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Abstract: In this research, high-order shape functions commonly used in different finite element
implementations are investigated with a special focus on their applicability in the semi-analytical
finite element (SAFE) method being applied to wave propagation problems. Hierarchical shape func-
tions (p-version of the finite element method), Lagrange polynomials defined over non-equidistant
nodes (spectral element method), and non-uniform rational B-splines (isogeometric analysis) are
implemented in an in-house SAFE code, along with different refinement strategies such as h-, p-, and
k-refinement. Since the numerical analysis of wave propagation is computationally quite challeng-
ing, high-order shape functions and local mesh refinement techniques are required to increase the
accuracy of the solution, while at the same time decreasing the computational costs. The obtained
results reveal that employing a suitable high-order basis in combination with one of the mentioned
mesh refinement techniques has a notable effect on the performance of the SAFE method. This
point becomes especially beneficial when dealing with applications in the areas of structural health
monitoring or material property identification, where a model problem has to be solved repeatedly.

Keywords: SAFE; p-FEM; SEM; IGA; dispersion curves; wave propagation

1. Introduction

The semi-analytical finite element (SAFE) method is an efficient tool for the analysis
of wave propagation problems and the computation of dispersion curves. As the name
suggests, the equations of motions are presented analytically in the direction of wave
propagation, while the cross-section of the structure under investigation is discretized in
a finite element sense [1]. Therefore, SAFE is often used in structures with non-varying
cross-section such as pipes [1,2] and plates [1,3]. As a result of its formulation, the dimen-
sion of the spatial discretization is reduced by one or two and, therefore, the number of
degrees of freedom (DOF) is drastically reduced in comparison to established numerical
methods such as the finite element method (FEM), the spectral element method (SEM), or
isogeometric analysis (IGA). Consequently, significant savings in terms of computational
costs can be achieved by applying SAFE to suitable classes of problems. Note that, to ensure
accurate numerical results, researchers have proposed to use at least 6 to 10 nodes [4–6] per
wavelength if a piecewise linear approximation of the displacement field is employed. This
is a rather rough estimate and according to the findings discussed in Refs. [7,8] more than
20 nodes per wavelength are required for accurate results. For a detailed guide on how to
set up the spatial discretization for wave propagation problems including the analysis of
high-order methods, the reader is referred to [8].
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On the other hand, in comparison with purely analytical approaches, semi-analytical
methods such as SAFE exhibit more flexibility in modeling structures with a higher degree
of complexity. The existing analytical methods for modeling wave propagation in the
structures are mainly based on either the transfer matrix method or the global matrix
method [9–13]. These approaches are essentially limited to structures with simple geome-
tries and low frequency excitation regimes. In addition, they typically require a numerical
search algorithm for finding the roots of the analytical formulations [11,14].

Still, it must be noted that semi-analytical methods do not only inherit the best aspects
of both worlds, but also some of their limitations. One of the major disadvantages of these
kinds of methods is seen in the limitations related to the geometry of the structure. Here,
the cross-section of the waveguide is required to be constant along the wave propagation
direction. In the following, a comprehensive and unbiased discussion on recent advances
regarding the extension of SAFE to more complicated structures is attempted. Additionally,
the general benefits and drawbacks of this method are outlined.

The SAFE method for wave propagation problems in waveguides of arbitrary cross-
section was first presented by Aalami [15] and Lagasse [16] in 1973. This method was
previously used in structural engineering [17] and is closely related to both the strip and
thin element methods [14]. Since its development, the SAFE method has been extended
by other researchers to account for more complex structures. Examples including, but not
limited to are:

• plates with viscoelastic damping [1,3];
• cylinders [3], thin-walled steel pipes, aluminum profiles, orthotropic tubular profiles,

and angle steel beams [18];
• wedges with different shapes [19];
• rails [20–22];
• pre-twisted rods and curved waveguides (e.g., rings with rectangular cross-section) [19];
• viscoelastic axisymmetric waveguides [1,3];
• springs, multi-wires [23];
• finned tubes [24];
• immersed or embedded (e.g., in soil or concrete) waveguides with various cross-

sections [25–32].

Besides research devoted to extending SAFE in terms of its geometry approximation
capabilities, another important aspect is the investigation of different approaches to spatially
discretize the cross-section of the structure. Depending on the complexity of the cross-section,
the SAFE method can be divided into one-dimensional (1D SAFE) and two-dimensional (2D
SAFE) approaches where corresponding finite elements are used for the spatial discretization.
In structures with simple geometries such as infinite plates and axisymmetric waveguides, in
order to reduce the computational effort, the 1D SAFE method may be used [3]. In this case,
three-noded elements with quadratic shape functions and three displacement DOF at each
node are the most popular choice [1,2,11,12,18,27,30,33–39], while two-noded elements [40]
and three-noded elements with two displacement DOFs at each node [1] are also considered
in the literature. In the case of the 2D SAFE method, the elements mostly used are linear three-
noded triangular and bi-linear four-noded quadrilateral elements [1,11,19,21–24,29,32,41–50].
In some cases, quadratic six-noded triangular elements, bi-quadratic eight-noded quadrilat-
eral (Serendipity) elements [18,25,26,28,49,51–54], and nine-noded Lagrange quadrilateral
elements [26] are also proposed. Steshedi et al. [49] compared three- and six-noded triangular
with four- and eight-noded quadrilateral elements for the analysis of rails. They considered
the convergence of the group velocity at 40 kHz for different element topologies to find
the best spatial discretization. They recommended the eight-noded quadrilateral element
due to its accuracy and convergence properties in comparison to the others. However, no
data concerning the convergence rate or the attained accuracy for the different elements
were presented.

Despite the advantages of using high-order shape function, in the wide body of litera-
ture concerning SAFE, the vast majority of research is related to low-order shape functions
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and only very few high-order implementations have been discussed. The advantages of
using high-order shape functions over low order ones are seen in the following properties:
(i) exponential rates of convergence [55], (ii) robustness with respect to mesh distortion,
and (iii) negligible locking [55,56]. Kalkowski et al. [57] used high-order spectral elements
to model an axisymmetric embedded waveguide using 1D elements along with perfectly
matched layers (PML) for modeling the surrounding (infinite) medium. PMLs are of great
use for modelling waves in structures embedded in a restraining medium. PML maps
the original geometry into a new coordinate system which both ‘stretches’ the original
geometry and attenuates the waves (as the new coordinate is complex) [57]. In their imple-
mentation, Kalkowski et al. used Lagrange polynomials over Gauss–Lobatto–Legendre
(GLL) points. Xiao et al. [58] employed 1D elements to model guided wave propagation
in an infinite functionally graded magneto-electro-elastic plate by the Chebyshev spec-
tral element method. Here, the shape functions are Lagrange polynomials as well, but
defined over Gauss–Lobatto–Chebyshev (GLC) points. Treyssede et al. [59] discretized the
geometry with 2D spectral elements, and computed high-frequency low-leakage modes
in structural waveguides surrounded by infinite solid media. Recently, Seyfaddini et al.
utilized non-uniform rational B-splines (NURBS) basis functions (well-known from IGA)
in the SAFE method for modeling wave propagation in isotropic plates [60], functionally
graded plates immersed in fluids [61], and poroelastic plates [62]. In their study, they have
compared the obtained results to a different SAFE approach utilizing high-order shape
functions based on Lagrangian polynomials and equidistant nodes. According to their
study, the semi-analytical approach based on IGA provides an improved performance.

