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Abstract: Traditional approaches used for analyzing the mechanical properties of auxetic structures
are commonly based on deterministic techniques, where the effects of uncertainties are neglected.
However, uncertainty is widely presented in auxetic structures, which may affect their mechanical
properties greatly. The evidence theory has a strong ability to deal with uncertainties; thus, it is
introduced for the modelling of epistemic uncertainties in auxetic structures. For the response
analysis of a typical double-V negative Poisson’s ratio (NPR) structure with epistemic uncertainty, a
new sequence-sampling-based arbitrary orthogonal polynomial (SS-AOP) expansion is proposed by
introducing arbitrary orthogonal polynomial theory and the sequential sampling strategy. In SS-AOP,
a sampling technique is developed to calculate the coefficient of AOP expansion. In particular, the
candidate points for sampling are generated using the Gauss points associated with the optimal Gauss
weight function for each evidence variable, and the sequential-sampling technique is introduced to
select the sampling points from candidate points. By using the SS-AOP, the number of sampling
points needed for establishing AOP expansion can be effectively reduced; thus, the efficiency of
the AOP expansion method can be improved without sacrificing accuracy. The proposed SS-AOP
is thoroughly investigated through comparison to the Gaussian quadrature-based AOP method,
the Latin-hypercube-sampling-based AOP (LHS-AOP) method and the optimal Latin-hypercube-
sampling-based AOP (OLHS-AOP) method.

Keywords: evidence theory; negative Poisson ratio (NPR) structure; auxetic structure; arbitrary
orthogonal polynomial; sequence sampling scheme

1. Introduction

In the analysis of structural geometric nonlinearity and large-deformation engineering
practice, experimental tests and finite element computational simulations are two important
methods used for analyzing the structural mechanics properties. In the last few years,
a large number of thin-walled structures [1–3] and auxetic structures [4–8] have been
designed for improving the safety in the automotive, railway, and aerospace industries
because of their unconventional mechanical properties. Considering the fact that structural
large deformation is a complicated dynamic problem, the material properties and structural
geometric design will influence the mechanical properties, for example, the modulus of
elasticity, tensile strength, stiffness, elongation, hardness and fatigue limit. The analysis
of the mechanical properties of traditional structures is still limited to the analysis of
deterministic parameters. In engineering practice, uncertainties exist in manufacturing
production, usually based on material properties, structural geometric size, boundary
conditions, complicated loads, etc. [9–11]. Although these uncertainties are small in value,
for complicated large-deformation problems with strong nonlinear properties, uncertainty
may cause performance to deviate significantly from that expected or even lead to structural
failure under coupling [12–14]. Recently, some researchers have employed uncertain
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analysis methods to handle interval or randomness problems for the analysis of thin-walled
structures and some traditional structures [15–21].

Based on the nature of uncertain sources, uncertainty can be divided into the cate-
gories of epistemic and aleatory uncertainty [22,23]. Aleatory uncertainty is an inherent
characteristic of the behavior of a system or its environment and is also called objective
uncertainty. Aleatory uncertainty is usually modelled by probability theory. In contrast to
aleatory uncertainty, epistemic uncertainty results from the lack of sufficient knowledge
for quantifying an uncertain system. To handle the problems of epistemic uncertainty,
several non-probability theories have been developed, including convex models [24], fuzzy
sets [25], interval analysis [26–29], and evidence theory [30,31]. In the uncertainty analysis
of the evidence theory model, the belief function (Bel) and plausibility function (Pl) are
introduced to describe the degree of uncertainty of systems; these are calculated using
imprecise basic probability assignment, where the upper and lower probability boundaries
of each interval are used to describe the uncertainty of a problem [32]. Compared with
the other epistemic model, the framework of evidence theory is more flexible [33]. If the
upper and lower boundary of an interval are the only information which can be obtained,
the process of uncertainty analysis by evidence theory can be equivalent to the interval
analysis. Meanwhile, evidence theory can also be equivalent to probability theory when
the probability information of uncertain parameters is sufficient [34]. Due to these typical
advantages, evidence theory has gained great popularity in the uncertainty analysis of
structures or systems in recent years [35–38].

In evidence theory, the process of analysis of extreme values of each focal element
represents a great computational burden, especially for multidimensional problems. In
recent years, large numbers of studies have been devoted to improving the computational
efficiency of extreme value analysis in the uncertainty analysis of evidence theory. The
interval perturbation method is used for the extreme value analysis of each focal ele-
ment [39–41]. Despite the fact that the interval perturbation method can receive a better
computational efficiency than the Monte Carlo simulation method, with the number of
focal elements increasing, the computational burden of the perturbation analysis method
will inevitably increase as all joint focal-element intervals will be analyzed by interval
perturbation method. Recently, the global surrogate model has been employed in evidence-
theory-based uncertain analysis, which can reduce the computational cost. In the global
surrogate method, the system response can be approximated by establishing a surrogate
model, thus improving the computational efficiency of the extreme value analysis of all
joint focal elements. Originally, the global surrogate models were applied to the evidence
theory model [42–44]. Subsequently, Jacobi polynomial expansion was introduced to cal-
culate acoustic system response in the context of evidence theory [45]. Additionally, the
Gegenbauer series expansion method [46,47] has been applied to calculate the boundary
of expectation and variance in structural acoustic problems. Wang et al. [48] combined
evidence theory with the sample-based Legendre-type polynomial method to reduce the
computational cost for mechanical systems. Based on the above research, the orthogonal
polynomial expansion method has been applied in engineering practice to deal with uncer-
tain analyses of evidence theory. According to the author’s research, the polynomial basis
can influence the accuracy of the global surrogate model established by orthogonal polyno-
mial expansion. The arbitrary polynomial chaos expansion method has been applied to the
uncertain analysis of acoustic problems with interval and random variables [49]. Compared
with the traditional orthogonal polynomial expansion method, the computational error
of the arbitrary polynomial chaos method can be greatly reduced by the selection of the
optimal weight function without scarifying computational efficiency [50].

