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Abstract: The near-field wave problem of the saturated soil involves the energy radiation effect of
the truncated infinite media. A viscous spring boundary is proposed for the fluid-saturated porous
media. Based on the process of wave propagation under internal point source, the stress and flow
velocity boundaries are constructed by reasonable assumptions of outgoing waves and Green’s
function, respectively. Without the permeability assumption, the proposed boundary avoids the low
accuracy caused by the assumption of zero permeability that is widely used in the existing methods.
The boundary simultaneously has a simple form, clear physical meaning, and less computational
cost due to its local character. Meanwhile, a completely explicit integration algorithm considering
the damping is constructed to solve the finite element equations of saturated porous media with the
proposed boundary. The accuracy and high computational efficiency of the wave numerical method
are verified in the examples.

Keywords: fluid-saturated porous media; u-p formulation; viscous spring artificial boundary; explicit
integration algorithm; Green’s function

1. Introduction

The wave problem of saturated two-phase porous media is an important research
issue of soil dynamics and geotechnical seismic engineering. For the problem, Biot [1]
established the three-dimensional quasi-static consolidation theory by considering the
deformation of solid and liquid phases, as well as the fluid-solid coupling of saturated
porous media. Based on this, Biot wave theory is proposed by adding the inertial terms
of soil skeleton and pore fluid [2,3]. However, there are several elastic coefficients with
relatively abstract meanings in the equations, and the concept of additional mass density
describing the coupling of solid and fluid lacks physical meaning, which makes it relatively
difficult to measure. Therefore, many scholars improved Biot theory furtherly [4–7]. The
dynamic equations proposed by Zienkiewicz [7,8] is essentially equivalent to the Biot
theory. In the equations, the additional mass density is ignored and assumes that dynamic
permeability coefficient considers the fluid viscosity. Men et al. [9] and Chen et al. [10]
considered the incompressibility and compressibility of the pore fluid, respectively, and
gave the dynamic governing equations for saturated porous media under the two condi-
tions. Wu [11] compared the dynamic equations proposed by Biot theory and Zienkiewicz,
proved that the two equations are equivalent, and gave the corresponding relationships
between the corresponding parameters. Zhao et al. [12] used inductive and deductive
methods to review the existing wave theory of porous media. Morency and Tromp [13]
presents a numerical implementation of poroelastic wave propagation using a spectral
element method, based upon an averaging technique which accommodates the transition
from the microscopic to the macroscopic scale. Puente and Dumbser [14] introduced a
local space-time discontinuous Galerkin method with arbitrary high-order accuracy to
simulate wave propagation in poroelastic material. Wang et al. [15] investigated the wave
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propagation in 2D periodic fluid-saturated porous media with an isotropic or a transversely
isotropic matrix.

For the near-field wave problems, absorbing artificial boundary are needed to model
waves propagation in infinite field, to ensure waves have no reflection effect when passing
through the artificial boundary [16]. The wave transmission boundary mainly includes [17]
global precise artificial boundaries [18–20] and local artificial boundaries [21–27]. The global
artificial boundary mainly includes boundary element method [28], thin layer method [29],
exact Kirchhoff integration method [18,19] and Dirichlet-to-Neumann method [20,30]. The
boundary conditions are established based on the initial boundary value conditions of
the truncated media and are gotten through rigorous analytical derivation, leading to
complicated calculation process and low efficiency. Local artificial boundaries include the
viscous boundaries [21,31], the viscous-spring boundaries [22–24,32–35], the superposition
boundaries [25,36], the extrapolation boundaries [26,37], the paraxial boundaries [38,39],
the multi-directional boundary [27,40], the perfectly matched layer [41,42], and the dynamic
infinite element [43–45]. The local artificial boundary is local both in space and time domain,
that is, the responses of the target node are only related to the responses of the adjacent
nodes. It has less calculation amount and higher calculation efficiency.