According to the studies available in the literature, the SAFE method is an efficient
method for structural health monitoring (SHM) and material property identification pur-
poses. In material property identification problems [36,49], first, dispersion curves are
derived using experimental methods. Thereafter, using model updating approaches, the
material parameters are adjusted in the numerical model using an optimization strategy
such that the computed dispersion curves agree with the experimental ones. Consequently,
a large number of simulations is required. Since both the efficiency and accuracy of the
solution procedure for such problems is of utmost importance, it is necessary to thoroughly
investigate different numerical methods which can be straightforwardly combined with
SAFE. To the authors’ knowledge, no research has been conducted yet, where the advan-
tages of using various high-order shape functions and a thorough comparison in terms of
their efficiency and computational costs have been attempted. Therefore, the overarching
goal of this contribution is to implement high-order shape functions known from p-FEM,
SEM, and IGA into SAFE. Furthermore, the ramifications of using different refinement
techniques, e.g., h-, p-, and k-refinement, are investigated in detail.

The remaining paper is organized as follows: In Section 2, the theoretical derivation of
the SAFE method is presented. Then, high-order shape functions are briefly discussed in
Section 3. The numerical results for isotropic and composite plates are reported in Section 4,
while important conclusions are drawn in Section 5.

2. SAFE Method

The SAFE method is a combination of an FE-based spatial discretization of the cross-
section of the waveguide and an analytical solution in the direction of wave propagation.
To this end, the analytical term e−i(ωt−κx) is introduced in the solution, where κ represents
the wavenumber, x denotes the direction of wave propagation, ω is the circular frequency,
and t stands for time. In this method, the cross-section of the waveguide, depending on
the complexity of the structure, is discretized employing 1D or 2D finite elements in order
to achieve a three-dimensional model of the structure. Consequently, in comparison to
numerical methods that fully discretize the computational domain, the generated models
exhibit a significant reduction in the number of DOFs and the numerical costs required for
performing the analysis. In order to emphasise the differences and similarities between
the SAFE method and FEM, typical elements, nodal distributions, and shape functions are
compared with each other. However, it should be noted that the derived stiffness and mass
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matrices are different from each other which will be addressed later. Typical 1D, 2D, and
3D finite elements with their corresponding DOFs are depicted in Figure 1.

x y

z

uz

(a)

uz

uy

uz

uy

(b)

uz

uyux

uz

uyux

(c)
Figure 1. (a) 1D, (b) 2D, and (c) 3D elements with the corresponding displacement DOFs at each
node (FEM).

For the case of the 3D element (see Figure 1c) with three displacement DOFs at each
node

Nl = Nl(x, y, z), l = 1, 2, . . . , β, (1)

the displacement field at each point in the element may be expressed as:

u(e)(x, y, z) =

 u(e)
x (x, y, z)

u(e)
y (x, y, z)

u(e)
z (x, y, z)

 =

 ∑
β
l=1 Nl(x, y, z)ulx

∑
β
l=1 Nl(x, y, z)uly

∑
β
l=1 Nl(x, y, z)ulz

 = N(x, y, z)q(e) (2)

with

N =

N1 0 0 N2 0 0 . . . Nβ 0 0
0 N1 0 0 N2 0 . . . 0 Nβ 0
0 0 N1 0 0 N2 . . . 0 0 Nβ

 (3)

and

q(e) = [u1x u1y u1z u2x u2y u2z u3x u3y u3z . . . uβx uβy uβz]
T . (4)

Here, β denotes the number of nodes per element, and uij refers to the displacement
of node number i in the direction j and the superscript �(e) generally refers to an elemental
property. As can be easily seen, the shape functions are functions of the spatial coordinates
x, y, and z and the DOFs considered for each node are also available in the same coordinate
directions.

For the cases of 1D and 2D elements (see Figure 1a,b, respectively), the shape functions
are only functions of the spatial coordinate z

Nl = Nl(z), l = 1, 2, . . . , β, (5)

or the spatial coordinates y and z

Nl = Nl(y, z), l = 1, 2, . . . , β. (6)
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Despite the analogy with standard FEM, the displacement DOFs in the SAFE method
are defined in a slightly different way. In the SAFE method, independent of whether we
employ the 1D or 2D variant, all three displacement DOFs are available as we want to
model a three-dimensional structure. That is to say, the shape function matrix N and the
elemental displacement vector q(e) are formulated as in Equations (3) and (4), respectively.
Note, however, that, for the 1D version of SAFE, the one-dimensional shape functions
Nl(z) according to Equation (5) are also used to populate the shape functions matrix, while
in the 2D SAFE case the two-dimensional shape functions provided in Equation (6) are
implemented. Thus, the displacement of each point in an element in the SAFE method is
given as follows:
1D SAFE method:

u(e)(x, z, t) =

 u(e)
x

u(e)
y

u(e)
z

 =

 ∑
β
l=1 Nl(z)ulx

∑
β
l=1 Nl(z)uly

∑
β
l=1 Nl(z)ulz

e−i(ωt−kx) = N(z)q(e)e−i(ωt−kx) (7)

with

N =

N1 0 0 N2 0 0 . . . Nβ 0 0
0 N1 0 0 N2 0 . . . 0 Nβ 0
0 0 N1 0 0 N2 . . . 0 0 Nβ

 (8)

and

q(e) = [u1x u1y u1z u2x u2y u2z u3x u3y u3z . . . uβx uβy uβz]
T (9)

2D SAFE method:

u(e)(x, y, z, t) =

 u(e)
x

u(e)
y

u(e)
z

 =

 ∑
β
l=1 Nl(y, z)ulx

∑
β
l=1 Nl(y, z)uly

∑
β
l=1 Nl(y, z)ulz

e−i(ωt−kx) = N(y, z)q(e)e−i(ωt−kx) (10)

with

N =

N1 0 0 N2 0 0 N3 0 0 . . . Nβ 0 0
0 N1 0 0 N2 0 0 N3 0 . . . 0 Nβ 0
0 0 N1 0 0 N2 0 0 N3 . . . 0 0 Nβ