As mentioned previously, great developments have been achieved in the field of
evidence-theory-based uncertainty quantification. However, some important issues remain
unresolved. Firstly, the application of evidence theory in the field of auxetic structures
with large deformation has not previously been reported. Recently, the interval model
and random model were introduced for the analysis of thin-walled structures, but these
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two kinds of uncertain models are not suitable for uncertain problems with imprecise
probability [14]. The evidence theory has a strong ability to deal with imprecise probability;
thus, in this paper, the evidence theory will be applied to the design of complex auxetic
structures. Secondly, although the convergence rate of the arbitrary orthogonal polynomial
expansion method is faster than that of other orthogonal polynomial expansion methods,
its tremendous computational burden still limits its application to uncertain problems when
the number of epistemic uncertain parameters is large. The Gaussian quadrature is used
to calculate the expansion coefficient of the evidence-theory-based arbitrary orthogonal
polynomial expansion method; consequently, the sample points are the tensor products of
Gaussian integration points. In other words, the sample points will increase exponentially
as the number of variables increases, which can lead to establishing the surrogate model by
arbitrary orthogonal polynomial expansion having tremendous computational costs. In
engineering practice, mechanical properties are usually accompanied by a large number
of uncertainty parameters. For example, the widely used negative Poisson ratio (NPR)
periodic structures are commonly composed of many cells, where each cell may contain
multiple uncertainty parameters. Therefore, it is necessary to develop an appropriate
uncertainty analysis method for use in multivariate auxetic structures with the evidence
theory model, especially for periodic auxetic structures.

The aim of this research is to propose a sequence-sampling-based arbitrary orthogonal
polynomial (SS-AOP) expansion approach for use in the evidence-theory-based uncertainty
analysis of auxetic structural mechanics properties with epistemic uncertainties. In SS-AOP,
the response analysis of auxetic structural mechanics properties is approximated by the
AOP method, and a new sampling technique is employed to reduce the sampling points,
which are used to calculate the expansion coefficients [51,52]. In this sampling technique,
the candidates are the Gauss points associated with the optimal Gauss weight function
for each evidence variable. Then, by using sequential sampling scheme, the sampling
points can be sequentially and uniformly selected from the candidate Gauss points. Finally,
the least squares method is used to calculate the expansion coefficients of the SS-AOP
expansion method. Based on the proposed SS-AOP, the extreme value of focal elements can
be calculated efficiently. Several mathematical test functions and a case of application of the
analysis of the mechanics properties of double-V NPR are used to show the computational
accuracy and efficiency of the proposed approach in comparison to the conventional
sampling method of traditional arbitrary polynomial expansion [39] (this method will
be called traditional AOP in the rest of this paper), the Latin-hypercube-sampling-based
arbitrary polynomial (LHS-AOP) expansion method and the optimal-Latin-hypercube-
sampling-based arbitrary polynomial (OLHS-AOP) expansion method.

2. Epistemic Uncertainty Analysis of Auxetic Structure in Large Deformation with
Evidence Theory

This section will describe the application of evidence theory in the mechanics property
analysis of auxetic structures. Additionally, the basic conceptions of evidence theory will
be briefly introduced.

2.1. Static Analysis with Uncertain Parameter

For the static analysis of complex auxetic structures, the compression process is a
highly discontinuous and nonlinear problem. Generally, structural finite element analysis
is suitable for solving geometric nonlinear compression problems. For the nonlinear large-
deformation problem with systems of multiple degrees of freedom, the structural statics
equation can be formulated as

[K]{u}+ F = 0, (1)

where {u} is the displacement vector of each node of the system, K stands for the stiffness
matrix, and F denotes the external input matrix.

In real engineering practice in the structural mechanical research field, many uncer-
tainties are inherent. For example, there is uncertainty regarding material properties and
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the geometric size of auxetic structures caused by manufacturing precision or assembly
technology. In addition, the precise probability distribution of these uncertain variables is
hard to obtain due to the experimental cost. In this paper, we will use the evidence theory
to establish an effective model for auxetic dynamic analysis.

The uncertain variables of auxetic structure can be represented by evidence variables
vector U. The dynamic equilibrium equation with evidence variables is formulated as:

[K(U)]{u}+ [F(U)] = 0. (2)

In the above equation, the K(U), F(U) denote the uncertain-but-bound mass and
external excitation matrix, respectively.

2.2. Fundamental Conception of Evidence Theory

In the evidence theory, the universal set Ω of each probable for the uncertainty problem
is called the frame of discernment (FD). For instance, if the FD is given as Θ = {x1, x2}, the
x1 and x2 are defined as two mutually exclusive elementary propositions. The FD of this
example is 2Θ = {∅, {x1}, {x2}, {x1, x2}}. Additionally, the basic probability assignment
(BPA) of an unknown event can be indicated by a function m: 2Θ ∈ [0, 1]. For a given event
Q, the BPA can be written as: 

m(Q) ≥ 0, ∀Q ∈ 2Θ

m(∅) = 0

∑
A∈2Θ

m(Q) = 1
, (3)

where each subset m(Q) is called the focal element in evidence theory, which satisfies
m(Q) > 0.

Due to lack of precise information or knowledge, the deterministic probability infor-
mation of any proposition B can be obtained in evidence theory. Therefore, an interval
which includes Bel and Pl will be employed to represent the uncertainty probability of the
proposed problem. These measures are defined as:

Bel(B) = ∑
Q⊆B

m(Q)

Pl(B) = ∑
Q∩B 6=0

m(Q)
. (4)

The Bel(B) is the probability lower boundary of the proposition B and the Pl(B) is
the upper boundary of the proposition B, where both ∈ [0, 1]. The belief measure Bel(B)
is calculated by the summation of the BPA of proposition B, which is wholly contained
within proposition B and represents the minimum possibility which can be correlative
with proposition B, while the plausibility measure Pl(B) is calculated by summing the
BPA of proposition B, which is completely or partially contained in the proposition B and
it represents the maximum possibility which is related to proposition B. The Bel and Pl,
regarded as the upper and lower probability interval, describe the uncertainty of problems.
The probability of a proposition is contained by Bel and Pl.

