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Abstract: Physical systems governed by advection-dominated partial differential equations (PDEs)
are found in applications ranging from engineering design to weather forecasting. They are known to
pose severe challenges to both projection-based and non-intrusive reduced order modeling, especially
when linear subspace approximations are used. In this work, we develop an advection-aware
(AA) autoencoder network that can address some of these limitations by learning efficient, physics-
informed, nonlinear embeddings of the high-fidelity system snapshots. A fully non-intrusive reduced
order model is developed by mapping the high-fidelity snapshots to a latent space defined by an
AA autoencoder, followed by learning the latent space dynamics using a long-short-term memory
(LSTM) network. This framework is also extended to parametric problems by explicitly incorporating
parameter information into both the high-fidelity snapshots and the encoded latent space. Numerical
results obtained with parametric linear and nonlinear advection problems indicate that the proposed
framework can reproduce the dominant flow features even for unseen parameter values.

Keywords: deep autoencoder; advection-dominated flows; physics informed machine learning;
LSTM; parametric model order reduction; non-intrusive reduced order modeling

1. Introduction

Modern scientific computing relies on efficient numerical simulation of complex phys-
ical systems, especially for applications that seek solutions at different time or parameter
instances. For these types of applications, the relevant physical system is typically described
by a set of parameterized nonlinear partial differential equations (PDEs). Numerical dis-
cretizations of such systems using a high-fidelity (finite element, finite volume, or finite
difference type) computational solver can be prohibitively expensive as they generate high-
dimensional representations of the solution in order to accurately resolve multiple time and
space scales and underlying nonlinearities [1]. However, there is compelling scientific evi-
dence to suggest that the underlying dynamics often exhibit low-dimensional structure [2].
Reduced order models (ROMs) can replace such expensive high-fidelity solvers by exploit-
ing the intrinsic, low-rank structure of the simulation data in order to create more tractable
models for the spatiotemporal evolution dynamics of the PDE system [3,4].

Among the many different classes of ROM techniques that have been developed
over the years, projection-based ROMs occupy a prominent place across a wide range
of applications [5]. Formally, this class of methods is based on the identification of a
reduced set of basis functions (or modes) such that their linear superposition spans an
optimal low-rank approximation of the solution manifold. The Proper Orthogonal De-
composition (POD) is one of the widely popular methods of this class that leverages the
singular value decomposition (SVD) to determine an empirical basis of dominant, orthonor-
mal modes that can help define the best possible linear subspace in which to project the
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PDE dynamics [6,7]. If the governing equations are known, Galerkin projection [8,9], or
the Petrov–Galerkin projection [10,11], can be adopted to generate an interpretable ROM
defined by the high-energy or dominant modes. For applications where the governing equa-
tions are not accessible, purely data-driven methods for non-intrusive ROM (NIROM) [12]
have gained in popularity. In these methods, instead of a Galerkin-type projection, the
expansion coefficients for the reduced solution are obtained via interpolation on the re-
duced basis space spanned by the set of dominant modes. However, since the reduced
dynamics generally belong to nonlinear, matrix manifolds, a variety of interpolation and
regression methods have been proposed, which are capable of enforcing the constraints
characterizing those manifolds. Some notable examples in this class include dynamic mode
decomposition (DMD) [13,14], radial basis function interpolation [15,16], and Gaussian
process regression [17,18], to name a few. In addition, the emergence of modern machine
learning (ML) methods has provided a transformative approach to effectively approximate
and accelerate existing numerical models by leveraging the capabilities to incorporate
multi-fidelity datastreams from diverse sources, seamlessly explore massive design spaces,
and identify complex, multivariate correlations. A variety of data-driven, ML-based ap-
proximation frameworks have been proposed to model the propagation of system dynamics
in the latent space. Some of the highly successful examples involve the use of deep neural
networks (DNNs) [19], long-short-term memory (LSTM) networks [20,21], neural ordinary
differential equations (NODE) [22,23], and temporal convolutional networks (TCNs) [24].

