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Abstract: In this paper, we consider that the subdomains of the domain decomposition are colored
such that the subdomains with the same color do not intersect and introduce and analyze the
convergence of a damped additive Schwarz method related to such a subdomain coloring for the
resolution of variational inequalities and equations. In this damped method, a single damping
value is associated with all the subdomains having the same color. We first make this analysis
both for variational inequalities and, as a special case, for equations in an abstract framework. By
introducing an assumption on the decomposition of the convex set of the variational inequality, we
theoretically analyze in a reflexive Banach space the convergence of the damped additive Schwarz
method. The introduced assumption contains a constant C0, and we explicitly write the expression of
the convergence rates, depending on the number of colors and the constant C0, and find the values of
the damping constants which minimize them. For problems in the finite element spaces, we write the
constant C0 as a function of the overlap parameter of the domain decomposition and the number of
colors of the subdomains. We show that, for a fixed overlap parameter, the convergence rate, as a
function of the number of subdomains has an upper limit which depends only on the number of the
colors of the subdomains. Obviously, this limit is independent of the total number of subdomains.
Numerical results are in agreement with the theoretical ones. They have been performed for an elasto-
plastic problem to verify the theoretical predictions concerning the choice of the damping parameter,
the dependence of the convergence on the overlap parameter and on the number of subdomains.

Keywords: domain decomposition methods; additive Schwarz method; damped additive Schwarz
method; subdomain coloring; scalable methods; variational inequalities

1. Introduction

The literature on the domain decomposition methods is very vast and we cite here,
just to get an idea, the books [1–5] and the proceedings of the annual conferences dedicated
to these methods, the first one, [6], being held in 1988. Multiplicative and additive Schwarz
methods were among the first studied ones and then have become the starting point in the
study of other domain decomposition methods. It is worth noting that, at least for the sym-
metric positive definite problems, the analysis of the additive and multiplicative Schwarz
methods can be made with rather close approaches (see [7,8], for instance). Furthermore,
many iterative substructuring methods or other domain decomposition methods can be
viewed as additive Schwarz methods or fit into the framework of these methods (see [9],
for instance). However, we will limit ourselves in the following to cite only papers dealing
with the additive ones and, evidently, the list can be completed with many other papers.
Unlike the case of the multiplicative method, when we directly extend the additive method
to more than two subdomains, the domain decomposition should have some properties
in order to get a convergent method. This can be an explanation of the fact that the first
max-norm bounds of the error have been obtained for a damped additive Schwarz iteration,
but not for a directly extended one. These error estimates have been obtained in [10] for
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algebraic linear systems with symmetric and positive definite matrices or nonsymmetric M-
matrices. A slight generalization of the damped method in [10] has been introduced in [11]
and weighted max-norm estimates have been obtained for complementarity problems.

Besides the matricial approaches with estimates using max-norms, weighted or not,
there also exist approaches where the functional framework is that of the PDEs and the error
estimates are given in the Sobolev norms. In [12], the damped additive Schwarz method
is introduced for the constrained minimization of functionals in reflexive Banach spaces.
When the convex set of the constraints is the whole space, this method was introduced
in [13]. Furthermore, multigrid methods for inequalities in reflexive Banach spaces, using
iterations of damped additive type, are analyzed in [14]. An additive Schwarz–Richardson
method for monotone nonlinear elliptic equations in the framework of the PDEs has been
given in [15], with some extensions in [16]. In [17], additive and multiplicative Schwarz
methods are introduced to solve inequalities perturbed by a Lipschitz operator.

For molecular problems where the domain is the union of subdomains associated
with the atoms of the molecule and each atom corresponds to a subdomain, numerical
experiments in [18–20] have shown that the additive Schwarz method is scalable, that is the
convergence rate does not depend on the number of subdomains. A theoretical justification
of the scalability of the additive Schwarz method for such problems in which the domain
is a chain of subdomains is given in [21–23]. Furthermore, in [24], it is proved that the
scalability of the one-level methods strongly depends on the geometry of the domain and
on conditions imposed on the boundary of the subdomains.

In this paper, the domain of the problem is fixed and we consider that the subdomains
are colored such that the subdomains having the same color do not intersect. We study
the dependence of the convergence of the damped additive Schwarz method, applied to
the resolution of variational inequalities as well as equations, on the subdomain coloring.
In this method, a single damping value is associated with all the subdomains having the
same color. In this way, the damped method can be rewritten, in an equivalent form, for
the subdomains which are obtained as the union of the subdomains having the same color.
The paper is organized as follows. In the next section, we analyze the convergence of a
damped additive Schwarz method in an abstract framework. To this end, an assumption,
which contains a constant C0, on the decomposition of the convex set of the variational
inequality is introduced. We prove general convergence results in a reflexive Banach space
and explicitly write the expression of the convergence rate depending on the number of
colors and the constant C0. Furthermore, we show that the convergence rate reaches its
minimum when the damping constants associated with the colors of the subdomains have
the same value and we find this value according to the number of colors. These general
results allow us to consider problems in the Sobolev spaces W1,s, 1 < s < ∞, but not only
in H1. In the finite element spaces, in Section 3, we write the constant C0 as a function
of the overlap parameter of the domain decomposition and the number of colors of the
subdomains. Then we show that, for a fixed overlap parameter, the convergence rate,
as a function of the number of subdomains has an upper limit that depends only on the
minimum number of the colors of the subdomains, i.e., this upper limit is independent of
the number of subdomains. The numerical results in Section 4 confirm the theoretical ones.
They have been performed for an elasto-plastic problem to verify the theoretical predictions
concerning the choice of the damping parameter, the dependence of the convergence on
the overlap parameter and on the number of subdomains.

We think that similar analyzes can be made for other domain decomposition methods,
even if they require damping parameters or not. If we color the subdomains such that
the local problems corresponding to each color can be solved simultaneously, then, as we
mentioned above, the algorithm could be rewritten for the subdomains which are obtained
as the union of the (initial) subdomains having the same color and we can do the analysis
using that form of the algorithm.
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2. General Convergence Result

In this section, we introduce and analyze the convergence of a damped additive
Schwarz method related to a subdomain coloring for the resolution of variational inequal-
ities and equations in an abstract framework. This general framework has been used
in [12,14,25,26], for instance, in order to allow us to consider problems in the Sobolev
spaces W1,s, 1 < s < ∞, but not only in H1. An example of solving such a variational
inequality by a domain decomposition method is given [25].

Let us consider a reflexive Banach space V and a K ⊂ V be a non empty closed
convex subset. Furthermore, let F : V → R be a Gâteaux differentiable functional, which is
assumed to be coercive on K, in the sense that F(v) → ∞, as ||v|| → ∞, v ∈ K, if K is not
bounded. Furthermore, we assume that there exist two real numbers p, q > 1 such that for
any real number M > 0 there exist constants αM, βM > 0 for which

αM||v− u||p ≤ 〈F′(v)− F′(u), v− u〉 and
||F′(v)− F′(u)||V′ ≤ βM||v− u||q−1 (1)

for any u, v ∈ V with ||u||, ||v|| ≤ M. Above, we have denoted by F′ the Gâteaux derivative
of F, and we have marked that the constants αM and βM may depend on M. We point out
that since F is Gâteaux differentiable and satisfies (1), then F is a convex functional (see
Proposition 5.5 in [27], page 25).