2.3. Establishing Uncertainty Model by Evidence Theory

According to the Ref. [53], each uncertain variable contains one or more than one
interval. For example, by using the evidence theory, an uncertain variable U can be
expressed as:

U =
{
(U I

1, m(U I
1)), · · · , (U I

i , m(U I
i )), · · · , (U I

l , m(U I
l ))
}

, (5)
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where U I
i stands for the ith focal element and m(U I

1) represents the BPA of U I
i . These focal

elements can be regarded as several intervals which may be overlapping or have gaps
when there is more than one uncertain variable.

For the multidimensional problem U = {[U1, U2, · · · , Uk]}, the joint focal elements
can be expressed as

USk =
[
U I

S1,1, U I
S2,2, · · · , U I

Sk ,k

]
∈ U1 ×U2 × · · ·UK, Sk = 1, 2, . . . , Ns. (6)

The USk represents the Sknd joint focal element. Each U I
Sk ,k ∈ U I

i means the focal
element of each evidence variable Ui, while Ns is the total number of joint focal elements.
The joint BPA of USk is expressed as:

m
(
USk

)
=


k

∏
j=1

m
(

Ul
Sk ,i

)
, U I

Sk ,k ∈ U I
i

0, else

. (7)

According to the definition of the evidence theory model given above, the precise
information of the probability distribution of uncertain parameters is not required. For
the evidence theory model, the uncertain analysis model still can be established without
assumptions. The precise probability density function can be obtained because of the lack
of information regarding an uncertain parameter.

3. SS-AOP for Epistemic Uncertainty Analysis under Evidence Theory

According to the traditional AOP expansion method, the number of sampling points
increases exponentially along with the expansion order, leading to the global surrogate
model requiring a great deal of computational time. This paper proposes a new SS-AOP
expansion method to improve the efficiency of the uncertainty analysis of the evidence
theory model. In SS-AOP, a new sampling technique is employed to reduce the sampling
points; this technique is used to calculate the expansion coefficients of AOP expansion.
Firstly, the candidate points for sampling are generated using the Gauss points associated
with the optimal Gauss weight function for each evidence variable. Then, the sequential-
sampling technique is introduced to select the sampling points from the candidate points.
The procedure of the proposed SS-AOP approach will be deduced in this section.

3.1. Fundamentals of Traditional AOP Expansion

The function Y(ε) is approximated as:

Y(ε) =
N

∑
i=0

fi ϕi(ε), (8)

N is the maximum retained order of AOP expansion. fi represents the expansion
coefficient, and ϕi(ε), (i = 1, 2, . . . L) denotes the polynomial basis of order i.

According to Ref [54], the polynomial basis is determined as:

ϕ−1(ε) = 0
ϕ0(ε) = 1
ϕk+1(ε) = (ε− ak)ϕk(ε)− bk ϕk−1(ε), k = 0, 1, 2, . . .

. (9)

In Equation (9), ak and bk(k = 0, 1, 2, . . .) indicate the recurrence coefficient of the AOP.
The procedure to determine the coefficients fi can be found in Ref. [50].
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In traditional AOP [50], for the problem of uncertainty caused by multiple parameters,
Y(ε) can be expressed as:

Y(ε) =
N1

∑
i1=0
· · ·

NL

∑
iL=0

fi1,...iL ϕi1,...iL(ε), (10)

where ε = [ε1, ε2, . . . , εL] is a L-dimensional vector and Ni(i = 1, 2, . . . , L) indicates the
retained order of each uncertain variable. ϕi1,...iL(ε) can be expressed by:

ϕi1,...iL(ε) =
L

∏
j=1

ϕij(ε j) j = 1, 2, . . . , L ij = 1, 2, . . . , (11)

where ϕij(ε j)(j = 1, 2, . . . , L) denotes the polynomial basis associated with ε j, and ij indi-
cates the order of the polynomial basis ϕij(ε j).

According to Ref. [50], the coefficient fi1,...iL can be expressed as:

fi1,...iL = 1
hi1,...,iL

∫
Ω Y(ε)ϕi1,...,iL(ε)wi1,...,iL(ε)dε

= 1
hi1,...,iL

m1
∑

j1=1
· · ·

mL
∑

jL=1
Yi1,...,iL(ε̂j1,...,jL)ϕj1,...,jL(ε̂j1,...,jL)wj1,...,jL

(12)

In the above equations, ε̂ jk indicates the jknd integration points for εk, wjk is the weight
of Gauss integration related to ε̂ jL and mk(k = 1, 2, . . . , L) is the total number of integration
nodes related to εk. In order to ensure the efficiency and accuracy of the AOP method, the
number of Gauss integration points mk will be set as mk = ni + 1.

According to Equation (12), for multidimensional problems, the number of polynomial
basis and integration points will increase exponentially with an increase in retain order ni.
To improve the computational efficiency, a new sampling technique will be developed for
the calculation of the expansion coefficient in the following section.

3.2. The Sequence Sampling Scheme

The most widely used sampling technique is Latin hypercube sampling (LHS). How-
ever, the LHS-based method generates sampling points that are approximately random,
which may lead to the calculation results being unreliable. In this section, a new sequence
sampling approach is developed. Firstly, the candidate points for sampling are generated
using the Gauss points associated with the optimal Gauss weight function for each evidence
variable. This is because the Gauss points have a great influence on the convergence and
accuracy. Secondly, the sequence sampling approach will be introduced to uniformly select
the sampling points from candidate points.