 (11)

and

q(e) = [u1x u1y u1z u2x u2y u2z u3x u3y u3z . . . uβx uβy uβz]
T (12)

This conceptual difference results in the need to adapt the conventional FE-shape func-
tion matrix for the use in the SAFE method. According to the aforementioned explanations
about the similarities and differences between the SAFE method and FEM, the formulation
process for the case of the 1D SAFE method is briefly explained in the following. It should
also be kept in mind that a three-dimensional model is generated in the 1D SAFE method
in contrast to 1D FEM. The linear strain-displacement relation is presented as [1]:

ε(e) =

[
Lx

∂

∂x
+ Ly

∂

∂y
+ Lz

∂

∂z

]
u(e) = (β1 + ikβ2)q(e)e−i(ωt−kx) (13)
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with the matrices

Lx =



1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

, Ly =



0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

, Lz =



0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

 (14)

and derived quantities

β1 = Ly
∂N
∂y

+ Lz
∂N
∂z

, β2 = LxN. (15)

The stress-strain relation is given as:

σ(e) = C(e)ε(e), (16)

where C is the material’s elasticity matrix. Assigning the kinetic and potential energy to
the variables K and Φ, respectively, the variation of the Hamiltonian may be written as:

δH =
∫ t2

t1

δ(Φ− K)dt = 0, (17)

with
Φ =

1
2

∫
V

εTCεdV, (18)

K =
1
2

∫
V

u̇Tρu̇dV. (19)

Here, u̇ refers to the derivative of displacement with respect to time and ρ denotes
to the mass density of the material. By replacing the strain and displacement relations in
Hamilton’s principle and following the same process as in the FEM to derive the weak
form, the stiffness matrices (k(e)

1 , k(e)
2 , and k(e)

3 ) and the mass matrix (m(e)) are derived [1]:

k(e)
1 =

∫
Ωe

[
βT

1 C(e)β1

]
dΩe , (20)

k(e)
2 =

∫
Ωe

[
βT

1 C(e)β2 − βT
2 C(e)β1

]
dΩe , (21)

k(e)
3 =

∫
Ωe

[
βT

2 C(e)β2

]
dΩe , (22)

m(e) =
∫

Ωe

[
NTρ(e)N

]
dΩe . (23)

As is evident from the above equations, unlike FEM, we obtain three stiffness matrices
in the SAFE method. The matrix k(e)

1 relates to deformations in the cross section of the

structure, which is located in the yz plane. The matrix k(e)
2 matrix couples the in-plane

(yz plane) deformations to out-of-plane (x axis) deformations. Finally, the matrix k(e)
3

represents out-of-plane deformations. The stiffness and mass matrices of each element,
for the total number of nel elements, are assembled in order to obtain the global stiffness
matrices (K1, K2, and K3) and the global mass matrix (M) of the entire system:

K1 =
nel⋃

e=1

k(e)
1 , K2 =

nel⋃
e=1

k(e)
2 , K3 =

nel⋃
e=1

k(e)
3 , M =

nel⋃
e=1

m(e) . (24)
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the corresponding eigenvalue problem, which needs to be solved to obtain the solution is
given as:

(K1 + iκK2 + κ2K3 −ω2M)Q = 0 , (25)

where Q refers to the global vector of displacements at each node. Employing a change of
variable, we may rewrite the second-order eigenvalue problem, cf. Equation (25), into a
first-order one:

[A− κB]Q̂ = 0 . (26)

To this end, the following matrices have been introduced [1]:

A =

[
0 K1 −ω2M

K1 −ω2M K̂2

]
, (27)

B =

[
K1 −ω2M 0

0 −K3

]
, (28)

Q̂ =

[
Q

κQ

]
, (29)

K̂2 = iTTK2T , (30)

T =



i
1 0

1
. . .

i
0 1

1


. (31)

3. High-Order Shape Functions

In order to increase the accuracy of classical numerical methods, either h-refinement
or p-refinement or a combination of both may be used. The basic idea of h-refinement is to
successively sub-divide the computational domain into smaller and smaller sub-domains,
also known as elements, while the order of the polynomial shape functions is kept constant.
On the other hand, p-refinement refers to an approach, where the number of elements is kept
constant, and meanwhile the order of the polynomial shape functions is increased. Besides
p- and h-refinement, the particular choice of shape functions is also of great importance.
Typical examples of high-order shape functions which can be considered are:

1. Standard shape functions based on Lagrange polynomials with equidistant nodal
distribution:

• The Lagrange interpolation polynomials are defined as [63,64]

Lp(ξ) =
p+1

∏
k=1,k 6=p

ξ − ξk
ξp − ξk

. (32)

Lp(ξ) is a p-th degree polynomial given by the product of p linear factors [65].
Moreover, ξk represents the given set of points over a specified range, while ξp is
a particular point in that set. An equidistant distribution of the points over the
interval [−1, 1], which is a typical for a local coordinate system of an element, is
calculated by [66]:

ξk = −1 + 2
k− 1

p
, k = 1, 2, . . . , p + 1. (33)

2. Spectral shape functions based on Lagrange polynomials with Gauss–Lobatto–Legendre
(GLL) and Gauss–Lobatto–Chebyshev (GLC) nodal distributions:
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• Standard shape functions based on Lagrange polynomials defined using an
equidistant nodal distribution lead to large oscillations and consequently to ill-
conditioning [63,67]. This poor behavior of polynomial interpolation in equally
spaced points is known as Runge’s phenomenon, which infers that increasing the
order of shape functions does not necessarily incur lower errors [63,68]. There-
fore, in order to circumvent this problem, non-equidistant nodal distributions
such as GLL points [69] and GLC [70] have been proposed. In Figure 2a–c,
the shape functions of a fifth order Lagrange polynomial based on equidistant,
GLL, and GLC nodal distributions are depicted, respectively. The GLL and GLC
nodal distributions along with high-order Lagrange polynomials are used in the
SEM [63], which was first presented by Patera et al. in the field of fluid dynam-
ics [71]. Note that SEM with GLL points has a special characteristic besides low
numerical dispersion. The mass matrix for this particular spectral element is ap-
proximated through reduced integration by a diagonal matrix [67,72]. However,
the SEM suffers from the fact that, for increasing the order of the shape functions,
an additional node should be inserted and consequently all other internal nodes
are repositioned and the coefficient matrices must be re-computed [73,74]. To
derive the GLL points, we choose the roots of the first derivative of a p-th degree
Legendre polynomial plus the endpoints located at ξ1 = −1 and ξp+1 = 1 [63]

ξk =

{ −1 k = 0
ξk 2 ≤ k ≤ p
+1 k = p + 1

, (34)

where ξk denotes the aforementioned roots.

