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Abstract: As demands for understanding visual style among interior scenes increase, estimating style
compatibility is becoming challenging. In particular, furniture styles are difficult to define due to
their various elements, such as color and shape. As a result, furniture style is an ambiguous concept.
To reduce ambiguity, Siamese networks have frequently been used to estimate style compatibility by
adding various features that represent the style. However, it is still difficult to accurately represent
a furniture’s style, even when using alternate features associated with the images. In this paper,
we propose a new Siamese model that can learn from several furniture images simultaneously.
Specifically, we propose a one-to-many ratio input method to maintain high performance even
when inputs are ambiguous. We also propose a new metric for evaluating Siamese networks. The
conventional metric, the area under the ROC curve (AUC), does not reveal the actual distance between
styles. Therefore, the proposed metric quantitatively evaluates the distance between styles by using
the distance between the embedding of each furniture image. Experiments show that the proposed
model improved the AUC from 0.672 to 0.721 and outperformed the conventional Siamese model in
terms of the proposed metric.

Keywords: Siamese network; CNN; furniture; style; compatibility; ambiguity

1. Introduction

Understanding visual styles in interior scenes has attracted enormous interest in var-
ious domains, such as art, advertising, and e-commerce [1–3]. Visual styles are typically
estimated based on reference images, so the dynamics of user preferences by assessing
visual styles when user-preferred images are given [4,5]. Specifically, the furniture in-
cludes various kinds of information, such as color, shape, size, material, and texture; thus,
detecting appropriate visual features is challenging for visual style detection [6,7]. In
image processing, various visual features related to HOG, SIFT, and SURF features have
been proposed [8–10]. A more recent trend is automatically using deep visual features to
extract complex features [11,12]. To extract the deep visual features, the Flatten layer is
used before the dense layer in a Deep Convolutional Neural Network. The deep visual
features better measure visual similarities between furniture images than conventional
image processing methods.

Meanwhile, style congruence is essential for furniture. A few studies have focused
on furniture style compatibility [13–15], utilizing visual embeddings in Euclidian space
to classify complex boundaries by outputs from multiple networks. In these studies, the
Siamese network, a Deep Metric Learning method, was used to evaluate the compatibility
of furniture styles. When mapping to a feature space, Siamese networks optimize the Eu-
clidean distance between items, so similar items are close and vice versa [16]. Thus, Siamese
networks can not only estimate the similarity but also estimate the degree of similarity.
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However, furniture style is a concept that is an ambiguous concept that is difficult
to define. For example, while some people may describe a chair as modern, others can
describe it as traditional. Therefore, to accurately estimate the similarity, the ambiguity
must be alleviated. Aggarwal et al. improved furniture style compatibility by combining
classification loss when training a regular Siamese network [13]. Weiss et al. also accu-
rately represented furniture styles by assigning multiple possible applicable style labels
to furniture [17]. Each of these studies addressed furniture style ambiguity using addi-
tional information when training the Siamese network. However, adequately representing
furniture styles is difficult with supplemental information. Therefore, the conventional
structure of the Siamese network, which compares two furniture images, does not facilitate
accurate evaluation.

In this paper, we propose a model that improves the ambiguous conventional Siamese
network and utilizes multiple furniture images. Specifically, multiple furniture images are
utilized in a one-to-many ratio, and all images in “many” are of the same style to evaluate
similarity. Consequently, the model learns the style’s characteristics more accurately, even
when ambiguous furniture images are given as input. Moreover, the proposed Simaese
network, that learns in a one-to-many ratio, can infer the compatibility between a furniture
image and other same-style furniture images. Although furniture of the same style is not
necessarily interchangeable, as a first step in proposing a new model, this study assumes
that furniture of the same style is interchangeable and verifies the performance.