3.2.1. The Initial Candidate Samples

According to the theory of Gauss quadrature, when the Gauss points are utilized
as a sample construction method to calculate the expansion coefficient of AOP, the AOP
expansion can converge rapidly. Therefore, in this paper we will use the Gauss points as the
candidate points. Before generating the Gauss points, it is essential to determine the weight
function. According to Ref. [49], when the weight function, which is orthogonal to the
polynomial basis, is consistent with the BPA of the evidence variable, the AOP expansion
method can achieve an optimal accuracy. Therefore, the weight function is expressed as:

ωXi (Xi) =
ni

∑
ri

δj(Xi)m(xi)

xi − xi
, (13)

where xi is the ind focal element of Xi. xi and xi are the upper and lower bounds of xi.
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When the weight function can be obtained by Equation (13), the Gauss points can be
obtained as follows:

Jn =



a0
√

b1√
b1 a1

√
b2√

b2 a2
. . . . . .
. . .

an−2
√

bn−1√
bn−1 an−1


. (14)

where VTJnV = diag(λ1, λ2, . . . , λn), VTV = I, and I is the n× n dimension identity matrix.
The candidate points ε̂i can be calculated by:

ε̂i = λi, i = 1, 2, . . . . (15)

In Equation (14), ak and bk of the AOP expansion can be expressed using by the theory
of orthogonal polynomial [55,56] as:

ak =
〈ε ϕk(ε), ϕk(ε)〉
〈ϕk(ε), ϕk(ε)〉

=
1
hk

∫
Ω

ε ϕk(ε) ϕk(ε)ω (ε), k = 0, 1, 2, . . . , (16)

bk =
〈ϕk(ε), ϕk(ε)〉
〈ϕk−1(ε), ϕk−1(ε)〉

=
1
hk

∫
Ω

ϕk(ε) ϕk(ε)ω (ε), k = 1, 2, . . . , (17)

where the coefficient b0 is an arbitrary value and b0 will be set as b0 =
∫

ω(x)dx. 〈·, ·〉
denotes the inner product with regard to a weight function in a specific domain Ω. ω(ε) is
the weight function.

For the traditional AOP expansion method, the candidate points of the L-dimensional
problems are the tensor product of Gauss integration points associated with the optimal
Gauss weight function. The candidate points are expressed as:

ε = ε1 × ε2 × · · · × εL. (18)

The total number of candidate points is:

Ntotal = (n1 + 1)× (n2 + 1)× · · · × (nL + 1). (19)

The candidate points are obtained using Equation (15). In the following section, the
process of selecting the sampling points from candidate points will be shown.

3.2.2. Space Uniformity Transformation for Candidate Points

The candidate points of the arbitrary orthogonal polynomial are Gauss integration
points, which are denser along the boundary. For the sequential sampling scheme, the
candidate points should satisfy the rule of being uniformly distributed. In other words,
a candidate set of a sequential sampling scheme is symmetrical [57]. To overcome this
limitation, a β space will be introduced to change the candidate points to an equal-weighted
form. In β space, the coordinates of the integration points in ε set will be indicated by the
component i (i = 1, 2, . . . , m), where m is the number of integration points for each variable.
To illustrate the process of sequence sampling, an example showing the distribution of β
space and ε set when k = 2 and m = 16 is shown in Figure 1. The selected sampling points
from the candidate points are the red points.
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3.2.3. The Sequence Sampling Process of Candidate Set

The performance of the final sample points will be influenced greatly by the selection of
the initial sample points. Therefore, the initial sample points will be distributed uniformly
in the candidate set space. Johnson et al. proposed a maximin metric measure [58]. Through
this metric, whether the sampling candidate set is uniform or not can be evaluated. This
method will rank the competing sample sets using the following scalar-valued criterion
function [59]:

Φq(θ) =

(
a0

∑
i=1

a0

∑
j=i+1

d(θ(i), θ(j))
−q
)1/q

. (20)

q is set to 100 in this paper, which denotes a non-deterministic but relatively large
positive integer. θ(i) is a sample set, a0 indicates the number of candidate sample points,
and the Euclidean distance d(θ(i), θ(j)) can be expressed as

d(θ(j1), θ(j2)) =

(
k

∑
i=1

∣∣∣θ(j1)
i − θ

(j2)
i

∣∣∣p)1/p

, (21)

where θ
(j1)
i is the ind variable of L-dimensional θ(i), while p is the Euclidean norm and set

as 2. In Equation (20), a smaller Φq indicates that the sampling set is more uniform.
There are three steps in this sampling scheme. The first step is obtaining the initial

sampling points of sequential sampling scheme. The number of the initial sample points is
L× kL (k denotes the number of Gauss integration points of each dimension and L denotes
the number of dimension). In order to ensure the uniformity of the sample points, the initial
row and the value of the first column will be set as a unique performance. The first row is
set as 1, 2, . . . , m, and the values of the first column are set as 1. In order to demonstrate the
steps of the sequential sampling method, a case where k = 5 and L = 6 will be introduced.
The initial matrix of sampling points is shown in Table 1.
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Table 1. The initialization design matrix of position for k = 5 and L = 6.

Dimension
No. of Samples

1 2 3 4 5 6 . . . 30

1 1 2 3 4 5
2 1
3 1
4 1
5 1
6 1

The second step is minimizing the metric Φq to calculate the rest elements in the initial
sample set. The selected sample set is δ and the candidate set is denoted as θ. According to
Ref. [60], the calculation of the smallest Φq(θ, θ

(j)
1 ) can be simplified as

Φq(θ, θ
(j)
1 ) =

(
a0

∑
i=1

d(θ0
(i), θ1

(j))
−q
)1/q

, (22)

where θ0
(i) ∈ δ are the old candidate samples and θ0

(j) ∈ θ are new sampling points. The
subscript 0 indicates the selected sampled set and the superscript (i) is the ith sample of
θ. The subscript 1 indicates the candidate sampled set and the superscript (j) is the jth
sample of δ.

Table 2 can demonstrate the process of selecting the rest of the samples from the
candidate θ through minimizing Φq. First of all, the calculation criterion Equation (22)
is used to calculate the elements in the second column from second to sixth. Then, new
selected samples are obtained from the candidate θ. The sampled space δ will be updated
and the rest of the column elements can be obtained from 3 to m. The result is demonstrated
in Table 2.