It is evident that if (1) holds, then for any u, v ∈ V, ||u||, ||v|| ≤ M, we have

αM||v− u||p ≤ 〈F′(v)− F′(u), v− u〉 ≤ βM||v− u||q.

Following the method in [28], we can prove that for any u, v ∈ V, ||u||, ||v|| ≤ M,
we have

〈F′(u), v− u〉+ αM
p ||v− u||p ≤ F(v)− F(u) ≤

〈F′(u), v− u〉+ βM
q ||v− u||q.

(2)

Furthermore, using the same techniques, we can prove that if F satisfies (1), then

1 < q ≤ 2 ≤ p. (3)

We consider the variational inequality

u ∈ K : 〈F′(u), v− u〉 ≥ 0, for any v ∈ K (4)

and since the functional F is convex and differentiable, it is equivalent to the minimiza-
tion problem

u ∈ K : F(u) ≤ F(v), for any v ∈ K. (5)

We can use, for instance, [27], Proposition 1.2, page 34, to prove that problem (5), and
therefore inequality (4), have a unique solution if F has the above properties. In the view
of (2), for a given M > 0 such that the solution u ∈ K of (5) satisfies ||u|| ≤ M, we have

αM
p
||v− u||p ≤ F(v)− F(u) for any v ∈ K, ||v|| ≤ M. (6)

In this general framework, in order to introduce the algorithm corresponding to
the damped additive Schwarz method, we first consider some closed subspaces of V,
V1, · · · , Vmc . For any i = 1, . . . , mc, we introduce the sets Ii = {1, . . . , mi} and for all j ∈ Ii
let Vij ⊂ Vi be closed subspaces for which we make the hypothesis

Assumption 1. Vi is the direct sum of Vi1, . . . , Vimi

Vi = Vi1 ⊕ . . .⊕Vimi (7)



Math. Comput. Appl. 2022, 27, 59 4 of 22

and if v ∈ K and vi = ∑
j∈Ii

vij ∈ Vi with vij ∈ Vij then

v + vi ∈ K if and only if v + vij ∈ K for any j ∈ Ii (8)

Besides that, we assume that

〈F′(v + vij), vik〉 = 〈F′(v), vik〉 for any v ∈ V, vij ∈ Vij, vik ∈ Vik, j, k ∈ Ii, j 6= k (9)

In the case of the additive Schwarz method, the subspaces Vij, i = 1, · · · , mc,
j = 1, · · · , mi, will be Sobolev spaces associated with the subdomains of the domain
decomposition. As we said before, the subdomains are colored such that the subdomains
having the same color do not intersect. With the above notations, the number of the colors
is mc and the number of the subdomains having the color i is mi. Obviously, in this case,
the above assumption is satisfied.

Now we fix a constant s satisfying

p
p− q + 1

≤ s ≤ p (10)

which comes from the space Sobolev W1,s, where p and q are given in (1), and make a
second hypothesis

Assumption 2. There exists a constant C0 > 0 such that for any w, v ∈ K there exist vi ∈ Vi,
i = 1, · · · , mc, which satisfy

v− w =
mc

∑
i=1

vi, w + vi ∈ K and
mc

∑
i=1
||vi||s ≤ Cs

0||v− w||s.

In general, we can assume that we are using the Sobolev space W1,p and consider
s = p in (10) and Assumption 2. Condition (10) has been introduced in [14] to get more
variants for the choice of s. The above assumption is satisfied for a large kind of convex
sets in Sobolev spaces. Constant C0 will play an important role in evaluation of the rate
of convergence of the method. In the convergence proofs, vs. is the exact solution of the
inequality, w is the solution of the iterative algorithm at a certain iteration, and vi are its
corrections on the subspaces Vi, i = 1, ..., mc.

To solve problem (4), we introduce the following damped additive subspace correction
Algorithm 1 corresponding to the subspaces Vij, i = 1, . . . , mc and j ∈ Ii, and the convex
set K.

Algorithm 1. We start the algorithm with an arbitrary u0 ∈ K. At iteration n+ 1, having un ∈ K,
n ≥ 0, we solve the inequalities

wn+1
ij ∈ Vij, un + wn+1

ij ∈ K : 〈F′(un + wn+1
ij ), vij − wn+1

ij 〉 ≥ 0,
for any vij ∈ Vij, un + vij ∈ K,

(11)

for i = 1, · · · , mc and j ∈ Ii, and then update un+1 = un +
mc

∑
i=1

$i ∑
j∈Ii

wn+1
ij , where $i > 0 is

chosen such that $ =
mc

∑
i=1

$i ≤ 1.
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The choice of the constants $i, i = 1, . . . , mc, implies un+1 ∈ K for any n ≥ 0. Indeed,

since 0 < $ ≤ 1 and, in view of (8), we have un+1 = (1− $)un +
mc

∑
i=1

$i(un + ∑
i∈Ii

wn+1
ij ) ∈ K.

In the following, we shall write
$min = min

i=1,...,mc
$i

Now, we rewrite this algorithm as Algorithm 2.

Algorithm 2. We start the algorithm with an arbitrary u0 ∈ K. At iteration n+ 1, having un ∈ K,
n ≥ 0, we solve the inequalities

wn+1
i ∈ Vi, un + wn+1

i ∈ K : 〈F′(un + wn+1
i ), vi − wn+1

i 〉 ≥ 0,
for any vi ∈ Vi, un + vi ∈ K,

(12)

and then update un+1 = un +
mc

∑
i=1

$iwn+1
i , where $i > 0 is chosen such that $ =

mc

∑
i=1

$i ≤ 1.

Remark 1. In view of Assumption 1, for a certain i = 1, . . . , mc, inequality (12) is equivalent
with a system of mi of inequalities (11) and its solution can be written as wn+1

i = ∑
j∈Ii

wn+1
ij , where

wn+1
ij , j ∈ Ii, are the solutions of inequalities (11).

Evidently, problem (12) is equivalent with

wn+1
i ∈ Vi, un + wn+1

i ∈ K : F(un + wn+1
i ) ≤ F(un + vi),

for any vi ∈ Vi, un + vi ∈ K.
(13)

We now prove the convergence of Algorithm 2 and therefore, of that of Algorithm 1.