For the fluid saturated porous media, Modaressi and Benzzenati [46,47] established
paraxial boundaries for the u-p formulation and obtained the zero-order and first-order
paraxial boundary conditions, where the zero-order paraxial boundary is equivalent to the
viscous boundary. Akiyoshi et al. [48] established paraxial boundaries for the u-w, u-U,
and u-p models of linear and isotropic saturated soils, and extended their work to the case
of laterally isotropic and anisotropic saturated soils [49,50]. The above research work is
based on plane waves. Liu Guanglei and Song Erxiang [51] prop osed a viscous spring
artificial boundary for the u-p equation based on cylindrical waves. Du Xiuli et al. [52]
and Zhao Chenggang et al. [53,54] established two viscous spring artificial boundaries
based on u-U formulation. To improve the accuracy of artificial boundaries, Li Peng and
Song Erxiang [55] proposed a new high-precision artificial boundary on the basis of the
work of Song Erxiang [51]. Degrande and De Roeck [56,57] proposed a global artificial
boundary in the frequency domain, but its computational cost is higher. Then, under
the assumptions of zero and infinity permeability coefficient, Gajo et al. [58] as well as
Zerfa and Loret [59] established, respectively, two viscous boundary conditions with high
computational efficiency in the time domain.

The assumption of permeability coefficient leads to neglect of fluid-solid coupling,
resulting in the low accuracy of dynamic responses of the fluid saturated porous media. A
new viscous spring artificial boundary without the permeability coefficient assumption
is proposed based on the u-p equation of the saturated porous media. Green’s function is
firstly used to establish the flow boundary velocity condition due to the similar principle
by describing the pore pressure field generated by the point force. A completely explicit
integration algorithm considering the damping is constructed to solve the finite element
equations of saturated porous media with the proposed boundary. Finally, three examples
are used to show the accuracy and effectiveness of the proposed method by comparing
with analysis solutions and numerical solutions of existing boundary.

2. Wave Velocity

The propagation of waves in the semi infinitely field of saturated soil under point
force is shown in Figure 1, which can be described by u-p equation. Ignoring the body force,
the u-p formed control equations of fluid-saturated porous media are expressed as:

(λ + G)∇∇ · u + G∇2u− α∇p = ρ
..
u (1)

k f∇2 p− α∇ · .
u =

1
Qb

.
p (2)



Math. Comput. Appl. 2022, 27, 71 3 of 18

where λ and G are the Lamb constants of the soil. α and Qb are the compressive coefficient
of the soil skeleton and pore fluid, respectively. k f is the dynamic permeability coefficient.
ρ represents the density of the total solid-fluid mixture. ∇T =

[
∂/∂x ∂/∂y

]
. u and p

represent the displacement and pore pressure of saturated soil, respectively.
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Figure 1. Schematic diagram of the wave in a saturated soil field under an interior point force.

Equations (1) and (2) are further transformed into the frequency domain, and the
following equations are obtained by introducing the parameter ρm1 = − 1

k
i
ω :

(λ + G)∇∇ · u + G∇2u + ω2ρu− α∇p = 0 (3)

∇2 p +
ω2ρm

Qb
p + ω2αρm∇ · u = 0 (4)

where ω represents the circular frequency, and the displacement and pore pressure are
expressed by the rotational and irrotational potential functions of P1, P2, and S waves as
shown in Equations (5) and (6):

u = ∇ϕP1 +∇ϕP2 +∇× ψse (5)

p = (η1 − αQb)∇2 ϕP1 + (η2 − αQb)∇2 ϕP2 (6)

where ϕP1 and ϕP2 represent the potential function of P1 and P2 waves, respectively; ψs
represents the potential function of S wave; e is the unit vector. At the same time, η1 and η2
in Equation (6) are calculated as shown:

η1, 2 =
αQb

ρm1V2
P1, P2 −Qb

(7)

Substituting Equations (5) and (6) into Equations (3) and (4), the wave equations
expressed by the potential functions of P1, P2, and S waves are obtained as follows:

V2
P1, P2∇2 ϕP1, P2 + ω2 ϕP1, P2 = 0 (8)

V2
S∇2ψS + ω2ψS = 0 (9)

where, VP1, VP2, and VS, shown in Equation (10), are the nominal wave velocity of P1, P2,
and S waves [60], respectively.

