates, it was selected for further
studies involving diseased mitral and aortic heart valves.

Table 5. Pulmonary pressure predictions for nominal model parameters.

PAP (mmHg) True Values D2 + ADAM D2 + L-BFGS (Hybrid)

Diastole 13.93 13.96 13.94
Systole 25.11 25.05 24.96
Mean 17.65 17.58 17.42

As shown in the results in Table 4, the addition of the heart chamber volume wave-
forms (D2) during the optimization phase of the model substantially lowered the achieved
MAPE values. At first glance, one can assume that the transvalvular flow rate waveforms
do not significantly contribute to successfully finding the unknown parameters. To quantify
the effects of the valvular flow rates on the inference accuracy, an additional simulation was
performed, using a dataset that contained only the chamber volume and systemic arterial
pressure waveforms (called D3), but not the transvalvular flow rate waveforms. The results
are shown in Table 6. The optimizer applied to generate the results in Table 6 was the
hybrid ADAM + L-BFGS optimizer. The results indicate that achieved MAPE is slightly
higher when compared to the D2 + hybrid model results (Table 4), demonstrating that the
valvular flow rates are beneficial to the search algorithm. Furthermore, it is important to
note that the predicted RPAT values are substantially higher in Table 6 when compared to
the values of the D2 + hybrid model results in Table 4, again highlighting the importance
of including the valvular flow rates during the optimization phase, since this resistance
value directly influences the simulated arterial pressure waveforms, as seen in Equation
(13). To show this, the diastole, systole, and mean PAP values—which were 13.9, 24.7, and
17.2 mmHg, respectively—were compared to the true and D2-acquired values in Table 5.
These, results show that the omission of the valvular flow data does slightly affect the
capability of the model to recover the important PAP values. If the valvular flow data
should be omitted, they can only be determined through the application of the current
approach to clinical data, which could be the focus of future work.

To highlight the robustness of the proposed hybrid optimization approach, the stan-
dard deviations used for noise generation were increased to the values shown below, and
the above parameters were reoptimized using D2 and the hybrid optimizer.

σVlv = 8 mL, σVla = 6 mL, σVrv = 7 mL, σVra = 5 mL, σPSAT = 10 mmHg

σQAO = 61 mL/s, σQPO = 37 mL/s, σQMI = 50 mL/s, σQTI = 39 mL/s

The achieved MAPE when using the hybrid optimizer along with D2, with increased
noise, was 4.7%. This MAPE value is similar in magnitude to the entry in Table 4 for the
same optimizer and dataset used. For the remainder of this work, the datasets using the
lower noise standard deviations are applied.



Math. Comput. Appl. 2022, 27, 83 14 of 17

Table 6. Absolute percentage errors (APEs—Equation (30)) per parameter using a dataset containing
only ventricle volume and systemic arterial pressure waveforms (D3).

Parameters APE

ELV,s 2.0
ELV,d 2.0

ELA,max 2.4
ELA,min 2.0
ERV,s 2.2
ERV,d 4.0

ERA,max 3.6
ERA,min 2.1

RSAT 3.8
RSVN 13.3
RPAT 12.0
Pinit

PVN 1.2
Pinit

SVN 0.9
Pinit

PS , Pinit
PAT 1.7

MAPE 3.8

3.3. Diseased Heart Valve Case Studies

To investigate the ability of the proposed model to infer model parameters and PAP
values for diseased heart valve cases, additional datasets were generated. These datasets
consisted of data generated for induced aortic stenosis, mitral regurgitation, and a combination
of these two valve diseases. To simulate aortic stenosis, the maximal valve opening angle was
limited to 49.4◦, which corresponds to a valvular flow area of 1 cm2 for a valve diameter of
24.7 mm. Mitral regurgitation is induced by limiting the minimal mitral valve’s closing angle
to 33◦, which corresponds to an open flow area fraction of 5%. For the combined case, both
the aortic stenosis and mitral regurgitation limits were induced simultaneously.

For the three valvular disease cases, the nominal parameters listed in Tables 1 and 2
were used to generate the synthetic data. The APEs calculated for the five parameters with
the highest SP values can be found in Table 7, along with MAPEs calculated using all of
the parameters and initial conditions. The MAPE results show that the selected approach
using D2, along with the hybrid optimizer, can predict the unknown model parameters
for the three diseased cases with the same relative accuracy compared to the MAPE value
calculated for the healthy case (Table 4). The case with the highest MAPE and highest
parameter APE (RSVN = 12.12%) is the mitral regurgitation case, whereas the results show
that the inclusion of aortic stenosis decreases the predicted parameter errors.

Table 7. Absolute percentage errors (APEs—Equation (30)) per parameter for datasets generated using
nominal model parameters with aortic stenosis, mitral regurgitation, and both valvular diseases present.

