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Abstract: In this paper, we propose a new numerical method based on the extended block Arnoldi
algorithm for solving large-scale differential nonsymmetric Stein matrix equations with low-rank
right-hand sides. This algorithm is based on projecting the initial problem on the extended block
Krylov subspace to obtain a low-dimensional differential Stein matrix equation. The obtained
reduced-order problem is solved by the backward differentiation formula (BDF) method or the
Rosenbrock (Ros) method, the obtained solution is used to build the low-rank approximate solution
of the original problem. We give some theoretical results and report some numerical experiments.

Keywords: extended block Krylov; low-rank approximate solutions; differential Stein matrix equations;
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1. Preliminaries

In the present paper, we are interested in the numerical solution of large-scale differential
nonsymmetric Stein matrix equations on the time interval [t0, Tf ] of the form:{

Ẋ(t) = AX(t)B− X(t) + EFT , t ∈ [t0, Tf ], (DNSE);
X(t0) = X0,

(1)

where A and B are real, sparse and square matrices of size n× n and p× p, respectively,
and E and F are matrices of size n× r and p× r, respectively, with r � n, p. The initial
condition is given in a factored form as X0 = Z0Z̃T

0 ∈ Rn×p and the matrices A and B are
assumed to be large and sparse.

Differential Stein matrix equations play an important role in many problems in control
and filtering theory for discrete-time large-scale dynamical systems and other problems;
see [1–8]. For solving the large matrix equations during the last years, several projection
methods based on Krylov subspaces have been proposed, for example Sylvester matrix
equations, differential Sylvester matrix equations, Riccati and others, see, e.g., [8–16]. The
main idea employed in these methods is to project the initial problem by using extended
Krylov subspaces and then apply the Petrov–Galerkin orthogonality condition.

In this work, we present an extended block Krylov method for solving large differential
Stein matrix equations. Our method uses the Petrov–Galerkin projection method and the
extended block Arnoldi algorithm. The problem (1) is projected onto small extended Krylov
subspaces to obtain low-order differential Stein equations that are solved by a BDF method
or Ros method. The approximate solution is then given as a product of matrices with
low rank.

We recall the extended block Arnoldi algorithm applied to (A, V) where V ∈ Rn×r.
The extended block Krylov subspace associated to (A, V) (see [8,9,14,15,17]) is given by:

Ke
m(A, V) = Range{V, A−1V, AV, A−2V, A2V, · · · , Am−1V, A−mV})

= Km(A, V) +Km(A−1, A−1V),
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where
Km(A, V) = Range{V, AV, A2V, · · · , Am−1V}.

Algorithm 1 allows us to construct an orthonormal matrix Vm = [V1, V2, . . . , Vm] that
is a basis of the block extended Krylov subspace Ke

m(A, V). Let Tm,A the restriction of the
matrix A to the block extended Krylov subspace Ke

m(A, V) is given by Tm,A = VT
m A Vm.

Then, we have the following relations (see [15])

AVm = VmTm,A + Vm+1TA
m+1,mET

m.

where Em = [02r×2(m−1)r, I2r]
T and Tm,A = [TA

i,j ].

Algorithm 1: The extended block Arnoldi algorithm (EBA)

1. Inputs: A an n× n matrix, V an n× r matrix and m an integer.
2. Compute the QR decomposition of [V, A−1V], i.e., [V, A−1V] = V1Λ;
3. Set V0 = [ ];
4. For j = 1, 2, ..., m

(a) Set V(1)
j : first r columns of Vj; V(2)

j : second r columns of Vj

(b) Vj =
[
Vj−1, Vj

]
; V̂j+1 =

[
A V(1)

j , A−1 V(2)
j

]
;

(c) Orthogonalize V̂j+1 i.e.,

∗ for i = 1, 2, . . . , j

∗ Hi,j = VT
i V̂j+1;

∗ V̂j+1 = V̂j+1 −Vi Hi,j;

∗ End for

(d) Compute the QR decomposition of V̂j+1, i.e., V̂j+1 = Vj+1 Hj+1,j;

5. End For.

Throughout the paper, we use the following notations. The Frobenius inner product
of the matrices X and Y is defined by 〈X, Y〉F = tr(XTY), where tr(Z) denotes the trace
of a square matrix Z. The associated norm is the Frobenius norm denoted by ‖‖F. The
Kronecker product A⊗ B = [ai,jB]∈ Rnp×np where A = [ai,j]. This product satisfies the
properties: (A⊗ B)(C⊗ D) = (AC⊗ BD) and (A⊗ B)T = AT ⊗ BT .