Table 2. The design matrix of position for k = 5 and L = 6.

Dimension
No. of Samples

1 2 3 4 5 6 . . . 30

1 1 2 3 4 5
2 1 5 1 5 1
3 1 5 1 5 4
4 1 5 3 1 5
5 1 5 5 1 3
6 1 5 5 3 1

The final step of the sequence sampling is to calculate the rest values of the values. The
rest c of columns can also be determined after the first m columns are calculated. In order
to ensure that the samples in each dimension satisfy the uniformity rule, each dimension
will be handled with a uniform method. Therefore, the first row is moved to the last, and
the other rows move forward in sequence. Then, the second dimension row will be made
uniform. The sequence sampling scheme can be repeated from column 6 to 10, as shown in
Table 3.

After the initial candidate sampling scheme, the minimizing Φq will be sustained to
obtain the appropriate number of sampling points until the number of samples satisfies the
value of NF in Equation (25).
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Table 3. The first design matrix of position for k = 5 and L = 6.

Dimension
No. of Samples

1 2 3 4 5 6 7 8 9 10 . . . 30

2 1 5 1 5 1 1 2 3 4 5
3 1 5 1 5 4
4 1 5 3 1 5
5 1 5 5 1 3
6 1 5 5 3 1
1 1 2 3 4 5

3.2.4. Calculations of Expansion Coefficient

L-dimensional function Y(ε) can be approximated using the arbitrary polynomial
expansion method as

Y(ε) = ∑
0≤i1+...+iL≤n

fi1,...,iL ϕj1,...,jL(ε). (23)

According to the simplex format, the number of arbitrary polynomials basis and the
expansion coefficient can be reduced from Ntotal = (n1 + 1)× (n2 + 1)× · · · × (nL + 1) to
a smaller value Ns. Ns is expressed as

Ns =
(L + n)!

L!n!
. (24)

As a result, in the same expansion order ni, the number of arbitrary polynomials is
reduced to Ns. The computational cost of expansion coefficients is reduced greatly, and the
computational efficiency of AOP expansion will be improved.

In order to ensure the accuracy of the proposed SS-AOP method, the number of Gauss
integration points NF which are used as the candidate points must be larger than that of
expansion coefficients. In that case, the NF can be expressed as

Ns(L, nmax) =
(L + nmax)!

L!nmax!
< NF. (25)

The least squares method can be used to calculate the expansion coefficients of AOP.
Equation (23) can be transformed to the following formulation as

Y(ε) = ∑
0≤i1+...+iL≤n

fi1,...,iL ϕj1,...,jL(ε) = β
Tα, (26)

β = [β1 · · · βs]
T = [ f0,··· ,0, · · · · · · , fi1,··· ,iL ]

T, 0 ≤ i1 + · · ·+ iL ≤ n, (27)

α = [α1 · · · αs]
T = [ϕ0,...,0, · · · · · · , ϕj1,...,jL ]

T, 0 ≤ i1 + · · ·+ iL ≤ n, (28)

In the three above equations, s is the number of expansion coefficients and the cor-
responding polynomial basis vector α. Through the least squares method, the expansion
coefficients of SS-AOP can be calculated as

β = (ATA)
−1

ATY, (29)

Y indicates the original values for the response function, which are obtained through
experiments or from current information. A is the assemble matrix which composed of the
corresponding polynomial basis vector, which can be expressed as

A =

α1(ε1) · · · αs(ε1)
...

. . .
...

αs(εs) · · · α1(εs)

, (30)
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where s = Ns and ε1, . . . , εs are the sampling points selected from the candidate points.

3.3. SS-AOP for the Response Analysis of Mechanics Property with Evidence Variables

Based on the SS-AOP shown in Equation (26), a global surrogate is established to
deal with the response analysis of the mechanics property with evidence variables. The
determined variables will be transformed to evidence variables. Considering the function
y = f (U), if a BPA structure of uncertain variables is obtained, the belief function (Bel) and
plausibility function (Pl) of the system can be represented by:

Bel(y ∈ Y I) = ∑
{uSk

|yI
Sk
= f (uI

Sk
)⊆Y I}

m
(

UI
sk

)
, (31)

Pl(y ∈ Y I) = ∑
{uSk

|yI
Sk
= f (uI

Sk
)∩Y I 6=∅}

m
(

UI
sk

)
. (32)

In the above equations, yI
Sk

is the calculation result of the function on the joint focal
element UI

Sk
. The extreme value of yI

Sk
can be calculated by the genetic optimization

algorithm or the Monte Carlo simulation method. Additionally, the extreme value of yI
Sk

can be expressed as:

yI
Sk

=
[
ySk , ySk

]
=

minY(U)
U⊆UI

Sk

, maxY(U)
U⊆UI

Sk

, (33)

where ySk and ySk are the extreme value of the yI
Sk

, respectively.
In engineering practice, the optimization design of structure or engineering systems

with probability theory is always handled by cumulative probability. Similar to the proba-
bility theory, an interval consists of cumulative belief function and cumulative plausibility
function, which can be defined as:

CBF(Y) = Bel(y ≤ Y), (34)

CPF(Y) = Pl(y ≥ Y). (35)

In the uncertainty analysis of evidence theory, calculating the mean value and variance
is similar to the process used in probability theory. According to Ref. [43], both of these can
be defined as follows:

µ(y) =
N

∑
Sk=1

yI
Sk

m
(

UI
Sk

)
, (36)

var(y) =
N

∑
Sk=1

(yI
Sk
− µ(y))

2
m
(

UI
Sk

)
. (37)

Therefore, the statistics of y, such as the mean, variance value, and CBF and CPF, can
be approximated using the SS-AOP method. These results will used for the uncertainty
analysis conducted by the evidence theory model.