3. Hierarchic shape functions based on the normalized integrals of the Legendre-polynomials:

• Hierarchic shape functions are mainly used in the p-version of FEM. The prin-
cipal difference between hierarchical shape functions and other sets of shape
functions lies in the fact that in the hierarchic case the new DOFs are added to the
existing ones without changing the existing DOFs. Thus, all lower order shape
functions are contained in the higher order basis as depicted in Figure 2d. Unlike
the previously discussed shape functions, where all the shape functions are of the
same order, the order of the hierarchic shape functions increases incrementally
starting from the first two linear shape functions. The one-dimensional, hierar-
chic shape functions consist of two nodal shape functions and various internal
shape functions

N1(ξ) =
1
2
(1− ξ) , (35)

N2(ξ) =
1
2
(1 + ξ) , (36)

Nn(ξ) =
1

‖len−2‖

∫ x=ξ

x=−1
len−2(x) dx, n = 3, 4, 5, . . . , p, (37)

which are normalized integrals of Legendre polynomials. Here, len−2(x) is a
Legendre polynomial of order n− 2. Note that, in p-FEM, not all DOFs represent
actual nodal displacements [72], instead they are actually only unknowns of the
high-order ansatz space [73].

4. Non-Uniform Rational Basis Splines:

• In standard isoparamteric approaches, the shape functions used on an elemental
level to discretize the geometry under investigation are only approximate in
nature. Hence, numerical errors in geometries description are cause, which is
especially important for geometries including curved surfaces. Thus, Hughes
et al. [75] introduced the socalled isogeometric analysis in which nonuniform



Math. Comput. Appl. 2022, 27, 63 9 of 27

rational B-splines (NURBS) are used as shape functions. NURBS are frequently
used for describing the geometry in a computer aided design (CAD) and com-
puter aided manufacturing (CAM) applications [75,76]. NURBS are a general-
ization of B-splines and are derived by projecting B-splines from Rd+1 into Rd,
where d represents the dimensionality of the problem. A NURBS entity can be
defined using knot vectors and a series of control points. The term ‘knot vector’
can be deceiving as a knot vector is simply a list of non-decreasing entries called
knots and is not a real vector. A knot vector (see the example below),

Ξ =
[
ξ1 ξ2 . . . ξn+p+1

]
=
[
0 0 0 1/3 2/3 1 1 1

]
, (38)

defines the parametric space of a univariate NURBS entity (curve). In Equation (38),
p and n represent the degree of the NURBS and the number of control points,
respectively. A knot vector can range between any two real numbers, but it is
very common to choose 0 and 1 as the lower- and upper-bounds of the parametric
space. The space between two adjacent knots is called a knot span. Non-zero knot
spans can be compared to elements in the classical finite element method. Knot
vectors control the discretization of the geometry and also the continuity across the
elements, whereas the control points are responsible for all the changes regarding
the geometry. As a rule, a degree p NURBS has Cp−m-continuity across the knot
spans inside a patch, where m is the knot multiplicity in the knot vector. (Remark:
NURBS patches are geometrically simple domains within which the element types
and material models are presumed to be uniform.) The first and the last knots
in the knot vectors of ‘open NURBS’ which are considered in this study have a
multiplicity of p + 1, making their ends C−1-continuous. For instance, the knot
vector in Equation (38) represents a quadratic (p = 2) univariate NURBS with two
elements, where the continuity on knots 1/3, and 2/3 is C2−1 = C1. A univariate
NURBS is a rational generalization of a B-spline curve. For a degree p NURBS
curve, the corresponding shape function is given by (see [77,78])

Ri(ξ) =
Ni,p(ξ)wi

W(ξ)
=

Ni,p(ξ)wi

∑î=1 Nî,p(ξ)wî
, (39)

where W(ξ) is the weighting function, wi represents the weights associated
with the control points, and, finally, Ni,p(ξ) denotes the standard B-spline basis
functions in the parametric space. Shape functions of basis splines are defined
by the Cox–de Boor recursion formula:
For p = 0,

Ni,0(ξ) =

{
1, if ξi ≤ ξ < ξi+1

0, otherwise.
(40)

For p = 1, 2, 3, . . .,

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (41)

Refinement of NURBS entities is usually achieved by modifying the underlying
B-spline (in Rd+1). There are three methods to refine a B-spline/NURBS entity:

– Knot insertion: Additional knots are added to the knot vector, increasing
the number of control points and basis functions. Knot insertion is closely
related to h-refinement in the classical FEM, as inserting additional knots
increases the number of finite elements in the resulting discretization. Each
knot must be inserted p times, maintaining the C0-continuity between the
elements, to resemble the classical h-refinement technique completely,
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– Degree elevation: The polynomial degree of the NURBS entity is increased,
while preserving the continuity of the curve. In the case where the con-
tinuity between the elements is C0, degree elevation is equivalent to the
p-refinement technique in the classical FEM.

– k-refinement: Combination of knot insertion and degree elevation tech-
niques. To better understand the k-refinement technique, one ought to note
that knot insertion and degree elevation are not commutative. In other
words, the order in which the refinement techniques are applied plays a
crucial role in achieving the desired properties of the final discretization.
k-refinement makes it possible to increase the polynomial degree of the
NURBS object, while increasing its continuity as well. This leads to more
accurate results using less control points. To achieve the highest level of
its benefits, i.e., Cp−1 continuity of the basis between the elements of the
refined discretization, one needs to start with one element in the coarsest
discretization, elevate the basis to the desired degree and then insert the
additional knots to introduce the elements. On the other hand, inserting
knots first on a lower degree and then elevating the degree will lead to lower
continuity across the elements (C0, if one starts from a linear discretization)
and more control points. This technique does not have any equivalents in
the classical FEM.

It is important to note that none of these refinement techniques changes the origi-
nal geometry of the NURBS object. For a more detailed introduction to NURBS
and k-refinement, the interested reader is referred to the seminal monographs by
Piegl and Tiller [78] and Cottrell et al. [77].
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Figure 2. Cont.
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Figure 2. Shape functions, p= 5 , (a) Lagrange polynomials based on an equidistant nodal distri-
bution, (b) Lagrange polynomials based on a GLL nodal distribution, (c) Lagrange polynomials
based on a GLC nodal distribution, (d) p-FEM, and (e) IGA—the graphical representation of the basis
functions related to the knot vector in Equation (38).