Theorem 1. Let V be a reflexive Banach space, V1, · · · , Vmc are some closed subspaces of V, K is a
non empty closed convex subset of V satisfying Assumption 2, and F is a Gâteaux differentiable
functional on V which is supposed to be coercive if K is not bounded, and satisfies (1). On these
conditions, if u is the solution of problem (4) and un, n ≥ 0, are its approximations obtained from
Algorithm 2, then there exists an 0 < M < ∞ such that ||un|| ≤ M, for any n ≥ 0, and the
following error estimations hold

(i) if p = q = 2 we haven

F(un)− F(u) ≤
(

C1

C1 + 1

)n[
F(u0)− F(u)

]
, (14)

||un − u||p ≤ p
αM

(
C1

C1 + 1

)n[
F(u0)− F(u)

]
, (15)

where
C1 =

1− $min

$min
+

βM( αM
2
)2

$

$2
min

[αM
2

(1 + C0m1/2
c ) + βMC2

0mc

]
(16)

and

(ii) if p > q we have

F(un)− F(u) ≤ F(u0)− F(u)[
1 + nC2(F(u0)− F(u))

p−q
q−1

] q−1
p−q

, (17)
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||u− un||p ≤ p
αM

F(u0)− F(u)[
1 + nC2(F(u0)− F(u))

p−q
q−1

] q−1
p−q

, (18)

where
C2 =

p− q

(p− 1)(F(u0)− F(u))
p−q
q−1 + (q− 1)C

p−1
q−1

3

(19)

with

C3 =
1− $min

$min
(F(u0)− F(u))(p−q)/(p−1)+

βM
$(p−1)q/p

$
q
min

(
1 + C0m(s−1)/s

c

) 1(
αM
p

)q/p

(
F(u0)− F(u)

)(p−q)/(p(p−1))
+

(
βMC0m(s−1)/s

c

$
q−1
min

)p/(p−1)
$q−1(

αM
p

)q/(p−1)
.

(20)

Proof. In view of the convexity of F and Equation (13), we get

F(un+1) = F(un +
mc

∑
i=1

$iwn+1
i ) = F((1− $)un +

mc

∑
i=1

$i(un + wn+1
i )) ≤

(1− $)F(un) +
mc

∑
i=1

$iF(un + wn+1
i ) ≤ F(un)

(21)

Consequently, the sequence (un)n≥0 of u obtained from Algorithm 2 is bounded. More-
over, using again (13), we get that F(un + wn+1

i ) ≤ F(un), i.e., the sequences (wn+1
i )n≥0,

i = 1, . . . , mc are bounded. In this proof, Equation (1) are used with u and v replaced only
by u, the solution of (4), or by some linear combinations of un and wn+1

i whose norm is
bounded independently of n ≥ 0 and i = 1, . . . , mc. Therefore, there exists an M > 0 which
can be used in Equation (1) to prove the error estimations in the statement of the theorem.
In the following, we use (1) with such an M.

In view of (2) and (12), we get

αM
p
||wn+1

i ||p ≤ F(un)− F(un + wn+1
i ).

Using this equation and (21), we get

F(un+1) ≤ (1− $)F(un) +
mc

∑
i=1

$iF(un + wn+1
i ) ≤

(1− $)F(un) + $F(un) +
αM
p

mc

∑
i=1

$i||wn+1
i ||p

and therefore,
αM
p

mc

∑
i=1

$i||wn+1
i ||p ≤ F(un)− F(un+1) (22)

Now, writing

ūn+1 = un +
1

$min

mc

∑
i=1

$iwn+1
i
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in view of the convexity of F, we have

F(un+1) = F(un +
mc

∑
i=1

$iwn+1
i ) = F((1− $min)un + $minūn+1) ≤

(1− $min)F(un) + $minF(ūn+1)

(23)

With v := u and w := un, we get a decomposition vn
i ∈ Vi of u − un satisfying

the conditions of Assumption 2. Using this decomposition, the above equation, (2) and
inequalities (12), we get

F(un+1)− F(u) + $min
αM
p ||ūn+1 − u||p ≤

(1− $min)(F(un)− F(u)) + $min

(
F(ūn+1)− F(u) +

αM
p
||ūn+1 − u||p

)
≤

(1− $min)(F(un)− F(u)) + $min〈F′(ūn+1), ūn+1 − u〉 =

(1− $min)(F(un)− F(u)) +
mc

∑
i=1
〈F′(ūn+1), $iwn+1

i − $minvn
i 〉 ≤

(1− $min)(F(un)− F(u))+
mc

∑
i=1
〈F′(un + wn+1

i )− F′(ūn+1), $minvn
i + (1− $i)wn+1

i − wn+1
i 〉 ≤

(1− $min)(F(un)− F(u))+

βM

mc

∑
i=1

(
(

$i
$min

− 1)||wn+1
i ||+

mc

∑
j=1, j 6=i

$j

$min
||wn+1

j ||
)q−1

||$minvn
i − $iwn+1

i || ≤

(1− $min)(F(un)− F(u)) + βM

(
mc

∑
i=1

$i
$min
||wn+1

i ||
)q−1 mc

∑
i=1
||$minvn

i − $iwn+1
i || ≤

(1− $min)(F(un)− F(u)) + βM
$(p−1)(q−1)/p

$
q−1
min

(
mc

∑
i=1

$i||wn+1
i ||p

)(q−1)/p

·(
$min

mc

∑
i=1
||vn

i ||+
mc

∑
i=1

$i||wn+1
i ||

)

Above, we have used the fact that $minvn
i + (1 − $i)wn+1

i ∈ Vi and un + $minvn
i +

(1− $i)wn+1
i = (1− $i)(un + wn+1

i ) + $min(un + vn
i ) + ($i − $min)un which, in view of the

fact that (1− $i) + $min + ($i − $min) = 1, belongs to K. Therefore, we can replace vi by
$minvn

i + (1− $i)wn+1
i in (12). Now, given Assumption 2, we have

$min

mc

∑
i=1
||vn

i ||+
mc

∑
i=1

$i||wn+1
i || ≤

$minm(s−1)/s
c

(
mc

∑
i=1
||vn

i ||s
)1/s

+ $(p−1)/p

(
mc

∑
i=1

$i||wn+1
i ||p

)1/p

≤

C0$minm(s−1)/s
c ||u− un||+ $(p−1)/p

(
mc

∑
i=1

$i||wn+1
i ||p

)1/p

≤

C0$minm(s−1)/s
c ||u− ūn+1||+ $(p−1)/p

(
1 + C0m(s−1)/s

c

)( mc

∑
i=1

$i||wn+1
i ||p

)1/p
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From the above two equations, we get

F(un+1)− F(u) + $min
αM
p ||ūn+1 − u||p ≤

(1− $min)(F(un)− F(u)) + βM
$(p−1)(q−1)/p

$
q−1
min

(
mc

∑
i=1

$i||wn+1
i ||p

)(q−1)/p

·[
C0$minm(s−1)/s

c ||u− ūn+1||+ $(p−1)/p
(

1 + C0m(s−1)/s
c

)
·
(

mc

∑
i=1

$i||wn+1
i ||p

)1/p
 =

(1− $min)(F(un)− F(u)) + βM
$(p−1)q/p

$
q−1
min

·
(

1 + C0m(s−1)/s
c

)( mc

∑
i=1

$i||wn+1
i ||p

)q/p

+

βMC0$(p−1)(q−1)/p$
2−q
min m(s−1)/s

c ||u− ūn+1||
(

mc

∑
i=1

varrhoi||wn+1
i ||p

)(q−1)/p

(24)