Parameters Aortic Stenosis Mitral Regurgitation Combined

ELV,d 1.26 0.62 1.93
ELA,min 1.44 0.74 1.82
ERV,d 0.05 1.87 2.03
RSVN 0.39 12.12 7.14
RPAT 2.80 7.74 6.62

MAPE (all parameters) 1.70 3.78 3.33

Figure 5 shows the right ventricle and pulmonary arterial pressure waveforms sim-
ulated using the predicted model parameters for the different diseased heart valve cases.
The systole, diastole, and mean PAP predicted, along with the true values, are shown in
Table 8, where the true values are the pressure values with no noise present. The results
show that using the inferred model parameters, the 0D cardiovascular model can capture
the true waveforms generated with the nominal parameter set with relative accuracy for
both the unobserved ventricle and pulmonary artery pressures. For the combined diseased
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case, it can be seen that the model using the inferred parameters slightly underpredicts the
average pulmonary pressure prediction (average calculated using mean, systole, and dias-
tole values) by approximately 1.5%, whereas for the other cases the model can accurately
capture the diastole, systole, and mean PAP values.

Figure 5. Pulmonary arterial and right ventricle pressure waveforms predicted by the model, along
with predicted important PAP values using nominal model parameters. Solid lines—predicted values;
markers—actual waveforms + noise.

Table 8. Global results for diseased heart valve cases (values in parentheses are the true pseudo-
measurement values).

Pulmonary Arterial Pressure Aortic Stenosis Mitral Regurgitation Combined

Diastole 13.61 (13.6) 15.68 (15.67) 15.48 (15.47)
Systole 24.95 (25.03) 25.12 (25.2) 25.24 (25.12)
Mean 17.33 (17.44) 18.85 (19) 19.11 (18.86)

As seen in the results in Table 8, the mean PAP values for the different cases are below
25 mmHg [5], which is the typical upper limit for normal pulmonary pressures. To induce
pulmonary hypertension, the pulmonary resistance was increased from 0.05 to 0.25

[
mmHg·s

mL

]
,

and the pseudo-data (e.g., transvalvular flow rates, heart chamber volumes, and systemic
arterial pressures) were regenerated for the mentioned diseased heart valve settings. Using
these new datasets, the inference model was again applied to recover the unknown model
parameters, the goal being to investigate the model accuracy for hypertensive conditions.
Table 9 contains the top five most important parameter APEs along with the MAPE using all
of the predicted parameters. The results again indicated that the inference model can find the
unknown important parameter values with relative accuracy, and that the effect of increased
pulmonary arterial resistance on the overall MAPE values is not substantial. It is interesting to
note that the pulmonary arterial resistance APEs from Table 9 are on average approximately
3.5% higher when compared to the values in Table 7, where the nominal pulmonary resistance
value is used for pseudo-measurement generation.

Table 9. Absolute percentage errors (APEs—Equation (30)) per parameter for datasets generated
using increased pulmonary arterial resistance with aortic stenosis, mitral regurgitation, and both
valvular diseases present.

Parameters Aortic Stenosis Mitral Regurgitation Combined

ELV,d 1.63 0.76 0.58
ELA,min 1.80 1.23 0.79
ERV,d 4.29 0.52 0.80
RSVN 0.07 2.58 5.06
RPAT 6.72 4.95 10.39

MAPE (all parameters) 3.13 2.51 3.42

Figure 6 shows the pulmonary arterial and right ventricular pressure waveforms
along with the predicted and actual PAP values. These results show that although the
predicted APEs for RPAT are higher for the increased resistance cases, the inference model
is still capable of capturing the pulmonary pressure dynamics with relative accuracy.
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However, for the combined case, it should be noted that the model slightly underpredicts
the systolic right ventricular pressure, due to the overprediction of the right ventricular
systolic elastance parameter (1.21 mmHg/mL vs. 1.15 mmHg/mL), which lowers pressure
generation in the ventricle.

Figure 6. Pulmonary arterial and right ventricular pressure waveforms predicted by the model,
along with predicted important PAP values using increased pulmonary arterial resistance. Solid
lines—predicted values; markers—actual waveforms + noise.

For the PAP systole, diastole, and mean values shown in Table 10, the inference model
has average error percentages of 1.12%, 2.49%, and 2.14%, respectively. These low errors
highlight the possible ability of the proposed model to capture pulmonary pressures for
diseased heart valves and hypertensive conditions.

Table 10. Global results for diseased heart valve cases with induced PAH (values in parentheses are
the true pseudo-measurement values).

Pulmonary Arterial Pressure Aortic Stenosis Mitral Regurgitation Combined

Diastole 24.33 (24.5) 24.15 (24.5) 24.6 (24.3)
Systole 36.04 (34.4) 34.08 (34.48) 34.97 (34.44)
Mean 29.57 (30.02) 28.5 (29.15) 29.85 (29.07)

4. Conclusions

In the present work, it was demonstrated that the proposed algorithm can successfully
recover the pulmonary arterial pressure waveform and associated clinically important
values (i.e., systolic, diastolic, and mean values) using non-invasive measurements and
a 0D cardiovascular dynamic network model. It was demonstrated that using systemic
arterial pressure and heart chamber volume waveforms the proposed model can success-
fully recover simulated pulmonary arterial pressure waveforms. Furthermore, using the
mentioned data in conjunction with an Adam-L-BFGS optimizer and the 0D cardiovascular
network model yielded the most accurate results compared to other optimizers, such as
conjugate gradient descent. It was found that including the valvular flow rates only slightly
increased the inference accuracy of the proposed model. It should be noted that a limitation
of the proposed approach is that it is assumes that the 0D model is complex enough to
capture the dynamics of an actual human cardiovascular system—not only for synthetic
data generation, but also for inference purposes. Therefore, future work will entail using
retrospective clinical data to validate the proposed inference modelling approach.
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