3.4. Procedure of SS-AOP for Uncertainty Analysis with Evidence Theory

This paper proposes a new method called the SS-AOP expansion method, which is
introduced for the response analysis of a double-V NPR structure with evidence variables.
The procedure of SS-AOP for auxetic structural dynamic analysis with evidence theory is
shown in Figure 2.
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4. Numerical Examples

In this section, several mathematical test functions and an engineering application for
an auxetic structure with nonlinear large deformation are introduced to evaluate the effec-
tiveness of the SS-AOP method. The traditional AOP expansion method [50] is introduced
for comparison. In order to evaluate the computational accuracy of the different sampling
methods, the Latin-hypercube-sampling-based arbitrary polynomial (LHS-AOP) expansion
method and optimal-Latin-hypercube-sampling-based arbitrary polynomial (OLHS-AOP)
expansion method are developed and then employed for comparison with the proposed
SS-AOP method.

4.1. Mathematical Test Examples

The expressions of each mathematical function are given in Table 4 and feature non-
linear characteristics. According to Equation (25), the number of sampling points used to
construct the SS-AOP method is set as 8, 17, 39, 77, 139, 231, and 363, respectively. The
legend of these figures is expressed as ‘surrogate model-sampling method’. In order to
demonstrate the effectiveness for the multidimensional case, the number of dimensions for
each case is set to 4. To simplify the problem, these variables are independent. The range of
each variable xi(i = 1,2, . . . 4) is set as [−1, 1].

Table 4. Mathematical test functions.

Functions Expression Domain Dimension

Case 1 y =
4
∑

i=1
arctan(xi + i) −1 ≤ xi ≤ 1 4

Case 2 y =
4
∑

i=1
exp(x i + i) −1 ≤ xi ≤ 1 4

Case 3 y =
4
∑

i=1
sin(x i + i) −1 ≤ xi ≤ 1 4

Case 4 y =
4
∑

i=1
cos(x i + i) −1 ≤ xi ≤ 1 4
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A case where there are six focal elements is employed to demonstrate the effectiveness
of the proposed SS-AOP method. The BPAs of each evidence variable are set as the same.
Detailed information of uncertain variables is listed in Table 5.

Table 5. BPA of the evidence variable for the case.

Interval BPA (%)

[−1, −0.3] 0.1
[−0.3, −0.1] 5

[−0.1, 0] 44.9
[0, 0.1] 44.9

[0.1, 0.3] 5
[0.3, 1] 0.1

Different from probability theory, the calculation result of the mean value and variance
in evidence theory is given as an interval because the precise distribution of each focal
element cannot be obtained; the given information for uncertain variables is several inter-
vals and the probability of each interval. Therefore, the relative error of evidence theory
is defined as the maximum relative error at the lower and upper boundary of the focal
element, which are calculated by

µm = max

{∣∣∣∣∣µ− µre f

µre f

∣∣∣∣∣, µ− µ
re f

µ
re f

}
, σm = max

{∣∣∣∣∣σ− σre f

σre f

∣∣∣∣∣, σ− σre f

σre f

}
. (38)

µ and µ denote the value of the lower and upper boundary of the mean value, σ
and σ indicate the value of the lower and upper boundary of variance, and (•)re f is the
reference solution.

The traditional AOP, SS-AOP, LHS-AOP, and OLHS-AOP methods are employed in
this paper to obtain the results of the response analysis of the mathematical test functions.
The calculation results for the relative error of the mean value and variance are shown in
Figures 3–6.
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When compared to the traditional AOP method, the results from Figures 3–6 show that
the proposed SS-AOP method has a much higher accuracy than the traditional AOP method
when the number of sampling points are the same. Moreover, the LHS-AOP and OLHS-
AOP method can converge faster than the traditional AOP method. The main difference
between the traditional AOP expansion approach and other methods in Figure 3 is that the
expansion coefficient calculated by traditional AOP is the Gauss quadrature method, while
the sampling technique is used in other methods. It indicates that, for uncertainty analysis
by the evidence theory model, the convergence rate of the AOP expansion method with
multiple variables can be greatly improved by using the sampling technique.

Based on a comparison with the LHS-AOP and OLHS-AOP method, the results from
Figures 3–6 show that the SS-AOP method can also achieve much higher results than
LHS-AOP and OLHS-AOP. This is mainly because the sampling points of the LHS-AOP
and OLHS-AOP methods are obtained by the approximately random sampling method,
while the sampling points of the proposed SS-AOP method are selected by the sequence
sampling scheme, and candidate points for sampling are generated using the Gauss points
associated with the optimal Gauss weight function for each evidence variable. Therefore,
for the uncertainty analysis of evidence theory, when the number of sampling points is
the same, the accuracy of the SS-AOP method is much higher than the accuracy of the
LHS-AOP and OLHS-AOP methods.

4.2. Engineering Application

In this section, a compression process with geometric nonlinearity and the large
deformation of the popular double-V NPR structure is employed to verify the effectiveness
of the proposed evidence-theory-based SS-AOP method. The normalized stiffness of the
NPR structure is an important index used for analyzing the structural mechanics properties
in large deformation under geometric nonlinearity. Additionally, the normalized stiffness of
the double-V NPR structure is greatly affected by the error of the manufacturing technique
and assembly approach used. The effectiveness of the analytical solution and the FE
model of normalized stiffness of a double-V NPR microstructure is shown in Ref. [61]. The
schematic model of a 2D double-V NPR microstructure is shown in Figure 7.
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Figure 7. Schematic model of a 2D double-V NPR microstructure.