VP1, P2 =

√
λ + 2G

ρ1, 2
, VS =

√
G
ρ

(10)
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

ρ1,2 = ρ
(

d2 ∓
√

d2
2 − d1d3

)
d1 = λ+2G

Qb

d2 = 1
2ρ

(
ρ + λ+2G+α2Qb

Qb
ρm1

)
d3 = ρm1

ρ

(11)

As shown in Equation (10), all nominal wave velocities of three body waves are
complex numbers, which are uniformly expressed in the following complex form:

V = Vr + Vii (12)

The real part Vr of the wave velocity in the equation represents the actual wave
velocity of the wave, and the imaginary part Vi reflects the attenuation of wave. Therefore,
the real part Vr of the wave velocity corresponding to the P1, P2, and S waves is the actual
wave velocity of the three types of waves in saturated soil.

3. Viscous-Spring Artificial Boundary

In Figure 1, the surface of the semi-infinite saturated soil space is a free drainage
boundary, and the artificial boundary Γ is introduced to divide the semi-infinite space into
two parts: the interior domain ΩI and the exterior domain ΩE. The interior domain may
have complex geometry and material properties, and convenient for solving using the finite
element method. The infinite exterior domain is approximated as a uniform media of linear
elasticity, and the effect of the exterior domain on the interior domain is generally achieved
through artificial boundaries. For this problem, the displacement u and pore pressure p,
the total stress σ, and the fluid phase flow velocity Φ of the interior domain and exterior
domain should satisfy the continuous conditions, shown as follows:

uI = uE on Γu

pI = pE on Γp

σI + σE = 0 on Γσ

ΦI = ΦE on ΓΦ

(13)

where σ represents the total stress of soil, and Φ is the flow velocity of pore fluid in saturated
soil. Therefore, the flow velocity condition and stress condition should be satisfied on the
artificial boundary.

3.1. Flow Velocity Boundary Condition

The wave propagation problem under the action of a point source on the surface of the
interior domain is similar to the significance of Green’s function of the diffusion equation,
that is, the field distribution generated by a unit point source. At the same time, the Lamb
problem [61] analyzes the distribution of a variable field under the action of a concentrated
force or point source on the surface of infinite space, such as pore water pressure in a
saturated soil field under a point force. To obtain the pore pressure value on the artificial
boundary, Green’s function constructs the pore pressure field distribution of fluid-saturated
porous media under the action of interior concentrated force. Therefore, Equation (2) is
converted into the equation as follows in two-dimensional plane polar coordinates without
considering the exterior loading and ignoring the coupling term α∇ · .

u:

∂p
∂t

= k f Qb
∂2 p
∂r2 (14)

where r represents the outer normal direction of the artificial boundary, and t is time. It
can be seen that Equation (14) is the standard form of the diffusion equation. In the infinite
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domain, based on Equation (14), the Green’s function G(r, t) [62] for the pore pressure p is
obtained, and its distribution form is shown as follows:

p = G(r, t) =
1

4πk f Qbt
e
− r2

4k f Q·t (15)

By utilizing the relationship between the flow velocity and the pore pressure Φ = −k f
∂p
∂r ,

the flow velocity boundary condition expressed in terms of pore pressure is shown below:

Φ =

(
lr

2Qb · t

)
p (16)

where p and Φ are the pore pressure and the flow velocity in the outward normal direction
of the artificial boundary. Since the seepage process is a time-varying diffusion process
of pore fluid in saturated porous media, only when the wave propagates to the artificial
boundary is there a pressure gradient between the artificial boundary and the internal
domain of soil. Therefore, Equation (16) can be further written as:

Φ =

{
0 (t < t0)(

lr
2Qb ·t

)
p (t ≥ t0)

(17)

where lr is defined as the distance from the geometric center of the interior domain to the
point on the artificial boundary; t0 is the shortest time for the wave to propagate to the
artificial boundary.