One fundamental assumption of linear reduced basis methods like POD is that any
element in the solution manifold,M of the nonlinear PDE system can be accurately approx-
imated using a linear combination of a small number of basis functions. Traditionally this
concept is quantified by the Kolmogorov n-width,Dn, which measures the error introduced
by approximating any element f of M with an element g of a linear space En. A com-
mon heuristic approach to get a rough estimate of Dn for a particular discretized solution
manifold is to examine the rate of decay of the singular values obtained by a SVD of the
system snapshots. A fast rate of decay signifies a small Dn, which indicates the existence of
a low-dimensional space in which the high-fidelity nonlinear system can be approximated
well. Many PDE systems of importance, however, exhibit transport-dominated behavior
(e.g., advection-dominated flows, wave and shock propagation phenomena), which leads
to a large Kolmogorov n-width. For instance, a stationary soliton wave solution can be
perfectly captured by one spatial mode, as reflected in a rapid decay of the correspond-
ing POD singular values, whereas a wave translating in time cannot be represented by a
low-dimensional representation with POD/SVD. This is because the steep gradients and
moving spatial discontinuities inherent to these problems often trigger temporal disconti-
nuities. An accurate linear approximation of such temporal discontinuities requires a large
number of basis functions, hindering the efficiency of a ROM [25,26], and often leads to an
oscillatory approximation [27,28]. These inadequacies have inspired a growing number
of works in recent years, which focus on constructing an efficient alternative—nonlinear
ROMs for transport-dominated systems. A brief review will be provided in the following
section. The focus of this work will be the study of ML-based, non-intrusive reduced order
modeling strategies for transport-dominated systems.

2. Related Work

As the traditional approach for constructing a ROM for transport-dominated problems
has proven to be ineffective due to the limitations of a linear subspace approximation, there
has been significant interest in alternative modifications for improving the accuracy of ROM
approximations in these applications. These can be roughly classified into two distinct
approaches: transformations of the linear subspace to facilitate better mode extraction and
improved stability of projection-based ROMs [28–34], and the construction of low-rank rep-
resentations in terms of nonlinear manifolds [35–37]. Most of the previous work in the first
class of methods has been focused on either (a) sparse sampling of nonlinear terms to enable
efficient approximation in a reduced subspace like gappy POD [38], GNAT [27], DEIM [39],
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or (b) pre-processing the linear subspace to embed the dominant advective features of the
solution [28–31,40]. A collection of methods in this class has also been based around the
concept of adaptivity. For instance, offline adaptive methods either extend [41] or create
a weighted [42] snapshot database during the construction of the reduced model. Online
adaptive methods, on the other hand, either rely on precomputed quantities to update the
reduced basis online using interpolation, localization, and dictionary approaches [43–45],
or allow for the incorporation of new data online [46,47]. Almost all of the above techniques
from the first class of methods require some kind of problem-specific prior knowledge of
the physical or numerical properties of the underlying nonlinear system, thus imposing
some limitations on their applicability to experimental data or systems with no access to
governing equations and closed-form solutions.

An alternative perspective on the limitations of linear subspace approximation in ROM
design is based upon the observation that many PDE systems of importance, especially
in fluids, contain symmetries such as rotations, translations, and scaling, which play a
foundational role in the dynamics. Traditional ROM approaches such as the SVD-based
methods are unable to handle these symmetries, and are only truly effective for dynamical
systems where time and space interactions can be essentially decoupled through separa-
tion of variables [7]. To overcome these limitations, the second class of methods based
on nonlinear manifold learning have recently gained a lot of research interest. Some of
the earliest examples of methods in this class include Iso-map [48], Locally linear embed-
ding (LLE) [49], Laplacian eigenmaps [50], and t-SNE [51]. However, these methods fail
to provide a mapping from the low-dimensional nonlinear representation to the high-
dimensional input, which is a crucial tool for dimension reduction applications. Many
other novel approaches have been proposed to overcome this gap, such as self-organizing
maps [52], kernel PCA [53], diffeormorphic dimensionality reduction [54], and autoen-
coders [55] (see [36] for a survey). In recent years, due to the tremendous progress in
the development of high-performance software tools for the construction of neural net-
works based models, different types of autoencoder models [56,57] have emerged, as
some of the most popular and powerful techniques for nonlinear manifold-based dimen-
sion reduction of PDEs. These have been successfully applied to different types of ROM
applications such as deep fully-connected autoencoders [58,59], deep convolutional autoen-
coders (CAEs) [36,60], time-lagged autoencoders [61], shallow masked autoencoders [37],
variational autoencoders [62], and deep delay autoencoders [63].