We conducted an evaluation experiment using the Bonn Furniture Styles Dataset [13]
and used the area under the ROC curve (AUC), a commonly used metric in compatibility
estimation, to verify the effectiveness of the proposed method. However, the AUC eval-
uation does not indicate the distance between styles in the feature space. Therefore, to
analyze distance in the feature space, we propose a metric called Styles Difference Distance
(SDD) that represents the distance between each style. The results show that the proposed
method improves the accuracy of determining style similarity among furniture and better
maps the distance between different styles in the feature space. That is, furniture items
with the same style are placed closer together in the feature space and vice versa. Our main
contributions are summarized as follows:

(1) We propose a method that learns multiple furniture images in a one-to-many ratio that
expands a Siamese network. Compared to the conventional Siamese network, which
uses two images in a one-to-one ratio, it can better estimate the similarity of furniture.

(2) We proposed SDD as a new evaluation scale for compatibility assessment. Using the
test dataset, we analyzed the Euclidean distance of each style for both the proposed
and conventional methods. As a result, the different styles were successfully placed
farther apart in the feature space.

(3) The proposed method can recommend furniture that fits well with multiple pieces of
furniture; because of its input method, it can search for furniture that fits the style of
all items.

2. Related Work

Because furniture style is an ambiguous concept that is difficult to define quantitatively,
the degree to which a piece of furniture belongs to a style differs. For example, while
there could be a classic modern chair, there could be a chair that is only slightly modern.
Therefore, it is necessary to go beyond conventional style-based furniture classification to
evaluate style compatibility among furniture quantitatively. Thus, Siamese networks are
often used in this field. In addition, since the ambiguity of furniture styles makes accurate
learning difficult, there is a need to mitigate ambiguity. For this reason, research has been
conducted to train a Siamese network using additional information representing furniture
styles along with its usual image features.

Aggarwal et al. exploited classification loss when training a Siamese network [13].
Specifically, a softmax layer was added to the subnetwork of the Siamese network to
simultaneously learn image features and the classification loss associated with the clas-
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sification results. Consequently, they succeeded in improving the accuracy of furniture
style compatibility evaluation. Weiss et al. also gave multiple style labels to furniture
to provide a detailed representation of ambiguous furniture styles [17]. Specifically, ten
interior designers assigned a style to each piece of furniture to ensure accurate learning.
Bell et al. proposed a method for learning the similarity between symbolic furniture images
on a white background and actual room images [18]. Li et al. proposed learning the joint
embedding of images and 3D models [19].

In these studies, while distinctive features were applied to the Siamese network,
the network’s structure was a conventional Siamese network that compares two images.
As a result, even if features are devised, it is difficult to learn accurately if either image
is ambiguous. Therefore, we propose a Siamese network that learns in a one-to-many
ratio between multiple furniture images. Learning in a one-to-many ratio alleviates style
ambiguity and brings compatible items closer together in the feature space. Compared to
the conventional method, which uses two images, our method maintains accurate learning
even when ambiguous images are mixed.

3. Siamese Network

A Siamese network is a type of Deep Metric Learning that consists of two sub-networks
and a distance function. Due to its structure, the Siamese network uses two input images
and is trained by comparing the compatibility of two input images. In other words,
embeddings of similar images are closer together, and dissimilar images are farther apart
in the feature space. When the model is trained, the model is optimized by inputting
a pair of images into a sub-network with shared weights. It then adjusts the distance
between the paired images using a distance function. Therefore, the Siamese network can
classify images and quantitatively measure the similarity of images. Because it learns the
embedding method, the Siamese network can robustly respond to unknown classes, thus
making it effective for few-shot and one-shot learning [16,20]. In addition, even when the
training data is insufficient, the Siamese network can ensure sustainable training because it
is an excellent model for discriminating visual similarities. Therefore, the Siamese network
is effective for simple classifications and clustering of images, but it can also be used to
estimate compatibility regarding the affinity between items because it can measure the
degree of similarity [21–24].