However, for any ε > 0 r > 1 and x, y ≥ 0, we have x
1
r y ≤ εx + 1

ε
1

r−1
y

r
r−1 . Conse-

quently, we get

F(un+1)− F(u) + $min
αM
p ||ūn+1 − u||p ≤ (1− $min)(F(un)− F(u))+

βM
$(p−1)q/p

$
q−1
min

(
1 + C0m(s−1)/s

c

)( mc

∑
i=1

$i||wn+1
i ||p

)q/p

+

βMC0$(p−1)(q−1)/p$
2−q
min m(s−1)/s

c
1

ε
1

p−1

(
mc

∑
i=1

$i||wn+1
i ||p

)(q−1)/(p−1)

+

βMC0$(p−1)(q−1)/p$
2−q
min m(s−1)/s

c ε||u− ūn+1||p

With

ε =
αM
p

$
q−1
min

βMC0$(p−1)(q−1)/pm(s−1)/s
c

,

the above equation becomes,

F(un+1)− F(u) ≤ 1− $min

$min
(F(un)− F(un+1))+

βM
$(p−1)q/p

$
q
min

(
1 + C0m(s−1)/s

c

)( mc

∑
i=1

$i||wn+1
i ||p

)q/p

+(
βMC0m(s−1)/s

c

$
q−1
min

)p/(p−1)
$q−1(

αM
p

)1/(p−1)

(
mc

∑
i=1

$i||wn+1
i ||p

)(q−1)/(p−1)

.

In view of this equation and (22), we have

F(un+1)− F(u) ≤ 1− $min

$min
(F(un)− F(un+1))+

βM
$(p−1)q/p

$
q
min

(
1 + C0m(s−1)/s

c

) 1(
αM
p

)q/p

(
F(un)− F(un+1)

)q/p
+

(
βMC0m(s−1)/s

c

$
q−1
min

)p/(p−1)
$q−1(

αM
p

)q/(p−1)

(
F(un)− F(un+1)

)(q−1)/(p−1)
.

(25)
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Using (6), we see that error estimations in (15) and (18) can be obtained from (14) and (17),
respectively. Now, in view of (3) and (10), if p = q = 2, from the above equation, we easily
get Equation (14) where C1 given in (16). Finally, if p > q, from (25), we have

F(un+1)− F(u) ≤ C3

(
F(un)− F(un+1)

) q−1
p−1 (26)

where C3 is given in (20). From (26), we get

F(un+1)− F(u) +
1

C
p−1
q−1

3

(
F(un+1)− F(u)

) p−1
q−1 ≤ F(un)− F(u),

and we know (see Lemma 3.2 in [13]) that for any r > 1 and c > 0, if x ∈ (0, x0] and y > 0

satisfy y + cyr ≤ x, then y ≤
(

c(r−1)
crxr−1

0 +1
+ x1−r

) 1
1−r

. Consequently, we have

F(un+1)− F(u) ≤
[

C2 + (F(un)− F(u))
q−p
q−1

] q−1
q−p

,

from which,

F(un+1)− F(u) ≤
[
(n + 1)C2 +

(
F(u0)− F(u)

) q−p
q−1

] q−1
q−p

, (27)

where C2 is given in (19). Equation (27) is another form of Equation (17).

Remark 2. (1) Given Remark 1 and the above theorem, we conclude that the convergence rate of
Algorithm 1 depends on mc and on the constant C0 introduced in Assumption 2. In the case of the
finite element spaces of the next section we shall write the constant C0 as a function of mc and of the
overlap parameter of the domain decomposition. Consequently, for a fixed overlap parameter, the
convergence rate, as a function of the number of subdomains can be bounded by an expression that
depends only on mc but not on the total number of subdomains m = m1 + . . . + mmc .

(2) Since C1 in (16) is decreasing in function of $min and C2 in (19) is increasing in function
of $min, it follows from error estimations in the above theorem that the minimum convergence rate,
as a function of the damping parameters, of Algorithms 1 and 2 is obtained for $min = $/mc =
$1 = . . . = $mc . For this value of $min, denoted by ρ, the value of the constants C1 and C3 in (16)
and (20), respectively, become

C1 =
1− ρ

ρ
+

βM
αM
2

mc

ρ

[
1 + C0m1/2

c +
βM
αM
2

C2
0mc

]
(28)

and
C3 =

1− ρ

ρ
(F(u0)− F(u))(p−q)/(p−1)+

βM
m(p−1)q/p

c

ρq/p

(
1 + C0m(s−1)/s

c

) 1(
αM
p

)q/p

(
F(u0)− F(u)

)(p−q)/(p(p−1))
+

(
βMC0m(s−1)/s

c

ρ(q−1)/p

)p/(p−1)
mq−1

c(
αM
p

)q/(p−1)
.

(29)

We also notice that the method with a single damping constant introduced in [10] should
converge faster than the methods using several damping constants.
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In the case of equations, i.e., when K = V, we can get some better error estimations
than those in Theorem 1. For completeness, we prove this result when ρ = $min = $/mc =
$1 = . . . = $mc . The proof is similar to that of Theorem 1 with the only difference being
that, this time, since K = V, we are not forced anymore to introduce ūn+1 and we use un+1

in the place of it.

Theorem 2. In the case of equations, i.e., when K = V, if we consider Algorithms 1 and 2 with
ρ = $min = $/mc = $1 = . . . = $mc , then error estimations (14) and (15) hold with

C1 =
βM
αM
2
(1− ρ)mc

[
C2

0
βM
αM
2
(1− ρ)mc + ρ

(
1 + C0m1/2

c

)]
(30)

and, also, error estimations (17) and (18) hold with

C3 =

(
C0

βM

( αM
p )q/p (1− ρ)(q−1)m(q−1)(p−1)/p

c m(s−1)/s
c

)p/(p−1)

+

βMρ(1− ρ)q−1mq(p−1)/p
c

(
1 + C0m(s−1)/s

c

) 1(
αM
p

)q/p

(
F(u0)− F(u)

)(p−q)/(p(p−1)) (31)

Proof. With v := u and w := un, we get a decomposition vn
i ∈ Vi of u− un satisfying the

conditions of Assumption 2. Using this decomposition, (2), the equations corresponding to
inequalities (12) and the fact that ρ ≤ 1

mc
≤ 1

2 , we get

F(un+1)− F(u) + αM
p ||un+1 − u||p ≤ 〈F′(un+1), un+1 − u〉 =

mc

∑
i=1
〈F′(un+1), ρwn+1

i − vn
i 〉 =

mc

∑
i=1
〈F′(un + wn+1

i )− F′(un+1), vn
i − ρwn+1

i 〉 ≤

βM

mc

∑
i=1

(
(1− ρ)||wn+1

i ||+ ρ
mc

∑
j=1, j 6=i

||wn+1
j ||

)q−1

||vn
i − ρwn+1

i || ≤

βM(1− ρ)q−1

(
mc

∑
i=1
||wn+1

i ||
)q−1 mc

∑
i=1
||vn

i − ρwn+1
i || ≤

βM(1− ρ)q−1m(q−1)(p−1)/p
c

(
mc

∑
i=1
||wn+1

i ||p
)(q−1)/p( mc

∑
i=1
||vn

i ||+ ρ
mc

∑
i=1
||wn+1

i ||
)