3.2. Stress Boundary Condition

Since Equations (8) and (9) are standard wave equations, to simplify the analysis,
based on Equations (5)–(9), the outgoing wave of displacement can be assumed to be:

ur(r, t) = (k1lw + k2) f (v1t− r) (18)

u⊥(r, t) = (k1lw + k2) f (v2t− r) (19)

where n and ⊥ represent the outer normal and tangent direction of the artificial boundary,
respectively; ur and the u⊥ are solid phase displacement in the outer normal and tangent
directions of the artificial boundary, respectively; v1 and v2 are the actual wave velocities in
the normal and tangential of the artificial boundary, respectively; f represents the arbitrary
waveform function; k1 and k2 represent wave numbers of attenuated and non-attenuated
waves, respectively; l is the dimensional coordination factor; and w = 1/

√
r represents the

geometric attenuation factor.
Using the constitutive relationship and geometric relationship of the saturated two-

phase porous media, the relationship between the total stress, displacement, and the pore
pressure of saturated porous media is given:

σr =
[
λ
(

∂u⊥
∂⊥ + ∂ur

∂r

)
− αp

]
+ 2G ∂ur

∂r

σ⊥ =
[
λ
(

∂u⊥
∂⊥ + ∂ur

∂r

)
− αp

]
+ 2G ∂u⊥

∂⊥

τ = G
(

∂u⊥
∂r + ∂ur

∂⊥

) (20)

where σr and σ⊥ are the normal and tangential stresses of the solid-phase media, respec-
tively; τ is the shear stress of the solid-phase media. In two dimensions, when the outgoing
wave propagates along the outer normal direction of the artificial boundary, the stress at
the artificial boundary, i.e., Equation (20), can be further simplified to:

σr = (λ + 2G)
∂ur

∂r
− αp (21)
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τ = G
∂u⊥
∂r

(22)

Substitute Equation (18) into Equation (21) to obtain the normal stress represented by
the waveform function f :

σr = −(λ + 2G)
(

k1lr−
1
2 + k2

)
f ′(v1t− r)− 1

2
(λ + 2G)alr−

3
2 f (v1t− r)− αp (23)

By calculating the first derivative of Equation (18) with respect to time t, the relation-
ship between the normal velocity and the waveform function f is obtained as follows:

.
ur(r, t) = c1

(
k1lr−

1
2 + k2

)
f ′(v1t− r) (24)

Using Equations (18), (23), and (24) to eliminate the waveform function f, the relation-
ship between the normal stress, displacement, velocity, and pore pressure is expressed as:

σr = −
(λ + 2G)

2r
(

1 + k2
k1l
√

r
)ur −

(λ + 2G)

v1

.
ur − αp (25)

By introducing dimensionless parameters A = k2
k1l
√

r and v1 =
ρ2

3
B Vn

P1, the normal
stress boundary condition is further written as:

σn = − λ + 2G
2lr(1 + A)

ur − BρVr
P1

.
ur − αp (26)

where the parameter A reflects the propagation characteristics of the outgoing wave, namely
the amplitude ratio between the plane wave and the scattering wave; the parameter B
represents the average wave velocity characteristics of the incident multi-sub-wave at
different angles, namely, the relationship between the physical wave velocity and the
apparent wave velocity. Through a large number of numerical calculations, the optimal
values of A and B are obtained. A = 0.8, B = 1.1 [16].

Using a similar calculation process, the tangential stress boundary condition is
shown below:

τ = − G
2lr(1 + A)

u⊥ − BρVn
S

.
u⊥ (27)

where the definitions of parameters A and B are the same as in Equation (26).

3.3. Finite Element Discretization of Artificial Boundary

The artificial boundary Equations (17), (26), and (27) are written in discrete form
as follows:

f(l)uBi = −K∞(l)
Bi u(l)

Bi − C∞(l)
Bi

.
u(l)

Bi −Q∞(l)
Bi p(l)Bi (28)

f (l)qBi = J∞(l)
Bi p(l)Bi (29)

where the superscript (l) represents the artificial boundary; ∞ represents the exterior
domain; Bi represents the ith node on the boundary; f(l)uBi and f (l)qBi are the stress and the flow

velocity of the ith node on the boundary, respectively; u(l)
Bi and p(l)Bi are the displacement

and the pore pressure of the ith node on the boundary, respectively. The variable matrices
and scalar coefficients in Equations (28) and (29) are expressed in the following form:

K∞(l)
Bi = Li

[
K∞

BN 0
0 K∞

BT

]
,

{
K∞

BN = λ+2G
2lr(1+A)

K∞
BT = G

2lr(1+A)

(30)

C∞(l)
Bi = Li

[
C∞

BN 0
0 C∞

BT

]
,
{

C∞
BN = BρVr

P1
C∞

BT = BρVr
S

(31)
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Q∞(l)
Bi = Li

[
Q∞

B
0

]
, Q∞

B = α (32)

J∞(l)
Bi = Li J∞

B , J∞
B =

lr
2Qbt

(33)

where Li represents the boundary length corresponding to the boundary node i. Converting
Equations (28) and (29) from the local coordinate system into the global coordinate system,
we get:

fuBi = −K∞
BiuBi − C∞

Bi
.
uBi −Q∞

Bi pBi (34)

fqBi = J∞
Bi pBi (35)

In Equations (34) and (35), the physical meanings of each matrix and scalar coefficient
are the same as that in Equations (28) and (29), and the coordinate transformations are
carried out through the following relationships:

K∞
Bi = WTK∞(l)

Bi W
C∞

Bi = WTC∞(l)
Bi W

Q∞
Bi = WTQ∞(l)

Bi

(36)

J∞
Bi = J∞(l)

Bi (37)

where W =

[
lrx lry
l⊥x l⊥y

]
is the coordinate transformation matrix for transforming local

coordinates to global coordinates. lrx = cos(r, x) is the cosine of the angle between the
positive direction of the local coordinate r-axis and the positive direction of the global
coordinate x-axis. The rest of the parameters are similar to the definition of lxy.

After discretization by the Galerkin finite element method, the dynamic governing
equations of the saturated two-phase porous media, Equations (1) and (2), are represented
by block matrices of internal domain and boundary:[

MI MIB
MBI MB

]{ ..
uI..
uB

}
+

[
KI KIB
KBI KB

]{
uI
uB

}
−
[

QI QIB
QBI QB

]{
pI
pB

}
=

{
fuI
fuB

}
(38)

[
SI SIB
SBI SB

]{ .
pI.
pB

}
+

[
JI JIB
JBI JB

]{
pI
pB

}
+

[
QT

I QT
BI

QT
IB QT

B

]{ .
uI.
uB

}
=

{
−fqI
−fqB

}
(39)

where the subscripts B and I correspond to the nodes at the boundary and the internal
domain, respectively; M is the mass matrix; K is the stiffness matrix; Q is the coupling
matrix; S is the fluid compression matrix; J is the fluid permeability matrix. fuI and fqI
represent the loading and fluid injection point source of the internal domain, respectively.
fuB and fqB represent the effect of the exterior domain on the internal domain, namely the
artificial boundary conditions (34) and (35), respectively.

At the same time, substituting Equations (34) and (35) into Equations (38) and (39),
the finite element discrete equations of saturated porous media considering the boundary
conditions are obtained:[

MI MIB
MBI MB

]{ ..
uI..
uB

}
+

[
KI KIB
KBI KB + K∞

B

]{
uI
uB

}
+

[
0 0
0 C∞

B

]{ .
uI.
uB

}
−
[

QI QIB
QBI QB −Q∞

B

]{
pI
pB

}
=

{
fuI
0

}
(40)

[
SI SIB
SBI SB

]{ .
pI.
pB

}
+

[
JI JIB
JBI JB + J∞

B

]{
pI
pB

}
+

[
QT

I QT
BI

QT
IB QT

B

]{ .
uI.
uB

}
=

{
−fqI

0

}
(41)

where K∞
B , C∞

B , Q∞
B , and J∞

B are calculated by Equations (36) and (37), respectively. The
finite element discrete equations of saturated porous media can be calculated by different
time domain integration methods. The proposed artificial boundary actually only changes
the values of the corresponding boundary nodes on the diagonal of the coefficient matrices
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in Equations (40) and (41). The finite element discrete equations of saturated porous media
considering the boundary conditions can be solved by a completely explicit integration
algorithm efficiently, which is shown in Appendix A.