The conventional Siamese model used in this study is shown in Figure 1a. As this
study focuses on images, VGG-19 [25], a CNN that excels in image classification, was used
as the sub-network. VGG-19 is pretrained on Imagenet [26]. In addition, this study assumes
a dataset with multiple styles (e.g., Modern and Asian) and categories (e.g., chair and table)
to learn and estimate style compatibility.

(a) (b)
Figure 1. Structure of Siamese networks. (a) Conventional Siamese model. (b) Proposed Siamese
model. J = 2 in It

j ; j = 1, 2, · · · , J.

In the conventional Siamese model, (Ib, It) is the input to VGG-19 with shared weights,
with Ib as the base image and It as the target image. Note that the furniture category C of
the input (Ib, It) is defined as C(Ib) 6= C(It) since the goal is to estimate style compatibility
independent of the furniture category. Then, the 512-dimensional output (xb, xt) from
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VGG-19 is embedded in the feature space, and the Euclidean distance D between (xb, xt) is
calculated. The Euclidean distance D is defined by the as follows:

D(Ib, It) =‖ xb − xt ‖2 (1)

To achieve optimal D, the conventional Siamese model employs Contrastive Loss [16] as
the loss function. Contrastive Loss can learn embeddings so that D is smaller when (Ib, It)
are in the same style and D is farther away when (Ib, It) are in different styles. First, in
the style compatibility estimation, when (Ib, It) are in the same style, i.e., when they are
positively compatible, the loss Lp is expressed as

Lp(Ib, It) =
1
2

D2 (2)

From (2), the smaller D is, the smaller Lp becomes, which converges to 0. Therefore, it is
possible to make the distance between positively compatible (Ib, It) smaller. Meanwhile,
when (Ib, It) are in different styles, i.e., negatively compatible, the loss Ln as

Ln(Ib, It) =
1
2

max[m− D, 0]2 (3)

In (3), the margin m is a hyper-parameter, and Ln converges to 0 when D is greater than m.
As a result, it is possible to move negatively compatible items (Ib, It) apart. Contrastive
Loss is the combination of Lp and Ln and is expressed by the following equation:

Lcon(Ib, It, Y) =
1
2
(YD2 + (1−Y)max[m− D, 0]2) (4)

In (4), label Y is equal to 1 when (Ib, It) are positively compatible and equal to 0 when
(Ib, It) are negatively compatible. This allows Lcon to apply Lp and Ln depending on the
input image to achieve optimal D.

4. Proposed Model
4.1. Proposed Siamese Architecture

To improve the accuracy of estimating furniture style compatibility, we propose a
Siamese architecture that learns using three or more input images by increasing It to multi-
ple images. The structure of the proposed Siamese model is shown in Figure 1b. As in the
conventional Siamese model, the sub-network of the proposed model uses VGG-19, which
is pretrained with ImageNet. Moreover, as stated in Section 3, the proposed model assumes
a dataset with multiple styles and categories to learn and estimate style compatibility.

In the proposed Siamese model, the multiple input images are defined as (Ib, It), It =
{It

j ; j = 1, 2, · · · , J}, where J denotes the number of It pieces to be compared with Ib.
The input images are each input to a VGG-19 with shared weights. Note that because the
proposed Siamese model aims to estimate style compatibility independent of the furniture
category (e.g., chair, table), the furniture category C of the input (Ib, It) is C(Ib) 6= C(It

j ) 6=
C(It

i ), j 6= i. Next, the 512-dimensional outputs (xb, χt), χt = {xt
j ; j = 1, 2, · · · , J} from

each VGG-19 are embedded in the feature space. Finally, the sum D of Euclidean distances
between xb and each xt

j is calculated, where D is defined as follows:

D(Ib, It) =
J

∑
j=1
‖ xb − xt

j ‖2 (5)

From (5), the proposed Siamese model learns compatibility between It and multiple It

simultaneously. In other words, when (Ib, It) are positively compatible, Ib is moved closer
to multiple It, and when (Ib, It) are negatively compatible, Ib is placed farther away from



Math. Comput. Appl. 2022, 27, 76 5 of 13

multiple It. To achieve optimal D, the proposed Siamese model also employs Contrastive
Loss as the loss function and learns in the same way as the conventional Siamese model.