Now, given Assumption 2, we have

mc

∑
i=1
||vn

i ||+ ρ
mc

∑
i=1
||wn+1

i || ≤

m(s−1)/s
c

(
mc

∑
i=1
||vn

i ||s
)1/s

+ ρm(p−1)/p
c

(
mc

∑
i=1
||wn+1

i ||p
)1/p

≤

C0m(s−1)/s
c ||u− un||+ ρm(p−1)/p

c

(
mc

∑
i=1
||wn+1

i ||p
)1/p

≤

C0m(s−1)/s
c ||u− un+1||+ ρm(p−1)/p

c

(
1 + C0m(s−1)/s

c

)( mc

∑
i=1
||wn+1

i ||p
)1/p
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From the above two equations, we get

F(un+1)− F(u) + αM
p ||un+1 − u||p ≤

βM(1− ρ)q−1m(q−1)(p−1)/p
c

(
mc

∑
i=1
||wn+1

i ||p
)(q−1)/p

·C0m(s−1)/s
c ||u− un+1||+ ρm(p−1)/p

c

(
1 + C0m(s−1)/s

c

)( mc

∑
i=1
||wn+1

i ||p
)1/p

 =

βM(1− ρ)q−1m(q−1)(p−1)/p
c

C0m(s−1)/s
c ||u− un+1||

(
mc

∑
i=1
||wn+1

i ||p
)(q−1)/p

+

ρm(p−1)/p
c

(
1 + C0m(s−1)/s

c

)( mc

∑
i=1
||wn+1

i ||p
)q/p



(32)

However, for any ε > 0 r > 1 and x, y ≥ 0, we have x
1
r y ≤ εx + 1

ε
1

r−1
y

r
r−1 . Conse-

quently, we get

F(un+1)− F(u) + αM
p ||un+1 − u||p ≤

βM(1− ρ)q−1m(q−1)(p−1)/p
c

[
C0m(s−1)/s

c ε||u− un+1||p+

C0m(s−1)/s
c

1
ε1/(p−1)

(
mc

∑
i=1
||wn+1

i ||p
)(q−1)/(p−1)

+

ρm(p−1)/p
c

(
1 + C0m(s−1)/s

c

)( mc

∑
i=1
||wn+1

i ||p
)q/p


With

ε =
αM
p

1

βMC0(1− ρ)q−1m(q−1)(p−1)/p
c m(s−1)/s

c

,

the above equation becomes,

F(un+1)− F(u) ≤(
C0

βM

( αM
p )1/p (1− ρ)(q−1)m(q−1)(p−1)/p

c m(s−1)/s
c

)p/(p−1)( mc

∑
i=1
||wn+1

i ||p
)(q−1)/(p−1)

+

βMρ(1− ρ)q−1mq(p−1)/p
c

(
1 + C0m(s−1)/s

c

)( mc

∑
i=1
||wn+1

i ||p
)q/p

In view of this equation and (22), we have

F(un+1)− F(u) ≤
(

C0
βM

( αM
p )q/p (1− ρ)(q−1)m(q−1)(p−1)/p

c m(s−1)/s
c

)p/(p−1)

·(
F(un)− F(un+1)

)(q−1)/(p−1)
+

βMρ(1− ρ)q−1mq(p−1)/p
c

(
1 + C0m(s−1)/s

c

) 1(
αM
p

)q/p

(
F(un)− F(un+1)

)q/p

(33)

As in the proof of Theorem 1, using (6), we get that error estimations in (15) and (18)
can be obtained from (14) and (17), respectively. Furthermore, in view of if (3) and (10), if
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p = q = 2, from the above equation, we easily get Equation (14) where C1 given in (30).
Finally, if p > q, from (33), we have

F(un+1)− F(u) ≤ C3

(
F(un)− F(un+1)

) q−1
p−1 (34)

where C3 is given in (31), and with this C3, similarly with the proof of Theorem 1, we
get (17).

Remark 3. From error estimations (14), (15), (17) and (18), we get that the convergence rates
of Algorithms 1 and 2 are increasing functions of C1 and C3. Furthermore, in the case when
ρ = $min = $/mc = $1 = . . . = $mc , these constants are decreasing functions of ρ, and
consequently, in this case, Algorithms 1 and 2 have a minimum convergence rate for $ = 1, i.e.,
the value of the expression of C1 and C3 is calculate with ρ = 1/mc. In this way, in the case of the
inequalities, from (28) and (29), we get

C1 = mc − 1 +
βM
αM
2

m2
c

[
1 + C0m1/2

c +
βM
αM
2

C2
0mc

]
(35)

and
C3 = (mc − 1)(F(u0)− F(u))(p−q)/(p−1)+

βM

(
1 + C0m(s−1)/s

c

) mq
c(

αM
p

)q/p

(
F(u0)− F(u)

)(p−q)/(p(p−1))
+

(
βMC0m(s−1)/s

c

)p/(p−1) mp(q−1)/(p−1)
c(
αM
p

)q/(p−1)
.

(36)

and, also, in the case of the equations, from (30) and (31), we get

C1 =
βM
αM
2
(mc − 1)

[
C2

0
βM
αM
2
(mc − 1) +

1
mc

(
1 + C0m1/2

c

)]
(37)

and

C3 =

(
C0

βM

( αM
p )q/p (mc − 1)(q−1)m(q−1)(2p−1)/p

c m(s−1)/s
c

)p/(p−1)

+

(mc − 1)q−1mq(2p−1)/p−2
c

(
1 + C0m(s−1)/s

c

) βM(
αM
p

)q/p

·
(

F(u0)− F(u)
)(p−q)/(p(p−1))

(38)

3. Damped Additive Schwarz Methods in Finite Element Spaces

Let Ω ⊂ Rd, d = 1, 2 or 3, be an open bounded domain which is polygonal if d = 2, or
polyhedral, if d = 3, and we consider a simplicial mesh partition Th of mesh size h of Ω. Let

Ω =
⋃

i=1,...,mc , j∈Ii

Ωij (39)

be an overlap subdomain decomposition of Ω, where Ii = {1, . . . , mi}, i = 1, . . . , mc. We as-
sume that Th supplies a mesh partition for each subdomain Ωij, j ∈ Ii, i = 1, . . . , mc. Further-
more, we assume that the subdomains have been colored with mc colors,
i = 1, . . . , mc, the subdomains Ωij, j ∈ Ii, having the color i do not intersect with each other,

Ωij1 ∩Ωij2 = ∅ for any i = 1, . . . , mc and j1, j2 ∈ Ii (40)
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and a given subdomain has not been colored with two colors,

Ωi1 j1 6= Ωi2 j2 for any i1 6= i2, i1, i2 = 1, . . . , mc and j1 ∈ Ii1 , j2 ∈ Ii2 . (41)

Evidently, the subdomains obtained as the union of the subdomains of the same color