4. Results and Discussion

In order to investigate the effect of using the aforementioned shape functions and
refinement techniques in the SAFE method, two case studies, i.e., an isotropic and a
composite plate (consisting of eight layers), are considered. The efficiency and accuracy
of various combinations of the introduced approaches are assessed through considering
models with the same number of DOFs and consequently, eigenvalue problems with the
same dimensions. From the obtained results, it is clear that the method attaining the highest
accuracy should be favoured in future applications as a considerable number of DOFs
can potentially be saved. The following combinations of shape functions and refinement
techniques are investigated in the remainder of this article:

1. h-refinement approach using:

• second order standard shape functions based on Lagrange polynomials with
equidistant nodal distribution (FEM);

• second order NURBS shape functions with C1-continuity (NURBS-based IGA);

2. p-refinement approach using high-order shape functions (p > 2):

• standard shape functions based on Lagrange polynomials with equidistant nodal
distribution;

• spectral shape functions based on Lagrange polynomials with Gauss-Lobatto-
Legendre nodal distribution (SEM);

• spectral shape functions based on Lagrange polynomials with Gauss-Lobatto-
Chebyshev nodal distribution (SEM);

• hierarchic shape functions based on the normalized integrals of the Legendre-
polynomials (p-FEM);

• NURBS with C0-continuity (NURBS-based IGA)

3. k-refinement approach using:

• NURBS with Cp−1-continuity (NURBS-based IGA).

In order to calculate the attainable error, the SAFE results are compared to the analytical
results derived using the Dispersion Calculator software, which is a free software provided
by the German Aerospace Center (DLR) for calculating dispersion curves of guided waves
in isotropic plates and multilayered composites [79]. Furthermore, for calculating the error,
the following relation is used:

Er% =

∣∣∣∣ kref − kSAFE

kref

∣∣∣∣× 100 , (42)
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where kref is the wavenumber derived using the analytical method and kSAFE is the
wavenumber derived using the SAFE method. In order to calculate the kSAFE, real val-
ues were assigned to the circular frequency ω and the first-order eigenvalue problem,
cf. Equation (26), was solved. More details about different approaches to deal with the
eigenvalue problem and calculating phase velocity (Cp), group velocity (Cg) and cut-off
frequencies are presented in Appendix A. The most important issue in dealing with the
derived eigenvalues is correlating the eigenvalues to the corresponding wave modes. In
order to fulfill this task, either a method based on the orthogonality property of modes
or different mode tracking methods based on Taylor or Padé series expansions can be
used. The details concerning various mode identification approaches are further discussed
in Appendix B. In this paper, we have considered a Padé expansion of order [1/2] for
extrapolating the wavenumber curves along with a Padé expansion of order [0/1] for
extrapolating the phase velocity curves as suggested by Gravenkamp et al. [80]. It is worth
mentioning that in the mode identification approach suggested by Gravenkamp et al. [80],
k′ = 1/Cg is replaced in the Padé expansion for extrapolating the group velocity curve
(see Equations (A13)–(A15) in Appendix B for further details) and the second and third
derivatives of Cg are considered for estimating the wavenumber value. This replacement
has led to using the group velocity values which are already considered separately. Hence,
to take full advantage of the proposed approach, we have considered the actual group
velocities instead of replacing the value with Cg. After deriving the predicted wavenumber
using the extrapolation, the error corresponding to the wavenumber will be

∆k =

∣∣∣∣ kp − k j

kp

∣∣∣∣ , (43)

where kp is the guessed wavenumber and k j is the wavenumber calculated in each step.
Furthermore, in order to increase the robustness of this method, the phase velocity curves
may also be utilized besides the wavenumber curves. Thus, in each step, the phase velocity
is guessed using the previous phase velocities corresponding to the same mode, and the
guessed value is compared to the the derived phase velocities as follows:

∆Cg =

∣∣∣∣Cgp − Cgj

Cgp

∣∣∣∣ , (44)

where Cgp is the guessed phase velocity and Cgj is the phase velocity calculated in each
step and an error function is constructed including both wavenumbers and phase velocities
as presented in Equation (45). The minimum error value may lead us to the wavenumber
representing the same wave mode

∆ = ∆2
k + ∆2

Cg
. (45)

4.1. Isotropic Case Study

The first case model problem is an aluminum plate with 1 mm thickness. The material
properties of the plate are listed in Table 1.

Table 1. Material properties of aluminum.

Young’s Modulus (GPa) Poisson’s Ratio Density (kg/m3)
E ν ρ

73.1 0.33 2780

In order to model wave propagation in the plate only one-dimensional, elements
with two DOFs at each node (FEM) or control point (IGA) are taken into account. The
DOFs considered herein are along the wave propagation direction (x) and along the plates
thickness (z) as depicted in Figure 3. Note that the third DOF along the width of plate (y) can
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be avoided in infinite isotropic plates, since shear and Lamb waves can be easily decoupled.
(Remark: A two-dimensional model is investigated in this example, where one of the in-
plane directions is assumed as infinite (plane strain assumption). Therefore, only two DOFs
per node/control point are used.) Consequently, we are only considering the existence
of Lamb waves. As the first step, in order to illustrate the accuracy of the simulations
performed (see Figure 4), the derived dispersion curves using the SAFE method and
Dispersion Calculator software are presented. The dispersion curves derived using SAFE
are denoted by ‘+’ and ‘o’ markers, which refer to symmetric and anti-symmetric Lamb
waves, respectively. Note that the dispersion curves derived using Dispersion Calculator
(which employs an analytical method to find the solution) are presented with dotted lines.
Five elements with NURBS shape functions of degree p = 24 and Cp−1 continuity along
the cross section of the plate are considered to obtain the results presented below (which
corresponds to the numerical results with the highest level of accuracy). It should be
noted that a lower number of DOFs may be sufficient to derive the dispersion curves. The
motivation behind selecting this excessive number of DOFs is twofold: (i) the error has
already converged to the minimum possible error and (ii) an excellent agreement between
the analytical and numerical dispersion curves even at high frequencies is obtained.
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Figure 3. 1D and 2D element with three displacement DOFs at each node in the SAFE method.
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Figure 4. Dispersion curves of the first six modes of propagating Lamb waves in a 1 mm thick
aluminum plate; · · · Dispersion Calculator, + SAFE method (symmetric modes), o SAFE method
(anti-symmetric modes); (a) wavenumber, (b) phase velocity, (c) group velocity vs. frequency.