The rest of the paper is organized as follows. In Section 2, we derive the low-rank
approximate solutions method and give some theoretical results. In Section 3, we apply
the backward differentiation formula method and Rosenbrock method for solving reduced
order problem. Section 4 is devoted to some numerical examples.

2. Low-Rank Approximate Solutions Method

In this section, we project the large differential equation by using the extended block
Krylov subspaces Ke

m(A, E) and Ke
m(BT , F) to obtain low-rank approximate solutions of

Equation (1).
We apply the extended block Arnoldi algorithm (Algorithm 1) to the pairs (A, E) and

(BT , F), respectively, and to obtain orthonormal bases {V1, ..., Vm} and {W1, ..., Wm} and
we have

Tm,A = VT
m AVm and Tm,B =WT

mBTWm,

where
Vm = [V1, V2, ..., Vm] and Wm = [W1, W2, ..., Wm].
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We then consider approximate solutions of the large differential Stein matrix Equation (1)
that have the low-rank form

Xm(t) = VmYm(t)WT
m. (2)

The matrix Ym(t) is determined from the following Petrov–Galerkin orthogonality
condition:

VT
mRm(t)Wm = 0, t ∈ [t0, Tf ], (3)

where Rm(t) is the residual

Rm(t) = Ẋm(t)− AXm(t)B + Xm(t)− EFT . (4)

Then, from (4) and (3), we obtain the low dimensional differential Stein equation{
Ẏm(t) = Tm,AYm(t)T T

m,B −Ym(t) + Ẽm F̃T
m,

Ym(t0) = VmX0WT
m,

(5)

where Ẽm = VT
mE and F̃m =WT

mF.
In the following result, we derive an expression for computation of the norm of the

residual R, without having to compute matrix products with the large matrices A and
B. This result allows us to reduce the cost in the proposed method when checking if the
residual norm is less than some fixed tolerance.

Theorem 1. Let Xm(t) = VmYm(t)WT
m be the approximation obtained at step m by the extended

block Arnoldi method, and Ym(t) the exact solution of low dimensional differential nonsymmetric
Stein Equation (5). Then, the residual Rm(t) associated to Xm(t) satisfies the relation

‖Rm(t)‖2
F = ‖TA

m+1,mYm,1(t)T T
m,B‖2

F + ‖TB
m+1,mYm,2(t)T T

m,A‖2
F + ‖TA

m+1,mYm,m(t)(TB
m+1,m)

T‖F, (6)

where Ym,1(t) is the 2r× 2mr matrix corresponding to the last 2r rows of Ym(t), Ym,2(t) = ET
mYm(t)T

and Ym,m(t) = ET
mYm(t)Em.

Proof. Using the relations (4) and (2), we have

Rm(t) = VmẎm(t)WT
m − AVmYm(t)WT

mB + VmYm(t)WT
m − EFT .

By using the following relations

AVm = Vm+1

[
Tm,A

TA
m+1,mET

m

]
,

WT
mB =

[
T T

m,B Em(TB
m+1,m)

T
]
WT

m+1,

Vm = Vm+1

[
I2rm

02r×2r

]
,

WT
m =

[
I2rm 02r×2r

]
WT

m+1,

we have Rm(t) = Vm+1

[
I2rm

02r×2r

]
Ẏm(t)

[
I2rm 02r×2r

]
WT

m+1 − Vm+1

[
Tm,A

TA
m+1,mET

m

]
Ym(t)

[
T T

m,B Em(TB
m+1,m)

T
]
WT

m+1 +Vm+1

[
I2rm

02r×2r

]
Ym(t)

[
I2rm 02r×2r

]
WT

m+1−EFT,

since EFT = Vm+1

[
Ẽm F̃T

m 02mr×2r
02r×2mr 02r×2mr

]
WT

m+1, so

Rm(t) = Vm+1

[
Ẏm(t)− Tm,AYm(t)T T

m,B + Ym(t)− Ẽm F̃T
m −Tm,AYm(t)Em(TB

m+1,m)
T

−TA
m+1,mET

mYm(t)T T
m,B −TA

m+1,mET
mYm(t)Em(TB

m+1,m)
T

]
WT

m+1.