The proposed artificial boundary has a simple form and is easily applied to the finite
element method. Since the boundary has a local approximate form both in the space and
time domains, it has low computational cost and high computational efficiency. Effective
calculation accuracy can be guaranteed when the artificial boundary is set at a sufficient
distance from the internal source.

4. Numerical Studies
4.1. Example 1

The computational model of one-dimensional saturated soil is shown in Figure 2.
Both lateral sides of the model are fixed impermeable boundaries. The top surface is a
permeable boundary and is applied a uniform constant loading of 1.0 Pa. The models (a)–(c)
have different bottom boundaries, such as remote boundary, fixed boundary, and artificial
boundary, respectively. For the model (a), the truncated boundary is set far enough away
from the load center, and within the effective calculation time, the reflected wave generated
by the boundary cannot propagate to the concerned calculation area. The numerical
solutions of the model (a) can be used as reference solutions for comparison. For model (b)
and model (c), the truncation boundaries have the same distance from the load center and
are much closer than the remote boundary. However, the truncation boundary of model (b)
is a fixed boundary, while the truncated boundary of model (c) is set to the proposed
artificial boundary. The material parameters of the model, taken from Simon [63] are shown
in Table 1 for the values of Material 1. The analytical solutions of the one-dimensional
problem of saturated soil proposed by Simon [63] are used as the reference solution and
are compared with the results of the remote boundary and the fixed boundary to verify the
correctness of the artificial boundary proposed in this paper.
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Table 1. Material parameters of the linear elastic saturated soil.

Parameter Value

ES 3000 Pa Young’s modulus
R 0.306 kg/m3 Density of two-phase media
ρf 0.2977 kg/m3 Density of pore fluid
np 0.333 Porosity
C 0.2 Poisson’s ratio
kf 0.004883 m3s/kg Dynamic permeability coefficient
L 833.3 Pa Lame constant
G 1250 Pa Modulus of shear

Material
Number Value 1 Value 2

Kf 0.3999 × 105 Pa 0.6106 × 105 Pa Pore fluid volume modulus
Ks ∞ 0.5005 × 104 Pa Solid-phase soil skeleton volume modulus
Qb 0.1201 × 106 Pa 0.1385 × 105 Pa Pore fluid compressibility coefficient

Wave Velocity

Actual Wave
Velocity

Material No.

1 2

Cp 635.12 m/s 176.15 m/s P wave velocity
Cs 63.92 m/s 63.92 m/s S wave velocity

The time-history responses of nodes 5 m and 45 m away from the load center are,
respectively, selected for comparison. The time-history results of the displacement and
pore pressure calculated by the three models are shown in Figure 3. It can be seen from
the figure that the analytical solutions and the calculation results of the far boundary are
almost completely resumed. Both results are used as the reference solutions. However,
the difference between the responses of the fixed boundary and the reference solution
is large, indicating that the bottom fixed boundary produces an unreal reflected wave
propagating to the target node, which affects the real responses of the node. The vertical
displacements and pore pressure of the model with the proposed boundary are consistent
with the reference solutions, which verifies the correctness of the proposed boundary.
Although the pore pressure response of the node at 5 m depth from the soil surface has
some oscillations at the initial stage of the calculation, the oscillation gradually decreases as
time goes on.
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Figure 3. Vertical displacement and pore pressure time histories of one-dimensional saturated
soil model.