In this work, we propose an advection-aware (AA) autoencoder design, in which a
high-fidelity system snapshot is mapped through a shared latent space to an approximation
of itself and simultaneously to another arbitrary snapshot. For advection-dominated
problems, this arbitrary snapshot can be chosen in a physics-guided manner to primarily
represent the advective features, thus allowing the latent space to more efficiently identify
reduced-representations of high-fidelity solution fields. We then employ LSTM neural
networks to non-intrusively model the temporal evolution of these compressed latent
representations. Moreover, our approach enables exploration of parametric search spaces
by training on a combined parametric dataset of offline simulations. In contrast, the studies
outlined in Refs. [36,60] use a convolutional autoencoder architecture to nonlinearly embed
high-dimensional states, and this may pose problems when the high-fidelity simulation
data is available on unstructured computational meshes. In addition, Ref. [36] adopts
an intrusive approach by solving the governing equations on the nonlinear manifold
defined by the CAE model, whereas Ref. [60] employs a similar idea of modeling latent
dynamics using recurrent neural networks like an LSTM. Another interesting approach is
proposed by Ref. [64], where the authors introduce the idea of imposing Lyapunov stability-
preserving priors to the autoencoder-based model in order to improve the generalization
performance for fluid flow prediction. While this approach is similar to ours in being
motivated by the idea of physics-informed learning, the ultimate objective of the proposed
design is different. Our approach also differs from the framework proposed in [65] as the
system parameters such as shape of the profile, flow speed, and viscosity are explicitly
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embedded in the input feature space and the latent space, thus allowing independent
training of the AA autoencoder and the LSTM networks. In Ref. [66], a registration-based
approach is proposed, which trains a diffeomorphic mapping between the physical space
and a new parameter-varying, spatio-temporal grid on which the solution of the PDE can be
expressed in the form of a low-rank linear decomposition. This low-rank time/parameter-
varying grid or manifold is utilized as an autoencoder type layer for reducing the dimension
of high-fidelity snapshots. This is an elegant approach, but involves solving optimization
problems with nonlinear constraints and performing repeated 2D interpolation tasks, both
of which may potentially lead to efficiency issues and introduce approximation errors for
large-scale problems.

The rest of the article is organized as follows. In Section 3, we provide a high-level
overview of undercomplete autoencoders, followed by details on the proposed AA au-
toencoder network design and training strategies. We also include a brief review of LSTM
networks, which have been adopted in this work to model the system dynamics in the
nonlinear latent space. In Section 4, we present numerical results obtained with the pro-
posed AA autoencoder model on two different types of parametric problems characterized
by advection-dominated flow features. Finally, in Section 5, we present some concluding
remarks and discuss plans for future work.

3. Methodology
3.1. Autoencoders

An autoencoder is a type of neural network that is designed to learn an approximation
of the identity mapping, χ : v 7→ ṽ such that ṽ ≈ v and χ : RN 7→ RN . This is accomplished
using a two-part architecture. Figure 1 shows an example of a fully connected autoencoder
network with two distinct parts. The first part is called an encoder, χe, which maps a high-
dimensional input vector v to a low-dimensional latent vector z as given by z = χe(v; θe)
where z ∈ Rm (m� N).

Latent 
Space

Encoder Decoder

𝑣

𝑧

𝜒! 𝜒"True
Snapshot

#𝑣

Reconstructed 
Snapshot

Figure 1. Fully connected autoencoder architecture.

The second part is called a decoder, χd, which maps the latent vector z to an approx-
imation ṽ of the high-dimensional input vector v and is defined as ṽ = χd(z; θd). The
combination of these two parts yields an autoencoder of the form

χ : v 7→ χd ◦ χe(v). (1)

This autoencoder network is trained by computing the optimal values of the parame-
ters (θ∗e , θ∗d) that minimize the reconstruction error over all the training data

θ∗e , θ∗d = argmin
θe ,θd

L(v, ṽ), (2)
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where L(v, ṽ) is a chosen measure of discrepancy between v and its approximation ṽ.
The restriction dim(z) = m � N = dim(v) forces the autoencoder model to learn the
salient features of the input data via compression into a low-dimensional space and then
reconstructing the input, instead of directly learning the identity function. Essentially, au-
toencoders can be thought of as a powerful generalization of the POD/SVD approach from
learning a linear subspace to identifying an improved coordinate system on a nonlinear
manifold. That is, with the choice of a linear, single-layer encoder of the form z = HEv, and
a linear, single-layer decoder of the form ṽ = HDz, where HE ∈ Rm×N , HD ∈ RN×m, and
a squared reconstruction error as the loss function L(ṽ, v) = ‖v− ṽ‖2

2, the autoencoder
model has been shown to learn the same subspace as that spanned by the first m POD
modes if H = HE = HD. However, additional constraints are necessary to ensure that
the columns of H form an orthonormal basis and follow an energy-based hierarchical
ordering [67].