Ωi = ∪j∈Ii Ωij for all i = 1, . . . , mc (42)

provide another overlapping domain decomposition of Ω,

Ω = ∪i=1,...,mc Ωi (43)

From (40) and (42), we get

∂Ωi = ∪j∈Ii ∂Ωij for all i = 1, . . . , mc (44)

We consider the piecewise linear finite element space

V = {v ∈ C0(Ω̄) : v|τ ∈ P1(τ), τ ∈ Th, v = 0 on ∂Ω}, (45)

and, for i = 1, · · · , mc, we define the subspaces of V

Vi = {v ∈ V : v = 0 in Ω\Ωi} (46)

corresponding to the domain decomposition (43). Furthermore, for any i = 1, · · · , mc and
j ∈ Ii, we introduce the subspaces of V,

Vij = {v ∈ V : v = 0 in Ω\Ωij} (47)

which are associated with the domain decomposition (39). In view of (42), for a given
i = 1, · · · , mc, the spaces Vij, j ∈ Ii, are also subspaces of Vi. The spaces V, Vi and Vij,
i = 1, · · · , mc, j ∈ Ii, are considered as subspaces of W1,s, for some fixed 1 < s < ∞.

We consider problem (4) associated with the above space V and the convex set of
two-obstacle type,

K = {v ∈ V : ϕ ≤ v ≤ ψ} (48)

where ϕ, ψ ∈ V. The equivalent Algorithms 1 and 2 represent additive Schwarz methods
for the solution of this problem. To apply Theorem 1, in order to prove the convergence
of these algorithms, we have to show that Assumptions 1 and 2 hold in the context of
this section.

It is clear, from (40) and (42), that the spaces Vi, i = 1, · · · , mc, can be written as the
direct sums (7) and, since the convex set is of two-obstacle type, property (8) holds true.
Besides that, assuming that functional F : V → R is represented by an integral over Ω,
using the same Equation (40), we get that (9) holds, too. Therefore, we conclude that
Assumption 1 is satisfied.

The verification of Assumption 2 is similar with that in the case of multiplicative
algorithms (see [26], for instance). We consider a unity partition θi ∈ C1(Ω̄), i = 1, . . . , mc,
associated with the domain decomposition (43) with the property

|∂xk θi| ≤ C/δmc , for any i = 1, · · · , mc and k = 1, · · · , d (49)

where δmc is depends on the number of colors mc and on the overlap parameter, which will
be denoted by δ, of the domain decomposition (43) and C is a generic constant, independent
of the mesh parameter and the domain decomposition. For v, w ∈ K, we define

vi = Lh(θi(v− w)), i = 1, . . . , mc,
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where Lh is the P1-Lagrangian interpolation operator which uses the function values at
the nodes of the mesh Th. It is evident that for any i = 1, . . . , mc, vi ∈ Vi, and, taking
into account the definition of K, we have w + vi ∈ K. Furthermore, we can easily get
that ∑mc

i=1 vi = v− w. Using the properties of the interpolation operator, we get (see [26],
for instance)

||vi||s = ||Lh(θi(v− w))||s ≤ Cs||θi(v− w)||s

= Cs
(
||θi(v− w)||sLs(Ω)

+ |θi(v− w)|sW1,s(Ω)

) (50)

for all i = 1, . . . , mc, where || · || is the norm of W1,s(Ω) and || · ||Ls(Ω) and | · |W1,s(Ω) are the
norm in Ls(Ω) and the seminorm of W1,s(Ω), respectively. Since (θi)

mc
i=1 is a unity partition,

we have

mc

∑
i=1
||θi(v− w)||sLs(Ω) =

mc

∑
i=1

∫
Ω

θs
i |v− w|s ≤

mc

∑
i=1

∫
Ω

θi|v− w|s = ||v− w||sLs(Ω) (51)

In view of (49), we have

|θi(v− w)|sW1,s(Ω) ≤ Cs
d

∑
j=1

(∫
Ω
|(v− w)

∂θi
∂xj
|s +

∫
Ω

θs
i |

∂(v− w)

∂xj
|s
)

≤ Cs

(∫
Ω\[θi=cst]

|v− w|s
d

∑
j=1
| ∂θi
∂xj
|s +

∫
Ω

θi

d

∑
j=1
|∂(v− w)

∂xj
|s
)

≤ Cs

(
1

δs
mc

∫
Ω\[θi=cst]

|v− w|s +
∫

Ω
θi

d

∑
j=1
|∂(v− w)

∂xj
|s
)

where θi has been considered extended with 0 outside Ωi and [θi = cst] is the subset of Ω
where θi is constant almost everywhere. Writing

Ωδmc
= ∪mc

i=1(Ωi\[θi = cst]) (52)

we get from the above equation

mc

∑
i=1
|θi(v− w)|sW1,s(Ω) ≤ Cs

(
mc

δs
mc

||v− w||sLs(Ωδmc )
+ |v− w|sW1,s(Ω)

)
(53)

From (50), (51) and (53), we have

mc

∑
i=1
||vi||s ≤ Cs

1 +
mc

δs
mc

||v− w||sLs(Ωδmc )

||v− w||sLs(Ω)

||v− w||sLs(Ω) + |v− w|sW1,s(Ω)


≤ Cs

(
1 + mc

δs
mc

||v−w||sLs(Ωδs
mc

)

||v−w||sLs(Ω)

)
||v− w||sW1,s(Ω)

i.e., (
mc

∑
i=1
||vi||s

)1/s

≤ CΩδmc ||v−w||||v− w||W1,s(Ω) (54)

where

CΩδmc ||v−w|| = C

1 +
mc

δs
mc

||v− w||sLs(Ωδmc )

||v− w||sLs(Ω)

1/s

(55)

Furthermore, let us write
C0 = C(1 +

mc

δs
mc

)1/s (56)
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Remark 4. 1. Since we have Ωδmc
= ∪mc

i=1(Ω\[θi = cst]) = Ω\
(
∩mc

i=1[θi = cst]
)
⊆ Ω we get

CΩδmc ||v−w|| ≤ C0 for any v, w ∈ V (57)

Therefore, it follows from (54) that the constant C0 in Assumption 2 can be taken as that given
in (56). In this way, the estimations of the convergence rates in Theorems 1 and 2 do not depend
on the number of the subdomains, but only on the number mc of the colors and on the overlap
parameter δ (since δmc depends on this).

2. Even if δ and mc are fixed, Ωδmc
given in (52) depends on the number of subdomains of

each color, i.e., it depends on the number m = ∑mc
i=1 mi of subdomains of the domain decomposition.

Consequently, CΩδmc ||v−w|| depends on the actual number m of subdomains even if δ, mc, v and w
are fixed.