Now, as Ym(t) exact solution of the low dimensional differential Stein equation

Ẏm(t) = Tm,AYm(t)T T
m,B −Ym(t) + Ẽm F̃T

m,
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so

Rm(t) = Vm+1

[
0 −Tm,AYm(t)Em(TB

m+1,m)
T

−TA
m+1,mET

mYm(t)T T
m,B −TA

m+1,mET
mYm(t)Em(TB

m+1,m)
T

]
WT

m+1.

and since Vm+1 andWm+1 are orthonormal, we obtain

‖Rm(t)‖2
F = ‖TA

m+1,mYm,1(t)T T
m,B‖2

F + ‖TB
m+1,mYm,2(t)T T

m,A‖2
F + ‖TA

m+1,mYm,m(t)(TB
m+1,m)

T‖F.

where Ym,1(t) = ET
mYm(t), Ym,2(t) = ET

mYm(t)T and Ym,m(t) = ET
mYm(t)Em.

The approximate solution Xm(t) can be given as a product of two matrices of low rank.
Consider the singular value decomposition of the 2mr× 2mr matrix:

Ym(t) = Ỹ1Σ ỸT
2 ,

where Σ is the diagonal matrix of the singular values of Ym sorted in decreasing order.
Let Y1,l and Y2,l be the 2mr × l matrices of the first l columns of Ỹ1 and Ỹ2, respectively,
corresponding to the l singular values of magnitude greater than some tolerance. We obtain
the truncated singular value decomposition:

Ym ≈ U1,l Σl U2,l
T ,

where Σl = diag[σ1, . . . , σl ]. Setting Z1,m = Vm U1,l Σ1/2
l , and Z2,m = Wm U2,l Σ1/2

l , it
follows that:

Xm ≈ Z1,m(t) ZT
2,m(t). (7)

This is very important for large problems when one does not need to compute and
store the approximation Xm at each iteration.

The following result shows that the approximation Xm(t) is an exact solution of a
perturbed differential Stein equation.

Theorem 2. Let Xm(t) be the approximate solution given by (2). Then, we have

Ẋm(t) = (A− Fm,A)Xm(t)(B− Fm,B)− Xm(t) + EFT , (8)

where {
Fm,A = Vm+1TA

m+1,mET
mVT

m,
Fm,B =WmEm(TB

m+1,m)
TWT

m+1.

Proof. By multiplying the (5) left by Vm and right byWm
T , we obtain

VmẎm(t)Wm
T = VmTm,AYm(t)T T

m,BWT
m − VmYm(t)WT

m + VmẼm F̃T
mWT

m.

Using relationships{
AVm = VmTm,A + Vm+1TA

m+1,mET
m,

WT
mB = T T

m,BWT
m + Em(TB

m+1,m)
TWT

m+1,

we find

Ẋm(t) = [AVm −Vm+1TA
m+1,mET

m]Ym(t)[WT
mB− Em(TB

m+1,m)
TWT

m+1]− Xm(t) + EFT

= [A−Vm+1(TA
m+1,mET

mVT
m]Xm(t)[B−WmEm(TB

m+1,m)
TWT

m+1]− Xm(t) + EFT .

So
Ẋm(t) = (A− Fm,A)Xm(t)(B− Fm,B)− Xm(t) + EFT ,
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where Fm,A = Vm+1TA
m+1,mVT

m and Fm,B = Wm(TB
m+1,m)

TWT
m+1.

The next result states that the error Em(t) = X(t)− Xm(t) satisfies also a differential
Stein matrix equation.

Theorem 3. Let X(t), the exact solution of (1), and Xm(t) be the low-rank approximate solution
obtained at step m. The error Em(t) satisfies the following differential Stein equation

Ėm(t) = AEm(t)B− Em(t)− Rm(t). (9)

Proof. According to (1) and (4) we have

Ėm(t) = Ẋ(t)− Ẋm(t)

= AX(t)B− X(t) + EFT − AXm(t)B + Xm(t)− EFT − Rm(t)

= A(X(t)− Xm(t))B− (X(t)− Xm(t))− Rm(t)

= AEm(t)B− Em(t)− Rm(t).