3.2. Advection-Aware Autoencoder Design

In this work, inspired by the registration-based nonlinear manifold learning idea [66]
and the physics-informed autoencoder model design [64], we develop a new advection-
aware autoencoder model that incorporates physical knowledge of the advection-dominated
flow features into the autoencoder neural network via both an inductive bias as well as
soft constraints. As shown in Figure 2, this AA autoencoder architecture is composed
of three sub-networks. The first part, as usual, is called an encoder, χe, which maps a
high-dimensional input snapshot v to a low-dimensional latent vector z, and is defined by
z = χe(v; θe) where z ∈ Rm (m� N).

Two independent decoder networks are also defined, which map the latent vector
to (i) a transformed (or “shifted”) version of the high-dimensional input snapshot, and
(ii) back to the true high-dimensional input snapshot. The first of these two decoders is
called a shift decoder, φs, that maps the latent vector z to an approximation ṽs of a suitably
defined “shifted” snapshot vs that encapsulates the dominant advective features of the flow
problem, ṽs = φs(z; θs). This can be achieved by following a registration-type approach,
where a high-fidelity snapshot at a randomly chosen time point in the simulation is selected
to be the candidate output target for the shift decoder. The arbitrariness of the choice
could be partially resolved if a known physical characteristic of the flow like dissipation
or multiscale oscillations indicates that a particular time point such as the initial solution
or a time point at the beginning of a period is a more preferable candidate for the output
target of φs. This approach is flexible, by design, as it does not require any additional
knowledge of the dominant advection patterns of the flow, such as speed of propagation,
in order to train the shift decoder, and has been adopted for the numerical experiments
in this study. Alternatively, if some partial knowledge of the dominant advective flow
features are available, then a transported snapshot could be defined, following the ideas
in [29,30]. In this approach, a set of time-varying coordinates are defined by transporting
the high-dimensional computational grid using the dominant advection properties such
as speed and direction of propagation. Then, the true simulation snapshots are mapped
onto the time-varying grid using a suitable interpolation technique to produce the time-
varying output target for the shift decoder. The primary advantage of this approach is
that it preserves some of the structural properties of any secondary features of the flow
problem such as frictional dissipation or the wake patterns trailing a moving vessel. In this
way, this approach allows an improved isolation of the dominant advective features of the
flow. However, the additional requirements of physical knowledge about the flow, and the
potential approximation errors introduced by the interpolation technique are some of the
primary issues that need to resolved.
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Encoder Decoders
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Figure 2. Advection-aware autoencoder architecture. An encoder network χe extracts the dominant
features of v ∈ RN into a compressed latent space z ∈ Rk. One decoder network φs maps the latent
vector to the shifted snapshot, vs ∈ RN . The second decoder network χd maps the latent vector back
to an approximation of itself, ṽ ∈ RN .

The third and final sub-network is called a true decoder, χd, which maps the latent
vector z to an approximation ṽ of the high-dimensional input snapshot v, and is defined as
a traditional decoder network as ṽ = χd(z; θd). The combination of the encoder network
χe and the true decoder network χd yields an autoencoder network given by (1).

Such a network enables us to express high-dimensional snapshots in terms of low-
dimensional nonlinear manifolds, and can be employed in traditional non-intrusive reduced
order modeling frameworks. On the other hand, the combination of the encoder network χe
and the shift decoder network φs creates a nonlinear mapping between the true snapshots
v and the “shifted” snapshots vs in the high-dimensional physical space, such that this
transformation map learns about the dominant advective features of the flow.

χ̂ : v 7→ φs ◦ χe(v). (3)

The primary contribution of this AA autoencoder design is that simultaneous training
of these two partially-coupled autoencoder and transformation maps, χ and χ̂, respectively,
endows the intermediate nonlinear, latent space manifold with the information about
the dominant advection characteristics of the flow, as well. The simultaneous training
can be performed by defining two separate loss functions. The shift loss, L1, is defined
as a measure of discrepancy between the prediction of the shift decoder and the high-
dimensional “shifted” snapshot, L1 = ‖vs −φs ◦ χe(v)‖V , where ‖‖V denotes a chosen
error norm. The second loss function is called the reconstruction loss, L2, and is defined
as the error between the prediction of the true decoder and the high-dimensional true
snapshot, L2 = ‖v− χd ◦ χe(v)‖V , in the same error norm ‖‖V . The AA autoencoder is
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trained by computing the optimal values of the parameters (θ∗e , θ∗d , θ∗s ) that simultaneously
minimize a weighted combination of these two loss components over all the training data