The most distinctive feature of the proposed Siamese model is that it optimizes the
network in a one-to-many ratio using three or more input images. This structure is of
great significance when evaluating the compatibility of furniture styles that contain am-
biguity. Furniture styles consider a composite of various factors, resulting in variations
in embedding in the feature space. That is, furniture images often deviate from the dis-
tribution of embeddings for each style. Therefore, the conventional Siamese model has
difficulty learning accurately when two input images contain ambiguous furniture images,
i.e., embeddings far from the center of the distribution. Moreover, in the proposed Siamese
model that utilizes three or more input images, the impact per image becomes smaller by
increasing the number of It, according to (5). Therefore, even if It contains furniture images
far from the center of the distribution, the presence of other It reduces the influence of
such furniture images, and the style can be learned. In other words, the proposed Siamese
model can guarantee style learning by increasing the number of It to reduce the possibility
that only ambiguous furniture is included in It. In addition, at the time of inference, the
proposed Siamese model infers compatible furniture for multiple It. Therefore, compared
to the conventional Siamese model, which can only infer furniture compatible with one
piece of It, the proposed Siamese model, which can consider compatibility with multiple
pieces of furniture, is more convenient.

4.2. Style Difference Distance

To quantitatively evaluate the ability of the proposed Siamese model to estimate
style compatibility, we propose the SDD evaluation measure. SDD indicates the distance
between S(It) and other styles, which is calculated by computing the Euclidean distance
between It and a large number of Ib. For example, when the style of S(It) is Modern,
the difference of the average Euclidean distance between It and all Modern Ib, and It

and all Traditional Ib is the SDD of Traditional when S(It) is Modern. In other words,
SDD can clarify the distance between S(It) and other styles; the larger the SDD, the
greater the distance is between S(It) and other styles. This means that furniture that is
farther away is less likely to be recommended during inference, and furniture of the same
style as S(It) can be inferred with high accuracy; accordingly, the larger the SDD is, the
higher the performance becomes. Thus, the approach to the distance between styles is
a practical and essential factor in inference. Therefore, SDD is an effective evaluation
measure that approaches the distance between styles, which is not considered by the AUC,
a conventionally used evaluation measure.

SDD was used when evaluating the proposed method with a furniture image dataset
of multiple furniture categories and styles. In particular, the style compatibility was
quantitatively estimated by analyzing the distance D between Ib and It. Because there
are multiple candidates of Ib for It, we define all possible furniture image sets as Ib′ =

{Ib′
k ; k = 1, 2, · · · , K} from the dataset. This means that the distance to all furniture images

that are different from the furniture category of It is measured. The calculation of SDD is
shown below. Let S = {sv; v = 1, 2, · · · , V} be the total style and S(It) = r be the style of
It. (Ib′

sv , Ib′
r ) denotes the Ib′ whose style is (sv, r).

SDDsv =
1
|Ib′

sv |

|Ib′
sv |

∑
k=1

D(Ib′
sv ,k , It)− 1

|Ib′
r |

|Ib′
r |

∑
k=1

D(Ib′
r,k , It) (6)

SDD is the distance between both the style different from It and the style same as It.
Therefore, the derived value of SDD is equal to the number of styles in the dataset, and
the output is a histogram. In (6), SDDsv is the SDD of one out of all the styles, where
(|Ib′

sv |, |I
b′
r |) denotes the total number of (Ib′

sv , Ib′
r ). Thus, (6) calculates the distance between

(sv, r), i.e., the average difference between a style and a style identical to It. Note that
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when calculating the SDD of the same style as It, i.e., sv = r, SDDsv=r = 0 because it is the
distance between the same styles. Finally, the histogram created by calculating SDD for r
for all styles is given as

GSDD =
V

∑
v=1

SDDsv (7)

From (7), SDD is calculated for the number of styles V, and the histogram GSDD is created.
The calculations of SDD clarify the distance between GSDD and the other styles and enables
quantitative style compatibility estimation. Note that the conventional Siamese model can
also be evaluated by SSD when J is set to 1 in (5).