Before further discussing the different approaches considered here, it should be noted
that, along with increasing the DOFs in modelling and consequently reducing the errors,
two phenomena occur simultaneously which make the execution of a convergence study
more complicated. As the accuracy of the model increases, along with decreasing the overall
error in different frequencies, the existing error in estimating cut-off frequencies decreases
as well. Consequently, except for first two modes which have zero cut-off frequencies, the
other curves related to higher-order modes are shifted to the left in the diagram. (Remark:
By increasing the number of DOFs, the structural behaviour becomes softer and thus, the
cut-off frequencies are approximated from above.) Correspondingly, in order to compare
the convergence and accuracy of different approaches, instead of comparing the results at
a specified frequency, which is considered to be 5 MHz for the first two modes, the error
at the local maximum value of the third mode (‘A’ in Figure 5) is considered to assess the
convergence behaviour. As clearly observed in Figure 5, the local extrema of the relative
error curves related to the A1 and S1 modes, labeled by ‘A’ and ‘B’, move to the left and
decrease as the number of elements increases for the case of FEM with second-order shape
functions. The error for the local extremum at point ‘A’, which is located on the error
curve of the anti-symmetric mode A1, decreases from 31.2% to 2.48% and then to 0.1% by
increasing the number of elements from one to three or seven elements, respectively. At
the same time, the frequency at which the local extremum occurs moves from 6010 kHz to
4630 kHz and then to 4590 kHz. The same behavior is observed for the local extremum at
point ‘B’, which is located on the error curve of the symmetric mode S1. By increasing the
number of elements from 3 to seven, the error at extremum decreases from 14.2% to 0.5%,
while the frequency reduces from 7570 kHz to 6630 kHz. As may be seen in Figure 5a, the
local extremum ‘B’ cannot be seen in this figure, due to the fact that it occurs at frequencies
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higher than 10 MHz. This phenomenon is seen for all other modes and different numerical
methods considered here. Therefore, considering the error at a specified frequency for
higher modes can cause complications, when analysing the error changes by increasing the
number of DOFs.
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Figure 5. Calculated percentage error for the aluminum plate using FEM, (a) one element, (b) three
elements, and (c) seven elements with 2nd order shape functions.

Since the other higher-order modes have approximately the same convergence behav-
ior, and in order to avoid further repetitive figures, only the first three modes are considered
in the comparison. Moreover, in Figure 6, the convergence rates and attainable accuracy
(error level) of the various investigated approaches are illustrated.



Math. Comput. Appl. 2022, 27, 63 16 of 27

0 10 20 30 40 50 60 70
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
r 

%
 

(a)

0 10 20 30 40 50 60 70
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
r 

%

(b)

0 10 20 30 40 50 60 70
10

-8

10
-6

10
-4

10
-2

10
0

10
2

E
r 

%

(c)

0 10 20 30 40 50 60 70
10

-8

10
-6

10
-4

10
-2

10
0

10
2

E
r 

%

(d)
Figure 6. Convergence curves derived using the shape functions along with the specified refinement
technique in aluminum plate problem, (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) legend.

Judging from the behaviour for the first three modes, i.e., A0, S0, and A1, the following
conclusions may be drawn:

1. The highest convergence rate is achieved by the approach which takes advantage
of NURBS shape functions of degree p with Cp−1 continuity between elements and
the k-refinement technique. Here, a total of five elements (non-zero knot spans) were
considered, and, in each step, the degree of the shape functions and their continuity
is increased.

2. Among the high-order shape functions with C0 continuity between the elements,
the hierarchical shape functions (p-FEM method; purple dash-dotted curve with ‘+’
markers) show the best performance. The attainable error level is slightly lower
compared to the other methods. Here, no divergence is observed when the order
of the shape functions is repeatedly increased. In the following order, the other C0

continuous approaches can be ranked: NURBS shape functions (yellow dash-dotted
curve with asterix markers), spectral shape functions (with GLL or GLC points; green
dashed curve with ‘o’ markers or cyan dashed curve with triangle markers), and
standard shape functions (dark blue dash-dotted curve with ‘x’ markers), respectively.
As mentioned previously, it may also be observed that, as the shape function order
increases in the standard shape functions with equidistant nodal distribution, the
error increases, which is related to Runge’s phenomenon. Additionally, it should be
noted that, in the thickness of the plate, a constant number of five elements were
considered during the p-refinement approach.

3. Finally, the h-refinement technique shows the poorest performance among the other
presented approaches. The methods which include h-refinement technique second
order shape functions with C0 continuity (FEM, blue dashed line with ‘o’ marker) and
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C1 continuity (IGA, red dashed line with rectangular marker) were considered and
the number of elements increased in each step. As it can be observed, the approach
which takes advantage of C1 continuity shows better performance than the standard
FEM with C0 continuity between the elements, which is the expected behavior.

It should be noted that the comparison of the computational time revealed that,
although using different shape functions obviously has an effect on the efficiency of the
approach, the current case studies are not suitable for an comprehensive assessment due
to the small number of DOFs. For small scale investigations, only the number of DOFs or
control points play a key role in the run time of the analysis. Thus, at this point, only the
normalized simulation time is plotted against the number of DOFs, as depicted in Figure 7.
As can be observed and was expected, the computational time increases significantly
with the number of DOFs. Since this does not give us much additional insight, we also
list the computational time when the relative error becomes less than 6× 10−4% for the
different methods. For the specified criterion, the number of DOFs or control points and
the corresponding computational time are summarized in Table 2.

Table 2. Different approaches and their corresponding normalized time and required DOFs when the
relative error is less than 6× 10−4 %

Method DOFs Normalized Time

FEM (h-refinement, C0, p = 2) 61 1.0000
NURBS (h-refinement, C1, p = 2) 33 0.1962

NURBS (p-refinement, C0) 21 0.0609
NURBS (k-refinement, Cp−1) 10 0.0120

SEM (p-refinement, GLL) 21 0.0609
SEM (p-refinement, CGL) 21 0.0609

p-FEM (p-refinement) 21 0.0609
FEM (p-refinement, equidistant) 21 0.0609

As can be inferred from the data given in Table 2, the computational costs related to
using the NURBS-enhanced method along with a k-refinement shows the best performance
in comparison to other methods considered in this paper.
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Figure 7. Normalized time vs. number of nodes or control points.
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Note that these findings are in line with the results published in Ref. [8] for fully
discretized models. The other important point which is worth mentioning is that the
error at cut-off frequencies is the largest. It can be also noted that, as we move further
away from the cut-off frequencies, the error decreases, but, again at higher frequencies,
the error increases. The former point has been mentioned in previous studies [81] and
using a higher number of DOFs was suggested in order to overcome this problem. Our
study also reveals that, in case of using an insufficient number of DOFs, cut-off frequencies
will also be estimated incorrectly. Consequently, the propagating waves will appear at
higher frequencies than expected, which leads to higher errors in these frequency regimes.
Overall, we have to stress that the obtained numerical results lead to the conclusion that
the higher inter-element continuity is the decisive factor in the excellent performance of the
NURBS-based technique.

4.2. Composite Case Study

The second case study is an eight layer composite plate with the ply lay-up sequence
[±45, 0, 90]s and 1 mm thickness. The material properties of a single layer in its principal
direction are listed in Table 3.

Table 3. Material properties of T800/924 laminate (elastic constants in GPa) [1].