θ∗e , θ∗d , θ∗s = argmin
θe ,θd ,θs

{
w1L1(v, ṽs) + w2L2(v, ṽ)

}
, (4)

where w1, w2 are the weights of the linear combination that could either be fixed during
training or be a part of the trainable hyperparameters. In this work, AA autoencoder
networks are trained to produce an advection-informed latent space representation of the
high-fidelity numerical solution of a parametric linear advection problem and a parametric
viscous advecting shock problem. LSTM networks are trained to model the temporal
dynamics of the latent space coefficients. The AA autoencoder and the LSTM dynamics
model are combined to construct a fully non-intrusive, physics-aware reduced order model
for the advection-dominated test problems.

3.3. Long-Short-Term Memory (LSTM) Network

An LSTM network is a special type of recurrent neural network (RNN) that is well-
suited for performing classification and regression tasks based on time series data. The
main difference between the traditional RNN and the LSTM architecture is the capability of
an LSTM memory cell to retain information over time, and an internal gating mechanism
that regulates the flow of information in and out of the memory cell [68]. A very concise
overview of LSTM networks as applied in the context of model reduction can be found
in Ref. [60].

The LSTM cell consists of three parts, also known as gates, that have specific functions.
The first part, called the forget gate, chooses whether the information coming from the
previous step in the sequence is to be remembered or can be forgotten. The second part,
called the input gate, tries to learn new information from the current input to this cell.
The third and final part, called the output gate, passes the updated information from the
current step to the next step in the sequence. The basic LSTM equations for an arbitrary
input vector u are

input gate: ζi = αS ◦ Fi(u),

forget gate: ζ f = αS ◦ F f (u),

cell state: ct = ζ f � ct−1 + ζi � (αT ◦ Fa(u)),

output gate: ζo = αS ◦ Fo(u),

output: ht = ζo ◦ αT(ct).

(5)

Here, F refers to a linear transformation defined by a matrix multiplication and bias
addition, that is, F (x) = Wx + b, where W ∈ Rn×m is a matrix of layer weights, b ∈ Rn is
a vector of bias values, and x ∈ Rm is a vector of layer activations. Also, αS and αT denote
sigmoid and hyperbolic tangent activation functions, which are usually the default choices
in an LSTM network, and x� y denotes a Hadamard product of two vectors x and y. In the
context of reduced order modeling, the vector u represents a linear or nonlinearly encoded
snapshot vector, with which the LSTM network is trained to advance with time. The core
concept of an LSTM network is the cell state ct, which behaves as the “memory” of the
network. It can either allow greater preservation of past information, reducing the issues of
short-term memory, or it can suppress the influence of the past depending on the actions of
the various gates during the training process.

LSTM networks have proven to be an effective tool in the development of reduced
order models for physical systems and have shown that they can outperform alternate
classical methods such as DMD and POD-Galerkin, as well as other flavors of RNNs
that often suffer from issues with vanishing gradients and the transmission of long-term
information [20,69–71]. Different ML methods for time series modeling, such as the neural
ordinary differential equations (NODE) [23,59], spatial transformer networks [72], echo
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state networks [73], and residual networks (ResNets) [74] have also been shown to be
very accurate in various ROM applications for dynamical systems. Unfortunately, many
of these newer approaches are not readily available as packages or modules inside well-
known machine learning libraries such as TensorFlow and PyTorch. However, LSTM
implementations are included as part of the core, highly-efficient, GPU-accelerated modules
of all these libraries. Hence, owing to the ease of implementation and the well-known
success stories of LSTM-based prediction models for dynamical systems, we have adopted
it as our method of choice for modeling of latent space dynamics.

We train an LSTM network to independently learn the temporal evolution of the
latent space coefficients generated by the encoder of a pre-trained AA autoencoder model,
following a similar approach as in [60,69]. The decoupling of the AA autoencoder training
for a nonlinear embedding and the LSTM training for latent space dynamics allows for
greater flexibility in our non-intrusive ROM development. If alternate time series learning
methods are available that better suit the needs of the problem in a future time, the
nonlinear manifold defined by the pre-trained AA autoencoder will not need to be retrained.
Moreover, an end-to-end, simultaneous training of an AA autoencoder and a time series
learning method like LSTM requires the development of a carefully weighted loss function
that appropriately penalizes both the reconstruction and the forecast accuracy. This can
often lead to significant loss in both the training efficiency as well as in the overall robustness
of the training algorithm.