4.2. Example 2

The calculation model of saturated soil in two-dimensional semi-infinite space is
shown in Figure 4. A semi-infinite domain model including the calculation domain with
an intercepted area of 20 m × 20 m, as shown in Figure 4b. The top surface of the model is
the drainage boundary and is loaded with locally uniform sine loading. The viscous spring
boundaries proposed by Liu et al. [51], the remote boundary, fixed boundary, and paraxial
boundary proposed by Akiyoshi et al. [48], as well as the boundary proposed in this paper,
are respectively applied at the intercepted boundary. By comparing with the results of
the artificial boundaries mentioned above, the accuracy and advantages of the proposed
boundary are illustrated. The position of the remote boundary is selected according to the
following method as an example. During the time 2.0 s of the sine loading, namely, the
whole calculation time, the wave propagates at the faster velocity of P wave in the soil and
is reflected by the remote boundaries. However, the reflected wave is not transmitted to the
node of interest within the calculation time. The locations of the remote boundaries are set
at the minimum computational domain range that does not affect the dynamic responses
of the interest nodes. The material parameters in the example refer to Simon [63] and are
shown in Table 1 for the values of Material No. 2.
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Figure 4. Two-dimensional saturated soil model under sine loading: (a) Model with remote and fixed
boundaries; (b) Model with viscous–spring boundaries.

In Figure 5, taking the numerical results of the model using the remote boundary
as the reference solution, the displacement and pore pressure time histories of the fixed
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boundary are far from the results of the reference solution. The calculation results of the
proposed boundary, the paraxial boundary, and the existing viscous spring boundaries [51]
are in good agreement with the reference solutions. Moreover, the proposed boundary
is more accurate than the viscous spring boundary [51], which shows the accuracy of the
artificial boundary proposed in this paper.
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Figure 5. Vertical displacement and pore pressure time histories of the two-dimensional model with
different boundaries [51].

Under the same calculation conditions and calculation method in time domain, the
total computational times of the models with different boundaries mentioned above are
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shown in Figure 6. Among them, when the time step of the paraxial boundary is set to
5 × 10−4 s, the calculation does not converge. In the case of the remote boundary, the
element number of the model is 4000, and the calculation time is 5841.81 s. Comparing
several boundaries, the proposed boundary takes the shortest calculation time, which is
65.01 s. It can be seen that the proposed method has significant advantages in shortening
the calculation time and improving the calculation efficiency.
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4.3. Example 3

The development of displacement and pore pressure of saturated soil changed under
point loading is analyzed by Example 3. A concentrated impulse loading acted on the
free-draining surface of the computational model, as shown in Figure 7, and an area of
20 m × 20 m is intercepted by three different boundary conditions, namely the proposed
boundary, the viscous spring boundary [51] and the fixed boundary. The changes of
displacement and pore pressure in the calculation area at different time points are analyzed.
Moreover, the correctness of the proposed method is further verified by comparing the
three boundary conditions.
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Figures 8 and 9 show the distribution of displacement and pore pressure under three
boundary conditions at 0.2 s, 0.5 s, and 1.0 s, respectively. From the figures, it can be
seen that the influence area under the impulsive loading continues to increase with the
calculation time. The formed displacement and pore pressure field continue to spread out
from the point loading, and the displacement and pore pressure reach the maximum value
at 0.5 s, which is the peak time of the impulsive loading. By comparing the numerical
results of computational models considering the three kinds of boundary conditions, the
numerical results of the proposed boundary and viscous spring boundary are the same, but
the displacement and pore pressure results of the fixed boundary are completely different
from that of the viscous spring boundaries. The forms of boundary conditions have a
greater impact on the results of the interior domain.
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5. Conclusions

For the energy radiation problem caused by the finite processing of the infinite model,
a viscous spring boundary is proposed for the fluid-saturated porous media. The proposed
method is illustrated the computational advantages and accuracy by theoretical method
and numerical computation.

1. The viscous spring boundary is composed of the stress and flow velocity boundary
conditions, which are constructed by the reasonable outgoing wave assumption and
Green’s function. The boundary has a simple form and clear physical meaning. Since
the overall system equations considering artificial boundaries only need to change
the values of the corresponding boundary nodes on the diagonal of the coefficient
matrices, the boundary can be easily applied to the finite element method.

2. Without the assumption of permeability and using the real wave velocity, the proposed
boundary has higher accuracy than the existing boundaries with the assumption
of impermeability.