5. Experiments

The experiment has two aims: (i) evaluation of the compatibility between furniture
styles and (ii) evaluation of the distance between styles. Regarding (i), we trained the
conventional and proposed Siamese models on the furniture image dataset and evaluated
the compatibility of furniture styles by AUC. Note that for the proposed Siamese model
in this experiment, we set J = 2 and J = 3 in (5), where the three furniture images were
learned in a one-to-two ratio, and the four furniture images were learned in a one-to-three
ratio, respectively. For (ii), we evaluated the distance between styles by analyzing the
embedding of furniture images in the feature space using the proposed SDD of each model
learned in (i).

5.1. Furniture Image Dataset

In this experiment, the Bonn Furniture Styles Dataset [13] was used. The Bonn Furni-
ture Styles Dataset contains 90,298 images, which are classified into six categories: beds,
chairs, dressers, lamps, sofas, and tables. The images in each category are classified into
17 different styles, which include Asian, Beach, and Contemporary.

In addition, when training the conventional and proposed Siamese models, referring
to [13], the Bonn Furniture Styles Dataset was divided into training, validation, and test
data at a ratio of 68:12:20.

5.2. Creation of Input Image Sets

The conventional and proposed Siamese models used in this experiment were trained
based on multiple input images. Therefore, it was necessary to create a set of input images
to train each model. The Siamese network trains and optimizes models so that the distance
between images is closer for similar input image sets and vice versa. For each model, a set
of positively compatible input images (positive inputs) and a set of negatively compatible
input images (negative inputs) are created. The input image set used for each model utilizes
the segmented Bonn Furniture Styles Dataset. Then, 24,000 pairs were created for training,
4800 pairs for validation, and 4800 pairs for testing, with the same ratio of positive and
negative inputs.

In the conventional Siamese model, two sets of positive and negative inputs are
created to implement the learning method with two input images. Examples of positive
and negative inputs in the conventional Siamese model are shown in Figure 2. Positive
inputs define furniture images of the same style, and negative inputs define those of
different styles. However, within each set of input images, the same furniture category
(e.g., two chairs) should not be included.

To train the proposed Siamese model with three input images in a one-to-two ratio,
three sets of positive and negative inputs are created. Examples of positive and negative
inputs in the proposed Siamese model are shown in Figure 3. A positive input is defined as a
furniture image with all the same styles. Negative inputs learn negative style compatibility
in a one-to-two ratio by defining 2 out of 3 furniture images as the same style. As in
the conventional Siamese model, the same furniture category is not included in each
input image set. Similar to the one-to-two learning, in the one-to-three learning, 3 out of
4 furniture images are in the same style for the negative inputs.
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(a) (b)
Figure 2. Example of input image set for the conventional Siamese model. (a) positive inputs.
(b) negative inputs.

(a) (b)
Figure 3. Example of input image set for the proposed Siamese model. (a) positive inputs. (b) nega-
tive inputs.

5.3. Performance Evaluation

Furniture style compatibility was learned using the training and validation data from
the input image set for both the conventional and proposed Siamese models. Then, for each
pretrained model, we evaluated its ability to estimate style compatibility by the AUC using
the test data. In addition to the two Siamese models, the ability of VGG-19 to estimate
the AUC was validated as a baseline. Specifically, features were extracted from the final
fully-connected layer of VGG-19 pretrained to classify the 17 styles, and the AUC was
calculated based on the Euclidean distance between two paired images, referring to [13].
After the evaluation by AUC, the distance between styles was quantitatively evaluated by
SDD, the newly proposed evaluation measure.