The ABAQUS software is used to simulate the large deformation and analyze the
mechanical properties when the NPR structure in the compression process is geometrically
nonlinear. The S-beam and L-beam are simulated as Euler–Bernoulli beams B23 because
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both of them are sufficiently slim. These beams are regarded as thin-walled structures and
demonstrate the deformation modes of the NPR structure. Due to the constant displace-
ment, lz = −5 mm will be set on the vertex A, and the large plastic deformation of double-V
NPR is geometrically nonlinear. The compression process of the single unit cell in the
z-direction is displayed in Figure 8. In this paper, due to structural symmetry, only half of
the cell will be considered. The bottom node C is constrained in the z-direction. The vertex
A is fixed in the x-direction and cannot rotate out of plane. The vertex B cannot rotate out
of plane. These boundary conditions are equivalent to the periodic boundary condition. To
illustrate the effectiveness of the mesh size, the convergence of the nonlinear analysis of
double-V NPR structure is shown in Figure 9. When the mesh size is too large, the finite
element simulation results will be unstable because the mesh is too large to describe the
geometric features. In this paper, the double-V NPR structure was simulated when the
mesh size converged.

Math. Comput. Appl. 2022, 27, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 8. The deformation process of half a unit cell. 

 

Figure 9. The convergence of the mesh size of a 2D double-V NPR microstructure. 

In engineering applications, double-V NPR structures are usually processed with 3D-

printing technology because of the structural complexity. In this paper, the material used 

for double-V NPR structures is ABS engineering plastics and the parameters of the basic 

material are: Young’s modulus 2.2sE GPa= , Poisson’s ratio 0.39s = , and mass den-

sity 
31.08 /s g cm = . The normalized Young’s modulus of double-V NPR structures 

can be calculated by the relations 
'

z zz L L = − . Considering that the unpredictability of 

production processing can cause errors in the material’s parameter and structural size, 

such as Young’s modulus sE , the thickness of the L-beam lT , the angles 1  and 2 , and 

the length l  are considered as the independent variables for evidence theory. The de-

tailed distributions of BPAs are listed in Table 6. 

  

Figure 8. The deformation process of half a unit cell.

Math. Comput. Appl. 2022, 27, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 8. The deformation process of half a unit cell. 

 

Figure 9. The convergence of the mesh size of a 2D double-V NPR microstructure. 

In engineering applications, double-V NPR structures are usually processed with 3D-

printing technology because of the structural complexity. In this paper, the material used 

for double-V NPR structures is ABS engineering plastics and the parameters of the basic 

material are: Young’s modulus 2.2sE GPa= , Poisson’s ratio 0.39s = , and mass den-

sity 
31.08 /s g cm = . The normalized Young’s modulus of double-V NPR structures 

can be calculated by the relations 
'

z zz L L = − . Considering that the unpredictability of 

production processing can cause errors in the material’s parameter and structural size, 

such as Young’s modulus sE , the thickness of the L-beam lT , the angles 1  and 2 , and 

the length l  are considered as the independent variables for evidence theory. The de-

tailed distributions of BPAs are listed in Table 6. 

  

Figure 9. The convergence of the mesh size of a 2D double-V NPR microstructure.



Math. Comput. Appl. 2022, 27, 49 17 of 21

In engineering applications, double-V NPR structures are usually processed with
3D-printing technology because of the structural complexity. In this paper, the material
used for double-V NPR structures is ABS engineering plastics and the parameters of the
basic material are: Young’s modulus Es = 2.2 GPa, Poisson’s ratio νs = 0.39, and mass
density ρs = 1.08 g/cm3. The normalized Young’s modulus of double-V NPR structures
can be calculated by the relations ∆z = Lz − L

′
z. Considering that the unpredictability of

production processing can cause errors in the material’s parameter and structural size, such
as Young’s modulus Es, the thickness of the L-beam Tl , the angles θ1 and θ2, and the length l
are considered as the independent variables for evidence theory. The detailed distributions
of BPAs are listed in Table 6.

Table 6. The BPAs of an NPR structure with 5 elements.

Tl
BPA
(%)

θ1
BPA
(%)

θ2
BPA
(%)

l
BPA
(%)

Es
BPA
(%)Interval

(mm)
Interval

(◦)
Interval

(◦)
Interval

(mm)
Interval
(MPa)

[0.99, 0.995] 7 [57, 59.1] 0.1 [28.5, 29.55] 0.1 [28.8, 29.64] 6 [2090, 2167] 12
[0.995, 0.998] 15 [59.1, 59.7] 6 [29.55, 29.85] 6 [29.64, 29.88] 42 [2167, 2189] 18
[0.998, 1.002] 51 [59.7, 60.03] 88.7 [29.85, 30.15] 88.7 [29.88, 30.12] 5 [2189, 2211] 38
[1.002, 1.005] 18 [60.03, 60.9] 5 [30.15, 30.45] 5 [30.12, 30.36] 42 [2211, 2233] 12
[1.005, 1.01] 9 [60.9, 63] 0.2 [30.45, 31.5] 0.2 [30.36, 31.2] 5 [2233, 2310] 20

The efficiency of the proposed SS-AOP expansion method is evaluated based on the
total execution time. The final execution times taken by the traditional AOP, SS-AOP,
LHS-AOP, and OLHS-AOP methods to calculate the normalized Young’s modulus with
large deformation are listed in Table 7.

Table 7. Execution time of different methods for the response analysis of double-V NPR structures.

Method Traditional AOP SS-AOP LHS-AOP OLHS-AOP

Execution time 337,821.7 s 464.1 s 463.5 s 464.3 s

From Table 7, the computational result shows that with regard to the execution time of
SS-AOP, LHS-AOPs and OLHS-AOP can achieve a much higher computational efficiency
than the traditional AOP method. Meanwhile, the execution time of the proposed SS-AOP
method is very close to that of the LHS-AOP and OLHS-AOP methods, as the sampling
points of the proposed SS-AOP, LHS-AOP, and OLHS-AOP method are the same.

The CBF and CPF of complex structural-response analyses can be used as effective
guidance for structure design and reliability-based optimization in the evidence theory
model. The CBF and CPF of the normalized Young’s modulus of the double-V NPR
structure model are calculated using the proposed SS-AOP method, the LHS-AOP
method, and the OLHS-AOP method at the same sampling points, where the number
of sampling points is 23. The reference solution is the traditional AOP with a retained
expansion order of 6 for each evidence variable. The results obtained for CBF and CPF
are plotted in Figure 10.