C11 C12 C13 C22 C23 C33 C44 C55 C66

164.708 5.453 5.453 11.300 4.739 11.300 3.280 6.000 6.000

As before, one-dimensional elements are considered. However, since shear and Lamb
waves cannot be decoupled in this case, three DOFs at each node (FEM) or control point
(IGA) at the cross-section of the plate are considered. In order to illustrate the accuracy
of the different combinations of numerical schemes, the derived dispersion curves using
the SAFE method and the Dispersion Calculator software are presented in Figure 8. The
dispersion curves derived using the SAFE method are depicted with ‘+’ and ‘o’ markers,
which refer to symmetric and anti-symmetric modes, while the dispersion curves derived
using the analytical method are presented with dotted lines. For the simulation, five
elements per layer with NURBS shape functions of degree p = 6 and Cp−1 continuity along
the cross section of the plate are considered. Note that the obtained numerical results are in
excellent agreement with the reference solutions. As mentioned previously, this excessive
number of DOFs is only considered to ensure convergence of the error to the minimum
possible value, which has been found through the convergence study discussed in the
remainder of this section. It should be noted that, depending on the mode shape of interest
and the frequency, much fewer DOFs may suffice to derive the dispersion curves, especially
for lower modes and frequencies.

In Figure 9, the convergence rates of the different approaches are illustrated. The
analysis follows the same path as described in the previous subsection. Consequently, in
order to compare the convergence and accuracy of the investigated approaches, the error at
the local maximum value of an exemplary mode is considered.
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Figure 8. Dispersion curves of the first six modes of propagating waves in a 1 mm thick composite
plate; . . . . Dispersion Calculator, + SAFE method (symmetric modes), o SAFE method (anti-symmetric
modes); (a) wavenumber, (b) phase velocity, (c) group velocity vs. frequency.

From Figure 9, we observe that the calculated errors after convergence are approxi-
mately of order 10−4, which is higher than the calculated error for the case of the isotropic
plate. (Remark: For this case, it is conjectured that accuracy of the output obtained for
the Dispersion Calculator software is limited, influencing the results of the convergence
analysis.) As before, the highest rate of convergence is obtained by using a combination
of NURBS shape functions of degree p with Cp−1 continuity between elements and the
k-refinement technique. However, the accuracy of different shape functions is the same for
this case. Hierarchical shape functions (p-FEM method) (purple dash-dotted line with ‘+’
markers), and NURBS of order n with C0 continuity (purple dash-dotted line with diamond
marker), which take advantage of a p-refinement technique, show more robustness in com-
parison to the spectral shape functions (with GLL and GLC points). As expected, standard
shape functions with an equidistant nodal distribution reveal some signs of instability
as the order of the shape functions increases (see dark blue dash-dotted curve with ‘x’
markers). Finally, an h-refinement technique with C0 continuity (FEM) shows the poorest
performance among the presented approaches.
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Figure 9. Convergence curves derived using the mentioned shape functions along with the specified
refinement technique in the composite plate problem, (a) 1st mode, (b) 2nd mode, (c) 3rd mode,
(d) legend.

5. Conclusions

For the sake of improving the efficiency of the SAFE method, the effect of using
different high-order shape functions is investigated. In order to compare the efficiency of
different types of shape functions, the relative error of the SAFE method with respect to
the analytical results is calculated. According to the obtained numerical results, it can be
stated that, among the approaches considered here, NURBS based IGA in conjunction with
the k-refinement approach is the most effective method. By utilizing the IGA approach,
lower relative errors in comparison to other approaches using the same number of DOFs
can be achieved. Due to the geometrical simplicity of the investigated model problems,
the increase in accuracy is attributed to the higher inter-element continuity. This is the
only property that sets the IGA-based approach apart from the other proposed numerical
methods.

Furthermore, the simulation results reveal that using a lower number of points and
consequently DOFs at the cross-section of the waveguide leads to inaccurate estimation of
the cut-off frequencies. Due to this estimation error, the dispersion curves shift to the right
on the frequency axis. Consequently, using an insufficient number of DOFs not only affects
the accuracy of the dispersion curves at higher frequencies, but also causes higher errors in
the dispersion curves of different modes around their cut-off frequencies.

Finally, it is worthwhile mentioning that although the SAFE method considerably
decreases the computational requirements of wave propagation simulations in comparison
to numerical methods that fully discretize the computational domain, such as the FEM and
IGA, the improved performance will be even more pronounced when this method is used
for material property characterization purposes, where a repeated number of simulations
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is required, as recently proposed by some researchers [82]. However, still the mentioned
issues related to the approximations of complex waveguide geometries remain. To deal
with these problems, the more versatile, but for the discussed problems closely related
(basically identical) scaled boundary finite element method can be adopted [83].
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1D SAFE One Dimensional Semi-Analytical Finite Element Method
2D SAFE Two Dimensional Semi-Analytical Finite Element Method
SHM Structural Health Monitoring
FEA Finite Element Analysis
GLL Gauss–Lobatto–Legendre
GLC Gauss–Lobatto–Chebyshev
p-FEM p-Version of Finite Element Method
NURBS Nonuniform Rational B-Splines
CAD Computer Aided Design
CAM Computer Aided Manufacturing

Appendix A. Basic methods and definitions

Appendix A.1. Eigenvalue Problem Solution and Analysis

Due to the existence of two unknown parameters, the eigenvalue problem may be
solved using two approaches:

1. Assign real values to the circular frequency ω and solve either the second-order,
cf. Equation (25), or the first-order eigenvalue problem, cf. Equation (26). The
eigenvalues calculated in this case fall in one of the following three categories:

(a) Real eigenvalues (k = ±κ) corresponding to propagating waves;
(b) Complex eigenvalues (k = ±κreal± κimagi) corresponding to evanescent waves;

(Remark: Evanescent waves are a type of waves whose energy is spatially
concentrated in the vicinity of the source, i.e., after travelling a certain distance
in the waveguide their amplitude becomes negligible [1].)

(c) Imaginary eigenvalues (k = ±κi) corresponding to standing waves. (Remark:
Standing waves or non-oscillating evanescent waves are stationary in the
structure and do not transport energy.)

2. Assign values to the wavenumber κ and solve the second-order eigenvalue problem
given by Equation (25). It should be mentioned that, if real values are assigned to
the wavenumber, only propagating modes are being considered, and, likewise, if we
assign imaginary values to the wavenumber, only standing waves may be studied.
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Appendix A.2. Phase Velocity and Group Velocity

The dynamic response of a waveguide is comprised of a superposition of many
harmonics which may be propagating waves, evanescent waves, and standing waves. All
these are combined to the observed wave packet in motion. The propagating velocity of
each harmonic or each wave mode is called phase velocity and is defined as follows:

cp =
ω

κreal
, (A1)

while the group velocity is considered as the velocity of the observed packet of all traveling
waves and may be presented as follows [39,84]:

cg =
dω

dκreal
=

QT
L(K̂2 + 2κK3)QR

2ωQT
LMQR

, (A2)

where QR and QL refer to the right and left eigenvector of the eigenvalue problem, respec-
tively, which are derived using Equation (26).