Next, we give an upper bound for the norm of the error X − Xm by using the
2-logarithmic norm defined by µ2(A) = 1

2 λmax(A + AT). The logarithmic norm satisfies
the following relation

‖ etA ‖2≤ eµ2(A)t; t ≥ 0. (10)

Theorem 4. At step m of the extended block Arnoldi process, we have the following upper bound
for the norm of the error,

‖Em(t)‖F ≤ e(t−t0)µ2(A)‖Em(t0)‖F + max
τ∈[t0,t]

‖Rm(τ)‖F
e(t−t0)µ2(A) − 1

µ2(A)
.

Proof. We notice that the differential Stein Equation (9) is equivalent to the linear ordinary
differential equation {

˙errm(t) = Aerrm(t)− bm(t),
err0 = vec(Em(t0)),

(11)

where 
A = BT ⊗ A− Inp,
errm(t) = vec(Em(t)),
bm(t) = vec(Rm(t)),

Then, the error errm(t) can be expressed in the integral form as follows

errm(t) = e(t−t0)Aerr0 −
∫ t

t0

e(t−τ)Abm(τ)dτ, t ∈ [t0, Tf ].
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By using ‖etA‖2 ≤ eµ2(A)t, we have

‖errm(t)‖2 ≤ ‖e(t−t0)Aerr0 −
∫ t

t0

e(t−τ)Abm(τ)dτ‖2

≤ ‖e(t−t0)Aerr0‖2 + ‖
∫ t

t0

e(t−τ)Abm(τ)dτ‖2

≤ e(t−t0)µ2(A)‖err0‖2 +
∫ t

t0

e(t−τ)µ2(A)‖bm(τ)‖2dτ

≤ e(t−t0)µ2(A)‖err0‖2 + max
τ∈[t0,t]

‖bm(τ)‖2

∫ t

t0

e(t−τ)µ2(A)dτ

≤ e(t−t0)µ2(A)‖err0‖2 + max
τ∈[t0,t]

‖bm(τ)‖2
e(t−t0)µ2(A) − 1

µ2(A)

≤ e(t−t0)µ2(A)‖err0‖2 + max
τ∈[t0,t]

‖vec(Rm(τ))‖2
e(t−t0)µ2(A) − 1

µ2(A)
.

As ‖vec(Em(t))‖2 = ‖Em(t)‖F, so

‖Em(t)‖F ≤ e(t−t0)µ2(A)‖Em(t0)‖F + max
τ∈[t0,t]

‖Rm(τ)‖F
e(t−t0)µ2(A) − 1

µ2(A)
.

3. Solving the Projected Differential Stein Matrix Equation
3.1. Rosenbrock Method

In this section, we are applying the Ros method [18] for solving the projected differential
Stein matrix equation. We can write the low dimensional nonsymmetric differential Stein
Equation (5) in the following form{

Ẏm(t) = S(Ym(t)), t ∈ [t0, Tf ]

Ym(t0) = Y(0)
m ,

(12)

where S(Ym) = Tm,AYmT T
m,B −Ym + Ẽm F̃T

m and Y(0)
m = VmX0WT

m.
The approximation Ym,k+1 of Ym(tk+1) obtained at step k+ 1 by Ros method is given by

Yk+1 = Yk +
3
2

P1 +
1
2

P2, (13)

where P1 and P2 solve the following Stein matrix equations

ΛAP1ΛT
B − P1 + S(Yk) = 0, (14)

and
ΛAP2ΛT

B − P2 + S(Yk + P1)−
2
h

P1 = 0, (15)

where  ΛA =
√

γTm,A +
√

1
h + 1− γIsize(Tm,A)

,

ΛB =
√

γTm,B +
√

1
h + 1− γIsize(Tm,B)

,

with γ = 1/2.
The Ros algorithm for solving the reduced differential Stein matrix Equation (5) is

summarized in Algorithm 2.
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Algorithm 2: The 2-Rosenbrock method for solving the reduced NDSE (12)

Input: Tm,A, Tm,B, Ẽm, F̃m, t0, Tf .
1. Choose h.