5.3.1. Parameter Settings

When training the conventional and proposed Siamese models, RMSprop was em-
ployed as the optimizer. The batch size was set to 150 and the epoch number was set to 8.
Referencing to [13], the learning rate was changed in the learning process, and two-stage
learning was performed. Specifically, the learning rate was set to 0.0001 in the first five
epochs and 0.00001 in the last three epochs to fine-tune the parameters of the model. We
also set the hyper-parameter, margin m, in the Contrastive Loss given by (4) to 10. Then,
using the test data, each model trained on furniture images was evaluated by AUC. The
AUC outputs a value between 0 and 1, with 1 indicating a completely successful identifica-
tion, 0.5 indicating a completely random identification, and 0 indicating a completely failed
identification. In other words, the base value of AUC is 0.5, and the closer the value is to 1,
the higher the performance of the furniture style compatibility evaluation. To accurately
analyze the results, ten trials of the procedure were conducted, and the average AUC
was calculated.

Next, the distance between styles was calculated with SDD for the pretrained con-
ventional and proposed Siamese models. Specifically, 100 It were prepared for each of the
17 styles in this experiment, and SDDsv and GSDD were calculated for each style.
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5.3.2. Evaluation by AUC

The ROC curves and AUCs of all models using the test data are shown in Figure 4.
Figure 4 shows that the AUCs of all Siamese models were higher than those of VGG-19.
The AUC of the proposed one-to-two Siamese model was 0.721, and that of the proposed
one-to-three Siamese model was 0.719, while the conventional Siamese model was 0.672.
Therefore, compared to a simple CNN or conventional Siamese model, the proposed
Siamese models can improve the accuracy of estimating the compatibility of ambiguous
furniture styles. However, the proposed one-to-three model did not improve the AUC
compared with the one-to-two model. Therefore, although the number of compared images
requires optimization, maintaining a higher performance than the conventional Siamese
model is possible.

Figure 4. ROC curves and AUCs for the conventional and proposed models with test data (the AUC
is the average over ten trials).

The results show that increasing the number of input images reduced the ambiguity of
furniture styles, thus proving the effectiveness of the proposed Siamese models. In addition,
the proposed Siamese model successfully learned furniture items that are compatible with
either of the multiple pieces of furniture due to its one-to-many ratio learning method.

5.3.3. Evaluation by SDD

The results of the SDD evaluation for each model show that the proposed Siamese
model tends to have a larger SDD than the conventional Siamese model. In this section, we
focus on Asian, Rustic, Traditional, and Tropical as S(It), which highlight the differences
in SDD.

First, the average value of D is shown in Table 1 for each of the four S(It). From Table 1,
when S(It) is Rustic, the average value of DRustic,Rustic is the smallest for the conventional
and proposed one-to-two Siamese models. Meanwhile, DS(It),S(It) is sometimes not the
smallest D for both the conventional model and proposed models. For example, when
S(It) is Traditional, the average values for DTraditional,Asian and DTraditional,Beach are smaller
than those for DTraditional,Traditional in the conventional Siamese model. However, in these
cases, the largest difference is 0.41, which is in an acceptable error range compared with
the difference of D with other styles. Therefore, the D for these cases can be disregarded.
These events are uncommon regardless of the model. The results indicate that each model
can reduce DS(It),S(It).
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Table 1. Average of distance D to each S(Ib′ ) and the four S(It) is derived using the conventional
(Convl), proposed one-to-two (1-to-2), and proposed one-to-three (1-to-3) models. The four S(It) are
the following: Asian, Rustic, Traditional, and Tropical.