Appendix A.3. Cut-Off Frequency

Cut-off frequencies may be obtained by inserting κ = 0 into Equation (25) and solving
the following eigenvalue problem:

(K1 −ω2M)Q = 0 . (A3)

The cut-off frequency is the frequency at which standing waves become propagating
waves.

Appendix B. Mode Identification Approaches

The mode identification process is one of the most challenging tasks when dealing
with eigenvalue problems. If only the propagating waves (real-valued wavenumbers)
should be considered, the orthogonality property of modes may be exploited to fulfill this
task [85]: {

Q̂
T
mBmQ̂m 6= 0

Q̂
T
nBmQ̂m = 0

, (A4)

where n and m refer to the n-th and m-th eigenvectors derived using Equation (26) at the
same frequency. If we assume that for two consecutive steps the orthogonality relation still
holds, the orthogonality relation for the following step may be expressed as:{

Q̂
T
m(ωr)Bm(ωr)Q̂m+1(ωr+1) 6= 0

Q̂
T
n(ωr)Bm(ωr)Q̂m+1(ωr+1) = 0

, (A5)

where Q̂m and Q̂n refer to the eigenvectors of the m-th and n-th mode, derived using
Equation (26) with the frequency ωr, while Q̂m+1 and Q̂n+1 refer to the eigenvectors of the
m-th and n-th mode, derived using Equation (26) with the frequency ωr+1. Equation (A5)
simply relies on the assumption that the orthogonality relation between the modes for two
consecutive frequency steps, namely ωr and ωr+1, still remains valid.

The second method for distinguishing different dispersion curves which belong to
the same mode is mode tracking. In this method, by using the points existing on a curve,
the next point that is expected to be on the same curve is extrapolated. By comparing
the guessed point with the wavenumbers derived at the desired step and calculating the
existing error, it will be decided which one of these wavenumbers belong to the same mode.
In order to execute this approach, Lagrange polynomials [9], Taylor series expansions, and
Padé expansions [80] can be used. Mode tracking is an essential part of the calculation of
dispersion diagrams by which curves belonging to different modes can be distinguished.
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The fundamental idea of this scheme is to extrapolate points on the curve based on already
known ones. The extrapolated value is then compared to the numerically determined ones
and thus the results can be assigned to the correct modes. In the following, three different
mode tracking methods are briefly discussed:

1. Quadratic polynomial [9]:
Considering the fact that in general one may fit any p+ 1 points by a polynomial of p-
th degree, Lagrange polynomials constitute a viable choice [63]. The fitted polynomial
takes the form

Pp(x) =
p

∑
i=0

f (xi)Li(x) , (A6)

where the cardinal functions Li(x) are expressed as

Li(x) =
p

∏
j=0,j 6=i

x− xj

xi − xj
. (A7)

According to this definition, if we consider a second-order Lagrange polynomial for
the wavenumber k at the desired frequency ωn, it is extrapolated by using three points
as follows:

k(ωn) = k(ωn−3)L1(ωn) + k(ωn−2)L2(ωn) + k(ωn−1)L3(ωn) . (A8)

By considering a constant frequency step, Equation (A8) may be further simplified:

k(ωn) = k(ωn−3)− 3k(ωn−2) + 3k(ωn−1). (A9)

2. Taylor series expansion:
Besides Lagrange polynomials, we can also make use of a Taylor series expansion to
derive the extrapolating polynomial. If we consider z= x− x0, the p-th order Taylor
expansion of f is defined as [86]

f (x) =
p

∑
i=0

cizi + Rp(x) , (A10)

where Rp(x) is the remainder, and the factor ci is defined as

ci =
f (i)(x0)

i!
. (A11)

If we consider the terms up to the third-order, the wavenumber may be extrapolated
using the following expression:

k(ωn) = k(ωn−1) + k′(ωn−1)∆ω + k′′(∆ω)2 + k
′′′
(ωn−1)(∆ω)3 , (A12)

where ∆ω = ωn −ωn−1. By using the backward difference method, the derivatives
of the function k(ωn−1) are derived as follows:

k′(ωn−1) =
k(ωn−1)− k(ωn−2)

∆ω
, (A13)

k′′(ωn−1) =
k(ωn−1)− 2k(ωn−2) + k(ωn−3)

(∆ω)2 , (A14)

k
′′′
(ωn−1) =

k(ωn−1)− 3k(ωn−2) + 3k(ωn−3)− k(ωn−4)

(∆ω)3 . (A15)
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3. Padé series expansion:
Another extrapolation method, which has been proposed by Gravenkamp et al. [80]
for tracing dispersion curves, uses Padé expansions. A Padé approximation of f
is a rational function with a numerator of degree L and denominator of degree M,
determined such that its power expansion matches up to including the power L + M.
Considering z = x− x0, the Padé expansion of f may be presented as follows:

f (z) =
PL(z)
QL(z)

+ R(z) = [L/M] f (z) + R(z) , (A16)

where R(z) is the remainder of order L + M + 1, and [L/M] f (z) is called the Padé
approximation of order [L, M] of function f . The coefficients of the Padé expansion
may be derived by replacing the left term in Equation (A16) by a Taylor series using
Equation (A10) [86]:

f (z) = c0 + c1z + c2z + . . . =
a0 + a1z + . . . + aLzL

b0 + b1z + . . . + bMzM , (A17)

where b0 = 1. By multiplying both sides by the denominator of the term on the right-
hand-side of the equation and comparing the coefficients of the terms with the same
power, a set of linear algebraic equations is derived, which may be solved in order
to calculate the Padé expansion coefficients. Using this method, the following set of
equations may be derived for a Padé expansion of order [1/2] using Equation (A17):

a0 =c0 , (A18)

a1 =c1 + c0b1 , (A19)

a2 =c2 + c1b1 + c0b2 , (A20)

a3 =c3 + c2b1 + c1b2 + c0b3 . (A21)

For a Padé expansion of order [1/2], we obtain a2 = a3 = b3 = 0. By solving the set of
algebraic equations, the coefficients of a Padé expansion of order [1/2] are

a0 =c0 , (A22)

a1 =c1 + c0b1 , (A23)

b1 =− c2 + c0b2

c1
, (A24)

b2 =
c2

2 − c3c1

c2
1 − c2c0

, (A25)

where ci(i = 0, 1, 2, 3) are given by Equations (A11) and (A13)–(A15). Consequently,
by replacing these coefficients in Equation (A16), the Padé expansion of order [1/2] of
the wavenumber may be expressed as:

k(ωn) =
a0 + a1∆ω

1 + b1∆ω + b2∆ω2 . (A26)
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