2. Compute: N =
Tf−t0

h
3. Compute: ΛA
4. Compute: ΛB
5. For k = 1 : N + 1

(a) Compute P1 by solving Stein matrix Equation (14).
(b) Compute P2 by solving Stein matrix Equation (15).
(c) Compute Yk+1 by (13).

6. End For k.

Output: YTf .

3.2. Backward Differentiation Formula Method

In this section, we present a BDF method [19] for solving, at each step m of the extended
block Arnoldi process, the low dimensional differential Stein matrix Equation (5).

At each time tk, let Ym,k be the approximation of Ym(tk), where Ym is a solution of (5).
Then, the new approximation Ym,k+1 of Ym(tk+1) obtained at step k + 1 by BDF method is
defined by the implicit relation

Ym,k+1 =
p−1

∑
i=0

αiYm,k−i + hβS(Ym,k+1), (16)

where h = tk+1− tk is the step size, αi and β are the coefficients of the BDF method as listed
in the Table 1.

Table 1. Coefficients of the p-step BDF method with p ≤ 2.

p β α0 α1

BDF1 1 1 1 0
BDF2 2 2/3 4/3 −1/3

The approximate Ym,k+1 solves the following matrix equation

−Ym,k+1 + hβ(Tm,AYm,k+1T T
m,B −Ym,k+1 + Ẽm F̃T

m) +
p−1

∑
i=0

αiYm,k−i = 0.

We assume that at each time tk, the approximation Ym,k is factorized as a low-rank
product Ym,k ≈ Ũm,kṼT

m,k, where Ũm,k ∈ Rn×mk and Ṽm,k ∈ Rp×mk , with mk � n, p.
We define 

T̃m,A =
√

hβTm,A −
√

hβI2m,
T̃m,B =

√
hβTm,B

T +
√

hβI2m,
Em,k+1 = [

√
hβẼT

m,
√

α0ŨT
m,k, ...,√αp−1ŨT

m,k+1−p]
T ,

Fm,k+1 = [
√

hβF̃T
m,
√

α0ṼT
m,k, ...,√αp−1ṼT

m,k+1−p]
T .

Then, we obtain the following matrix Stein equation:

T̃m,AYm,k+1T̃m,B −Ym,k+1 +Em,kFT
m,k = 0. (17)

The low-rank approximate solutions method by extended block Arnoldi algorithm
for the large differential nonsymmetric stein matrix equations is summarized as follows in
Algorithm 3.
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Algorithm 3: The low-rank extended block Arnoldi method for DNSE
Input: X0, choose a tolerance tol > 0, a maximum number of mmax iterations.
1. For m =, 2, 3, ..., mmax do
2. Update Vm, Tm,A, by Algorithm 1 (EBA) applied to (A, E)
3. UpdateWm, Tm,B, by Algorithm 1 (EBA) applied to (BT , F)
4. Solve the low-dimensional problem (5) by BDF method or Ros method.
5. If ‖Rm(t)‖F < tol, stop.
6. End If;
7. End For (m);
8. Using (7), the approximate solution Xm is given by Xm ≈ Z1,m ZT

2,m.

Output: Xm.

4. Numerical Experiments

In this section, we give some numerical examples of large nonsymmetric differential
Stein matrix equations. All the experiments were performed on a computer of Intel Core
i5 at 1.3 GHz and 4 GB of RAM. The Algorithm 3 were coded in Matlab2014. In all of
the examples, the coefficients of the matrices E and F were random values uniformly
distributed on [0, 1]. The stopping criterion used for EBA-BDF method and EBA-Ros was
‖R(Xm)‖F < 10−10 or a maximum of mmax = 40 iterations was achieved.

4.1. Example 1

In this first example, the matrices A and B are obtained from the centered finite
difference discretization of the operators:

LA(u) = ∆u + f1(x, y)
∂u
∂x

+, f2(x, y)
∂u
∂y

+ f (x, y)u,

LB(u) = ∆u + g1(x, y)
∂u
∂x

+ g2(x, y)
∂u
∂y

+ g(x, y)u,

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions. The
number of inner grid points in each direction was n0 and p0 for the operators LA and LB,
respectively. The matrices A and B were obtained from the discretization of the operator
LA and LB with the dimensions n = n2