3. After considering the viscous spring boundary, the computational system is expressed
as lumped mass equations with damping. A complete explicit integration algorithm
with second-order accuracy is constructed to solve the equations.
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The proposed method can be used to analyze the saturated soil-structure dynamic
interaction in finite domain efficiently. The artificial boundary controls the number of
degrees of freedom of the site model, and the explicit method considering the damping
term also improves the calculation efficiency.
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Appendix A

Explicit Integration Algorithm

To simplify the analysis process, Equations (40) and (41) can be further written
as follows:

M̃
..
ũ + K̃ũ + C̃

.
ũ− Q̃1p̃ = f̃u (A1)

S̃
.
p̃ + J̃p̃ + Q̃

T
2

.
ũ = −f̃q (A2)

where

M̃ =

[
MI MIB
MBI MB

]
, K̃ =

[
KI KIB
KBI KB + K∞

B

]
, C̃ =

[
0 0
0 C∞

B

]
, S̃ =

[
SI SIB
SBI SB

]
Q̃1 =

[
QI QIB
QBI QB −Q∞

B

]
, Q̃2 =

[
QI QIB
QBI QB

]
, J̃ =

[
JI JIB
JBI JB + J∞

B

] (A3)

..
ũ =

{ ..
uI..
uB

}
,

.
ũ =

{ .
uI.
uB

}
, ũ =

{
uI
uB

}
,

.
p̃ =

{ .
pI.
pB

}
, p̃ =

{
pI
pB

}
, f̃u =

{
fuI
0

}
, f̃q =

{
fqI
0

}
(A4)

There is a damping term C̃
.
ũ in Equation (A1). Based on the explicit algorithm [64] for

single-phase medium and the Euler predictor-corrector method [65], the explicit integration
algorithm for two-phase media is constructed. The computational process in one time step
∆t is shown as follows:

(a) The whole of the loading time is divided into several time intervals with a time step
∆t, and any time can be expressed as tk = tk−1 + ∆t, (k = 1, 2, 3, . . . ). Equation (A1) is
solved using the explicit algorithm method [64] to obtain the step-by-step recurrence
formula of the solid phase displacement ũk+1 at the time tk+1:

ũk+1 =

(
I− ∆t2

2
M̃
−1

K̃ +
∆t
2

M̃
−1

C̃
)

ũk −
∆t
2

M̃
−1

C̃ũk−1 +
(

∆t− ∆t2M̃
−1

C̃
) .

ũk +
∆t2

2
M̃
−1

Q̃p̃k +
∆t2

2
M̃
−1̃

fuk (A5)

(b) To express the acceleration
..
ũk at the time tk, convert Equation (A1) into the follow-

ing form:
..
ũk = M̃

−1
(̃

fuk − K̃ũk − C̃
.
ũk + Q̃p̃k

)
(A6)
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(c) Apply the Newmark method to get the velocity
.
ũk+1 at the time tk+1. The parameters

β = 0.25, γ = 0.5

.
ũk+1 =

γ

β∆t
[ũk+1 − ũk] +

(
1− γ

β

)
.
ũk +

(
1− γ

2β

)
∆t

..
ũk (A7)

where ũk+1, ũk,
.
ũk, and

..
ũk are known items.

(d) Equation (A2) is solved using the Euler predictor-corrector method [65]. The formulas
are shown as follows:

p̃k+1 =
(

I− ∆tS̃
−1

J̃
)

p̃k − ∆tS̃
−1

Q̃
T .

ũk + ∆tS̃
−1̃

fqk (A8)

p̃k+1 =

(
I− ∆t

2
S̃
−1

J̃
)

p̃k −
∆t
2

S̃
−1

J̃p̃k+1 −
∆t
2

S̃
−1

Q̃
T .

ũk −
∆t
2

S̃
−1

Q̃
T .

ũk+1 +
∆t
2

S̃
−1(̃

fqk + f̃q(k+1)

)
(A9)

The predictor value firstly is calculated using Equation (A8), and then the predictor
value p̃k+1 and known variable

.
ũk+1, which is obtained by Equation (A7), are substituted

into Equation (A9) to calculate the corrector value, that is, the pore pressure p̃k+1 at the
time tk+1.

To sum up, Equations (A5)–(A9) represent the integration algorithm of the lumped-
mass equations with damping. The algorithm is a completely explicit algorithm with
second-order accuracy.
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