S(It): Asian S(It): Rustic S(It): Traditional S(It): Tropical
Convl 1-to-2 1-to-3 Convl 1-to-2 1-to-3 Convl 1-to-2 1-to-3 Convl 1-to-2 1-to-3

Asian 4.72 5.03 4.68 5.43 5.74 5.43 5.48 6.11 5.37 4.88 5.37 5.10
Beach 4.98 5.83 5.20 5.53 5.50 4.80 5.32 5.20 5.17 4.78 4.95 4.89
Contemporary 6.00 6.92 6.84 6.31 6.30 6.52 6.01 6.31 6.24 5.97 6.48 6.50
Craftsman 6.24 7.03 7.13 5.45 5.22 5.43 6.56 7.03 7.08 6.21 6.61 6.46
Eclectic 4.31 5.94 5.13 5.94 6.15 5.65 5.41 5.49 5.37 5.03 5.44 5.33
Farmhouse 5.14 6.02 5.13 5.61 5.60 4.90 5.46 5.22 5.21 4.92 5.10 5.04
Industrial 5.60 6.43 6.27 6.01 5.74 6.22 5.77 6.11 5.81 5.76 6.20 6.15
Mediterranean 5.15 5.26 4.80 6.19 6.20 6.04 5.67 5.45 5.66 5.10 5.11 5.49
Midcentury 7.85 8.97 9.24 7.75 8.40 8.80 7.61 8.48 8.28 8.00 9.02 8.80
Modern 6.43 7.45 7.48 6.64 6.76 7.00 6.34 6.73 6.66 6.48 7.09 7.07
Rustic 5.20 5.49 5.46 5.28 4.99 4.83 5.72 5.69 5.64 5.13 5.00 5.17
Scandinavian 8.06 9.02 9.10 7.87 8.35 8.63 7.80 8.56 8.16 8.16 9.08 8.64
Southwestern 5.23 5.40 5.63 5.60 5.88 5.59 5.83 6.22 5.94 5.23 5.31 5.55
Traditional 5.16 5.88 5.10 5.78 5.85 5.30 5.49 5.19 5.36 4.99 5.06 5.15
Transitional 5.45 6.38 6.24 5.85 5.69 5.79 5.54 5.64 5.78 5.27 5.67 5.82
Tropical 4.83 5.27 4.94 5.52 5.49 5.07 5.29 5.23 5.22 4.75 4.76 5.00
Victorian 6.63 7.47 6.46 7.49 8.55 7.41 6.76 6.32 7.16 6.40 6.78 6.93

Next, the SDD for each of the four styles is shown in Figure 5. The SDD of the
proposed Siamese model tends to be larger than that of the conventional Siamese model
when each of the four styles is S(It). A larger SDD means that each style that differs from
S(It) is farther away in the feature space. Therefore, the proposed Siamese model is more
successful in distancing S(It) and the different styles of furniture than the conventional
model. In particular, the SDD of the proposed one-to-two Siamese model is larger for all
styles when Rustic is S(It), and the one-to-three Siamese model exceeds the SDD of the
conventional Siamese model for most styles. Thus, the superiority of SDD size depends
on the S(It) rather than the number of comparison images. Therefore, the performance of
the proposed Siamese model, which learns with a one-to-many ratio, is independent of the
number of furniture images compared, but both exhibit larger SDDs than the conventional
Siamese model. The results of the SDD evaluation indicate that the proposed Siamese
model brings furniture of the same style closer to S(It) and moves furniture of different
styles farther from S(It), thereby clarifying the distance between each style.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. SDD results of four S(It). The four S(It) are the following: Asian, Rustic, Traditional, and
Tropical. (a) Asian. (b) Rustic. (c) Traditional. (d) Tropical.