0 and p = p2
0, respectively. The discretization of the

operator LA(u) and LB(u) yields matrices extracted from the Lyapack package [20] using
the command fdm_2d_matrix and denoted as A = fdm(n0,’f_1(x,y)’,’f_2(x,y)’,’f(x,y)’). In this
example, n = 10,000 and p = 10,000, respectively, and are named as A = fdm(n0, f1(x, y),
f2(x, y), f (x, y)) and B = fdm(p0, g1(x, y), g2(x, y), g(x, y)) with f1(x, y) = −exy, f2(x, y) =
− sin(xy), f (x, y) = y2, g1(x, y) = −100ex, g2(x, y) = −12xy and g(x, y) =

√
x2 + y2. For

this experiment, we used r = 2.
In Figure 1, we plotted the Frobenius norms of the residuals versus the number of

iterations for the EBA-BDF and the EBA-Ros method.
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Figure 1. EBA-BD F method and EBA-Ros method.

In Table 2, we compared the performances of the EBA-BDF method and the EBA-Ros.
For both methods, we listed the residual norms, the maximum number of iteration and the
corresponding execution time.

Table 2. Results for Example 1.

Test Problem Method Iterations Residual Norm Times (s)

n = 8100, p = 4900, r = 2, h = 0.3 EBA-BDF 5 2.03 × 10−11 0.497
EBA-Ros 5 1.40 × 10−11 0.854

n = 10,000, p = 4900, r = 3, h = 0.2 EBA-BDF 5 4.38 × 10−12 1.025
EBA-Ros 5 5.77 × 10−13 1.53

n = 40,000, p = 12,100, r = 4, h = 0.1 EBA-BDF 5 8.27 × 10−12 6.80
EBA-Ros 5 8.70 × 10−13 6.85

4.2. Example 2

For the second set of experiments, we use the matrices add32, pde2961, and thermal
from the Harwell Boeing Collection [21]. The tolerance was set to 10−8 for the stop test on
the residual. For the EBA-BDF and EBA-Ros methods, we used a constant timestep h = 0.1,

In Figure 2, the matrices A = add32 and B = pde2961 with dimensions n = 4960
and p = 2961, respectively, and r = 2. We plotted the Frobenius norms of the residuals
‖Rm(Tf )‖F at final time Tf versus the number of extended block Arnoldi iterations for the
EBA-BDF and EBA-Ros method.

In Figure 3, the matrices A = fdm(x + 10y2,
√

2x2 + y2, y2− x2) and B = thermal with
dimensions n = 10,000 and p = 3456, respectively, h = 0.2 and r = 3. We plotted the
Frobenius norms of the residuals ‖Rm(Tf )‖F at final time Tf versus the number of extended
block Arnoldi iterations for the EBA-BDF and EBA-Ros method.
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Figure 2. Residual norm vs number m of extended block Arnoldi iterations.
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Figure 3. Residual norm vs number m of extended block Arnoldi iterations.

In Table 3, we list the Frobenius residual norms at final time Tf = 2 and the corresponding
CPU time for each method.
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Table 3. Runtimes in seconds and the residual norms.

Test Problem Method CPU Time Iterations ‖Rm(Tf )‖F

n = p = 2500 r = 2 and h = 0.2 EBA-BDF 11.01 s 16 4.57× 10−9

A = add32 and B = pde2961 EBA-Ros 11.49 s 19 6.59× 10−9

n = 12,100, p = 4900 EBA-BDF 10.77 s 4 7.75× 10−9

p = 8100, h = 0.1 and r = 3 EBA-Ros 10.78 s 5 6.31× 10−10

B = thermal, n = 10,000, p = 3456 and r = 3, h = 0.2 EBA-BDF 6.20 s 7 5.87× 10−9

A = fdm(x + 10y2,
√

2x2 + y2, y2 − x2) EBA-Ros 6.27 s 8 2.18× 10−9

The numerical results are promising, showing the effectiveness of the proposed methods.

5. Conclusions

We presented, in this paper, a new iterative method for computing numerical solutions
for large-scale differential Stein matrix equations with low-rank right-hand sides. This
approach is based on projection onto extended block Krylov subspaces with a Galerkin
method. The approximate solutions are given as products of two low-rank matrices and
allow for saving memory for large problems. The numerical experiments show that the
proposed extended block Krylov-based method is effective for large and sparse matrices.
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