3. In the proofs of Theorems 1 and 2, Assumption 2 is used only with v = un and w = u, and
therefore, we can use CΩδmc ||u

n−u|| instead of C0 in these proofs.
When p = q = 2, we get

F(un+1)− F(u) ≤
C1,Ωδmc ||u

n−u||

C1,Ωδmc ||u
n−u|| + 1

(F(un)− F(u))

for all n ≥ 0, where C1,Ωδmc ||u
n−u|| is obtained by replacing C0 with CΩδmc ||u

n−u|| in the expressions
of C1 in the statement of the theorems. Consequently, we have

F(un)− F(u) ≤
(

max0≤k≤n−1 C1,Ωδmc ||u
k−u||

max0≤k≤n−1 C1,Ωδmc ||u
k−u|| + 1

)n(
F(u0)− F(u)

)n
(58)

Since C1,Ωδmc ||u
k−u|| is an increasing function of CΩδmc ||u

n−u||, the value
max0≤k≤n−1 C1,Ωδmc ||u

n−u|| is obtained for max0≤k≤n−1 CΩδmc ||u
n−u||.

Similarly, when p > q, if we use the constant CΩδmc ||u
n−u|| instead of C0 in the proofs of the

two theorems, we get that

F(un+1)− F(u) ≤
[

C2,Ωδmc ||u
n−u|| + (F(un)− F(u))

q−p
q−1

] q−1
q−p

for any n ≥ 0, where C2,Ωδmc ||u
n−u|| is obtained by replacing C0 with CΩδmc ||u

n−u|| in the expres-
sions of C2 in the statement of the theorems. Therefore,

F(un)− F(u) ≤ F(u0)− F(u)[
1 + n min0≤k≤n−1 C2,Ωδmc ||u

k−u||(F(u0)− F(u))
p−q
q−1

] q−1
p−q

(59)

Constant C2 being a decreasing function of C0, it follows that min0≤k≤n−1 C2,Ωδmc ||u
k−u|| is

obtained for max0≤k≤n−1 CΩδmc ||u
k−u||.

4. In conclusion, if the domain decompositions are colored with the same number mc of colors
and have the same overlap parameter δ, the convergence rates in error estimations (58) and (59)
depend on the actual number of subdomains of the domain decomposition but, in view of (57), these
rates of convergence are bounded above by the convergence rates given in Theorems 1 and 2 with C0
in (56) which are independent of the actual number of subdomains and depends only on mc and δ.

4. Numerical Results

Numerical experiments have been performed for the variational inequality

u ∈ K : 〈∇(u),∇(v− u)〉 ≥ f
∫

Ω
(v− u) for any v ∈ K,
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with the convex set

K = {v ∈ H1
0(Ω) : |v(p)| ≤ dist(p, ∂Ω) for almost all p = (x, y) ∈ Ω}

where Ω ⊂ R2, and f is a real positive constant. The inequality represents the problem of
the elasto-plastic torsion of a cylindrical bar with the section Ω (see [28], for instance). In
our experiments, Ω = (0, 1)× (0, 1) and f = 15.0. We have triangulated the domain Ω by
constructing first a square grid on it and then, each square element was divided into two
rectangular triangles by considering its diagonal from the lower-left corner to the upper
right corner. The edges of Ω have been divided into 100 equal segments and we have used
the linear finite elements. The algorithm has been stopped when the relative error between
two consecutive approximations, calculated with the norm of H1(Ω), has been less than
1.0× 10−7.

To see the plastic and elastic regions of the solution, we have plotted in Figure 1 the
difference between the distance to the boundary dist(p, ∂Ω) and the value of the obtained
finite element solution u(p) of the problem, dist(p, ∂Ω) − u(p), p ∈ Ω. Consequently,
the region with zero values corresponds to the plastic region and the nonzero values of
the elastic region represent the distance from the elastic value u(p) to the plasticity limit
dist(p, ∂Ω).

Figure 1. Elastic and plastic regions of the solution.

Now, we introduce some notation regarding the subdomain decomposition. First, let
us write h = 0.01 and nd = 100. The domain Ω is covered with identical square subdomains
(md · h)× (md · h) which have an overlap parameter of nro · h = δ in both directions x
and y. Furthermore, if the number and the dimension of the subdomains do not match the
dimension of the domain, a subdomain may be of the form (mdr · h)× (md · h) if it is the
last on a line, or (md · h)× (mdr · h) if it is the last on a column, or (mdr · h)× (mdr · h) if
it lies at the upper right corner of the domain, where mdr ≤ md. Denoting with nbd the
number of subdomains in each direction, x and y, we have

nd = (nbd− 1)(md− nro) + mdr (60)
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Furthermore, in the case of our numerical example, if the subdomains can be colored
with 22 = 4 colors, i.e., a subdomain intersects only its neighboring subdomains, then

md− nro < md ≤ 2(md− nro)

If the subdomain coloring has 32 = 9 colors, then

2(md− nro) < md ≤ 3(md− nro)

In general, if the subdomains can be colored with mc colors, then it is easy to verify that

(m1/2
c − 1)(md− nro) < md ≤ m1/2

c (md− nro)

or,
mc1/2

mc1/2 − 1
nro ≤ md <

mc1/2 − 1
mc1/2 − 2

nro (61)

The numerical experiments have been made to verify the theoretical predictions
concerning: (1) the choice of the damping parameter, (2) the convergence depending on the
overlap parameter and (3) the convergence depending on the number of subdomains.

(1) It is shown in Remark 3 that the best convergence is obtained when $1 = . . . =
$mc =

1
mc

. To verify this, we have performed numerical experiments for an example with
md = 12, nbd = 12 and nro = 4. Therefore, the number of colors is mc = 22.

First, we give in Table 1 the number of iterations depending on various values of
$1, · · · , $4. We see that the minimum number of iterations is obtained for $1 = . . . = $4 =
0.25, which is consistent with the prediction of Remark 3.

Table 1. Number of iterations depending on the various damping parameters associated with the
colors.

$1 $2 $3 $4 Number of Iterations

0.10 0.10 0.35 0.45 451
0.10 0.15 0.25 0.50 406
0.10 0.15 0.40 0.35 396
0.10 0.20 0.30 0.40 377
0.10 0.25 0.20 0.45 383
0.10 0.25 0.35 0.30 365
0.10 0.30 0.25 0.35 366
0.20 0.20 0.55 0.35 292
0.20 0.30 0.20 0.30 288
0.25 0.25 0.25 0.25 275

Then, in Figure 2, we have plotted the number of iterations depending on the various
values of the damping parameter ρ = ρ1 = · · · = ρ4, ρ = 0.005, 0.007, 0.01, 0.05, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4 and 0.45. In Remarks 2 and 3, we have showed that the convergence
rate decreases as a function of ρ. From Figure 2 we see that the numerical results are in
agreement with the theoretical ones. Since the solution must theoretically belong to the
convex set, we have imposed the condition ρ ≤ 1/mc in Algorithms 1 and 2. However,
we notice that the algorithm converged for larger values than 0.25 of ρ, but it failed to
converge for ρ > 0.45. A possible explanation would be the fact that during the iteration
of Algorithms 1 or 2 we could get un+1 ∈ K for ρ > 1/mc.
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Figure 2. Number of iterations depending on the damping parameter.