The results plotted in Figure 9 show that the CBF and CPF obtained through SS-AOP
almost coincide with the reference solutions. This indicates that the proposed SS-AOP
method has a good accuracy. For comparison, the calculation results of the LHS-AOP
method and OLHS-AOP method were different from those of the reference solutions. Thus,
the execution times for the SS-AOP, LHS-AOP, and OLHS-AOP are almost the same, as
displayed in Table 7. This indicates that, with a similar execution time, the accuracy of
the SS-AOP method is much higher than that of LHS-AOP method and the OLHS-AOP
method without scarifying the efficiency.
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[0.995,0.998] 15 [59.1,59.7] 6 [29.55,29.85] 6 [29.64,29.88] 42 [2167,2189] 18 

[0.998,1.002] 51 [59.7,60.03] 88.7 [29.85,30.15] 88.7 [29.88,30.12] 5 [2189,2211] 38 

[1.002,1.005] 18 [60.03,60.9] 5 [30.15,30.45] 5 [30.12,30.36] 42 [2211,2233] 12 

[1.005,1.01] 9 [60.9,63] 0.2 [30.45,31.5] 0.2 [30.36,31.2] 5 [2233,2310] 20 

The efficiency of the proposed SS-AOP expansion method is evaluated based on the 

total execution time. The final execution times taken by the traditional AOP, SS-AOP, 

LHS-AOP, and OLHS-AOP methods to calculate the normalized Young’s modulus with 

large deformation are listed in Table 7. 

Table 7. Execution time of different methods for the response analysis of double-V NPR struc-

tures. 

Method Traditional AOP SS-AOP LHS-AOP OLHS-AOP 

Execution time 337,821.7 s 464.1 s 463.5 s 464.3 s 

From Table 7, the computational result shows that with regard to the execution time 

of SS-AOP, LHS-AOPs and OLHS-AOP can achieve a much higher computational effi-

ciency than the traditional AOP method. Meanwhile, the execution time of the proposed 

SS-AOP method is very close to that of the LHS-AOP and OLHS-AOP methods, as the 

sampling points of the proposed SS-AOP, LHS-AOP, and OLHS-AOP method are the 

same. 

The CBF and CPF of complex structural-response analyses can be used as effective 

guidance for structure design and reliability-based optimization in the evidence theory 

model. The CBF and CPF of the normalized Young’s modulus of the double-V NPR struc-

ture model are calculated using the proposed SS-AOP method, the LHS-AOP method, and 

the OLHS-AOP method at the same sampling points, where the number of sampling 

points is 23. The reference solution is the traditional AOP with a retained expansion order 

of 6 for each evidence variable. The results obtained for CBF and CPF are plotted in Figure 

10. 

 

Figure 10. The CBF and CPF of the double-V NPR structure responses obtained with 5 focal elements
for different methods.

5. Conclusions

In engineering practice, epistemic uncertainties usually exist in complex auxetic struc-
tures. These uncertainties can cause great changes in the mechanical properties of structures.
In this paper, the uncertain variables are modelled using the evidence theory model. For
the response analysis of the auxetic structural mechanics properties with the evidence vari-
ables, a new SS-AOP method under evidence theory is proposed. In SS-AOP, a sequential-
sampling technique is introduced to calculate the expansion coefficients, and the sampling
points used for calculating the expansion coefficient can be reduced effectively. In order to
demonstrate the effectiveness of the proposed SS-AOP method, the LHS-AOP and OLHS-
AOP methods were also developed for comparison. In LHS-AOP and OLHS-AOP, the
expansion coefficient of AOP expansion is calculated using the Latin hypercube sampling
scheme and the optimal Latin hypercube sampling scheme, respectively.

Four mathematical test functions with nonlinear characteristics and an engineering
application of the mechanics properties response analysis for a double-V NPR structure
were introduced to demonstrate the effectiveness of the proposed SS-AOP method. The
proposed SS-AOP method was compared with the traditional AOP, the LHS-AOP method,
and the OLHS-AOP method. The main conclusions are as follows:

(1) The computational efficiency of the proposed SS-AOP method is much higher than
that of the traditional AOP method without sacrificing any accuracy. This is because
the number of the polynomial basis of SS-AOP is reduced by using the simplex
format, while the sequential-sampling technique is introduced to reduce number of
the sampling points which are used to calculate the expansion coefficients.

(2) In comparison to the LHS-AOP and OLHS-AOP methods, the proposed SS-AOP
method can achieve a higher accuracy. This is because, in the SS-AOP method, the
sequence sampling scheme can select sampling points uniformly from candidate
points. In particular, the candidate points used for sampling are generated using the
Gauss points associated with the optimal Gauss weight function for each evidence
variable. In comparison, the sampling points of the LHS-AOP method and the OLHS-
AOP method are fairly random.

As a conclusion, the proposed evidence-theory-based SS-AOP method provides a
more efficient tool for the epistemic uncertainty analysis of evidence theory. The computa-
tional efficiency of the proposed SS-AOP method is better than that of the conventional
evidence-theory-based AOP methods and the Latin-hypercube-sampling-based orthogonal
polynomial expansion methods. In an appropriate application, the proposed SS-AOP
method may be applied to other engineering scenarios with uncertain parameters, such as



Math. Comput. Appl. 2022, 27, 49 19 of 21

the dynamic analysis of crashworthy thin-walled structures and strong nonlinear problems.
Despite this, the proposed SS-AOP method can reduce the computational cost for epistemic
uncertainty analysis based on the evidence theory model. For the epistemic uncertainty
analysis of evidence theory, the extreme analysis of each focal element is an important step.
The traditional method of extreme analysis is carried out using the genetic algorithm to
calculate the maximum value. For multidimensional problems, with the increase in the
number of focal elements, the number of joint focal elements becomes very large, leading
to a huge computational burden. The question of how to effectively and accurately obtain
the maximum value of each joint focal element needs to be studied further.
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