6. Discussion

Here, the proposed SDD is discussed in detail. In Figure 5, Midcentury and Scandina-
vian SDDs are particularly large for all four S(It). The SDDs when S(It) is Midcentury
and Scandinavian are shown in Figure 6. It can be seen that the SDDs of Midcentury
and Scandinavian are very small, regardless of which is S(It). Therefore, Midcentury
and Scandinavian are very similar styles and are considered compatible in the Siamese
models. In Figure 6, there is no difference between the SDD of the conventional Siamese
and proposed one-to-two models, and the one-to-three model often has a smaller SDD
when Scandinavian is S(It). However, the results in Figure 5 and those for Midcentury
in Figure 6 indicate that the SDDs of both proposed models are more significant for most
styles. Thus, although our proposed Siamese model is not perfect, it improved the accuracy
of style compatibility for the majority of the 17 styles when evaluated with AUC and SDD.

In this study, because we aimed to estimate style compatibility independent of furni-
ture category, we conducted experiments by defining the category C of furniture images
(Ib, It) to be input to the proposed Siamese model as C(Ib) 6= C(It

j ) 6= C(It
i ), j 6= i. In

practice, we will discuss the case where C(Ib) 6= C(It
j ) = C(It

i ), j 6= i since we believe
there is a demand to infer compatible furniture for multiple pieces of furniture in the
same category, e.g., checking the compatibility of a lamp and two chairs. As in Section 5,
experiments were conducted on the one-to-two and one-to-three proposed Siamese models,
and the evaluation results using AUC and SDD are shown in Figure 7. Figure 7a shows that
the AUC of the proposed one-to-two Siamese model was 0.695, and that of the proposed
one-to-three Siamese model was 0.716, whereas that of the conventional Siamese model
was 0.672. These results suggest that increasing the number of compared furniture images
may be effective since the one-to-three model was more accurate than the one-to-two model.
Next, Figure 7b shows that when S(It) is Asian, the proposed Siamese model outperforms
of the conventional Siamese model for most styles in terms of the SDD. Therefore, the pro-
posed method can learn the distance between styles even when It are in the same category.
In conclusion, the proposed Siamese model effectively learns the style compatibility of
furniture items in the same and different categories, and the AUC and SDD are effective in
learning the distance between styles.
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(a) (b)

Figure 6. SDD results of two S(It). The two S(It) are the following: Midcentury and Scandinavian.
(a) Midcentury. (b) Scandinavian.

(a) (b)

Figure 7. Experimental results of AUC and SDD (Category C is C(Ib) 6= C(It
j ) = C(It

i ), j 6= i, for
the input to the proposed Siamese model). (a) ROC curves and AUCs (AUC is the average over ten
trials). (b) SDD result where S(It) = Asian.

7. Conclusions

To improve the accuracy of estimating furniture style compatibility, we proposed a
new Siamese network that evaluates the compatibility of three or more furniture images by
increasing the number of It. In addition, as a quantitative measure for style compatibility,
we proposed a new metric, SDD, based on the Euclidean distance between images. To verify
the usefulness of the proposed Siamese model in estimating furniture style compatibility,
we conducted an evaluation experiment using the Bonn Furniture Styles Dataset, which
contains 17 different styles of furniture. The results were analyzed under two metrics: AUC
and SDD. The results show that the AUC of the proposed Siamese model was 0.721 in
the one-to-two model and 0.719 in the one-to-three model, whereas the VGG-19 and the
conventional Siamese model obtained AUCs of 0.590 and 0.672, respectively. The results of
the SDD evaluation show that the proposed Siamese model better increases the distance
between different styles than the conventional Siamese model. From these two points, the
proposed Siamese model is an effective method for estimating furniture style compatibility.

In addition, the proposed Siamese model learns based on the compatibility between
three or more images. Therefore, it can estimate furniture images that are style-compatible
with any piece of furniture in It, i.e., furniture images with good compatibility. In conclu-
sion, the proposed Siamese model is more efficient than the conventional Siamese model
both in terms of performance on the evaluation scale and in practical use, and it is an
effective model for the task of style compatibility estimation.
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