(2) In Figure 3, we have plotted the number of iterations depending on the size of
the overlap parameter δ = nro·h. The domain decomposition contains only one type
of subdomains, squares with the size (0.01·28)× (0.01·28). The experiments have been
performed for the size of the overlap parameter of δ = 1·h, 2·h, · · · , 21·h, 22·h, with h = 0.01.
According with (61), for δ = 1·h, · · · , 14·h, the subdomains can be colored with 22 colors,
for δ = 15·h, · · · , 18·h with 32 colors, for δ = 19·h, · · · , 21·h with 42 colors and for δ = 22·h
with 52 colors.

(a) In Figure 3, (left), we have used damping parameters which correspond to the
number of colors of the subdomains of the experiment, ρ = 1/22, 1/32, 1/42 and 1/52,
respectively. We see that the number of iterations corresponding to a color is greater than
that of the previous color. This is in concordance with the error estimation in Remark 3
where the convergence rate is an increasing function of the number mc of the subdomain
colors. Experiments of Figure 3 (right) are performed with a constant value of the damping
parameter, ρ = 0.04. In this case, the error estimation is given in Remark 2 and the
convergence rate depends on mc and also, on the chosen ρ. In our case, the convergence
rate decreases as mc increases.

(b) In both cases in Figure 3, with constant damping parameter or not, for a fixed
number mc of colors, the number of iterations decreases when the overlap parameter
δ increases and consequently, the number of iterations corresponding to a fixed mc is
bounded. In view of error estimations in Remarks 2 and 3, mc being constant, we can
conclude that C0 should be a decreasing function of δ. Constants CΩδmc ||u

n−u|| in (55) and
C0 in (56) are decreasing functions of δmc and therefore, for the domain decompositions of
the experiments in Figure 3, there exist unity partitions and δmc satisfying (49) such that δmc

increases when δ increases. We illustrate in Figures 4 and 5 some unity partitions having
this property.

In Figure 4, we have plotted sections in the direction of a coordinate axis (the sections
in the x and y directions are identical) passing through the center of the functions of a unity
partition corresponding to the domain decompositions in Figure 3 having the overlap
parameters: δ = 0.01 (left) and δ = 0.14 (right). These domain decompositions can be
colored with 22 colors and we see that δmc = δ.

In Figure 5, we have plotted sections in the direction of a coordinate axis passing
through the center of the functions of a unity partition corresponding to the domain
decomposition in Figure 3 with the overlap parameter: δ = 0.15 (left) and δ = 0.18 (right).
These domain decompositions can be colored with 32 colors and we see that δmc = 0.04 in
both cases.

Evidently, other unity partitions can be imagined, but we shall assume that, in general,
according with the results of the numerical experiments, the parameter δmc defined in (49)
depends on the number of colors mc and, for a fixed color, is an increasing function on the
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overlap parameter δ, i.e., the number of iterations decreases when the overlap parameter
δ increases.

Figure 3. Number of iterations depending on the overlap parameter: damping parameter associated
with the color (left) and constant damping parameter (right).

Figure 4. Sections in the direction of a coordinate axis passing through the center of the functions of a
unity partition: δ = 0.01 (left) and δ = 0.14 (right).

Figure 5. Sections in the direction of a coordinate axis passing through the center of the functions of a
unity partition: δ = 0.15 (left) and δ = 0.18 (right).

(3) Experiments in Figure 6, where we plotted the number of iterations depend-
ing on the number of subdomains, have been performed to verify the conclusions of
Remark 4. As above, in the left plots, the damping parameter is associated with the
color of the decomposition and in the right plots the damping parameter is constant,
ρ = 0.04. The overlap parameter has been the same in these experiments, δ = 0.04, the
domain decompositions contained 22, 42, 62, · · · , 222, 242, 252, 282, 312, · · · , 432, 462, 482,
492, 542, 592, 642, · · · , 892, 942 and 962. square subdomains. Obviously, the subdomains
have different sizes from one experiment to another. The decompositions whose number
of subdomains is between 22 and 242 can be colored with mc = 22 colors, those whose
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number of subdomains is between 252 and 482 can be colored with mc = 32 colors and
decompositions having the number of subdomains between 492 and 962 can be colored
with mc = 52 colors.

Figure 6. Number of iterations depending on the number of subdomains: damping parameter
associated with the color (left) and constant damping parameter (right).

(a) As in the case of the δ variable, we see in Figure 6 that, when the numerical
experiments are performed with variable damping parameters (corresponding to the
colors of the domain decompositions), the number of iterations corresponding to the
colors increases as the number of subdomains nbd2 increases, but the number of iterations
decreases when the damping parameters associated with the colors have the same value.

(b) Furthermore, from this figure, we see that the number of iterations as a function
of the number of the subdomains confirm the conclusions of Remark 4, i.e., by keeping
the parameters of the experiments constant, with the exception of the number and the
size of the subdomains, the convergence rates are bounded above by the convergence rate
of the experiment whose convergence depends only on the number of colors. As in the
case of variable δ, we illustrate this by four numerical experiments among those plotted in
Figure 6, namely, when the number of subdomains in the direction of x or y is: nbd = 2,
nbd = 24, nbd = 25 and nbd = 48.

In Figure 7, we have plotted sections in the direction of a coordinate axis passing
through the center of the functions of the unity partitions corresponding to the domain
decomposition for nbd = 2 and nbd = 24. These unity partitions satisfy (49) with δmc = 0.04
and the subdomains of the domain the decompositions can be colored with mc = 22 colors.
In Figure 6 we see that the number of iterations increases when the number of subdomains
increases between 22 and 242. Even if the experiments have the same δmc = 0.04, |Ωδmc

|
increases as the number of subdomains increases and consequently, CΩδmc ||u

n−u|| given
in (55) increases, i.e., the convergence rate of the experiments increases as the number
of the subdomains increases. These experiments are therefore in agreement with the
theoretical results.

In Figure 8, we have plotted sections in the direction of a coordinate axis passing
through the center of the functions of unity partitions corresponding to the domain decom-
position for nbd = 25 and nbd = 48. The subdomains of the domain the decompositions
having the number of the subdomains between 252 and 482 can be colored with mc = 32

colors. In Figure 6, we see that, in the case of these experiments, the number of itera-
tions decreases when the number of subdomains increases. In view of the expression of
CΩδmc ||u

n−u|| given in (55), this fact is in agreement with the theoretical results because,
on the one hand, δmc increase from 0.02 to 0.04, and on the other hand, |Ωδmc

| decreases.
Therefore CΩδmc

decreases, i.e., the convergence rate of the experiments decreases as the
number of the subdomains increases.
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Figure 7. Sections in the direction of a coordinate axis passing through the center of the functions of a
unity partition: 22 subdomains (left) and 242 subdomains (right).

Figure 8. Sections in the direction of a coordinate axis passing through the center of the functions of a
unity partition: 252 subdomains (left) and 482 subdomains (right).

Finally, let us mention that even if, in general, the Schwarz methods are not scalable
(see [1], for instance), in the case of the damped additive one, the number of iterations
depends on the number of subdomains but it has an upper bound depending on the
minimum number of colors used for the coloring of the subdomains.
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