4. Results

In this section, we demonstrate the capability of the advection-aware autoencoder
architecture to generate a compressed representation for high-fidelity snapshots of two
different advection-dominated problems. Furthermore, we present numerical results to il-
lustrate the potential of training reduced order models for the system dynamics in the latent
space generated by the pre-trained AA autoencoder models. In this study, LSTM architec-
tures are chosen to build these dynamics models for the purposes of illustration. However,
the methodology could be easily adapted to use any other approximation framework that
might be more appropriate for a particular problem.

4.1. Linear Advection Problem

Consider the advection of a circular Gaussian pulse traveling in the positive y−direction
through a rectangular domain, Ω = [−100, 100]× [0, 500] at a constant speed, c. The analyt-
ical solution is given by

u(x, y) = exp
{
−
(
(x− x0)

2

2σ2
x

+
(y− y0 − ct)2

2σ2
y

)}
, (6)

where (x0, y0) is the initial location of the center of the pulse, σx and σy define the support
of the pulse in the x and y directions, respectively. The domain is uniformly discretized
into 201 grid points in the x-direction and 501 grid points in the y-direction using ∆x = 1
and ∆y = 1, respectively, and generating 100,701 computational nodes. A uniform time
discretization of ∆t = 1 is used to generate 460 high-fidelity time snapshots for a cir-
cular Gaussian pulse parametrized by different values of the size of the pulse profile
σx = σy ≡ σ = {5, 8, 10, 16, 20}, and traveling at a constant speed c = 1 from an initial
location (x0, y0) = (0, 40). Figure 3 depicts the relative information content (RIC) for a
different number of POD modes obtained by taking a SVD of the high-fidelity snapshots.
As the singular values computed by SVD are arranged in the descending order of relative
importance, the RIC values of the leading r POD modes can be defined as

RIC(%) =
∑r

k=1 λ2
k

∑M
k=1 λ2

k

× 100, (7)
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where λk is the kth singular value and M denotes the total number of time snapshots. For
the set of snapshots generated with a given value of σ, the dotted vertical line indicates the
number of leading POD modes required to attain a RIC value of 99.9%. For instance, σ = 20
signifies a flatter pulse profile and 17 POD modes contain 99.9% RIC for the corresponding
system of snapshots, whereas 63 POD modes are needed to capture 99.9% RIC for a sharper
pulse profile given by σ = 5. This illustrates the phenomena of relatively large Kolmogorov
n-widths for even simple, linear advection problems, which severely limits the efficiency of
low-dimensional approximation using SVD-generated linear subspaces.

Figure 3. The relative information content for different number of retained POD modes. The singular
values are computed by taking an SVD of the high-fidelity snapshots for an advecting circular
Gaussian pulse (see Equation (6)) of varying width (σ) traveling at a constant speed c = 1.

In the first numerical example, the training dataset is constructed using 460 high-
fidelity snapshots for each value of σtrain = {5, 10, 16}. The remaining snapshots corre-
sponding to σtest = {8, 20} are used to create a test dataset. This creates a geometrically
parameterized training and testing dataset.

The AA autoencoder network is trained on the parametric training set for 8000 epochs
using the Adam optimizer with an initial learning rate of 1× 10−4 that decays step-wise
by 15% every 456 epochs. The training snapshots are all augmented by the value of the
corresponding parameter. The training snapshots are divided into two sets—starting from
the initial time point every alternate snapshot is used for training the AA autoencoder
model, while the rest are reserved for validation during training. In this study, the losses
computed on the validation points are solely used to monitor the extent of overfitting
during training, and later to evaluate the accuracy of prediction on unseen time steps
associated with a training parameter value. After exploring a large space of network design
parameters, as described in Table 1, the results presented here are obtained with two of the
most optimal AA autoencoder designs. In the first model (AA1), only the input feature
is augmented by the parameter value; while in the second model (AA2), both the input
feature and the output labels are augmented by the parameter value. The encoder network
χe of both the models is constructed with three hidden layers composed of 629, 251 and 62
units that connect an input feature (i.e., augmented snapshot) of dimension N = 100, 702 to
an encoded latent vector representation of dimension k. For both the models, the decoder
networks χd and φs are set up to be mirror images of the corresponding encoder network.
The AA1 model uses the selu activation function for the hidden layers followed by a linear
activation on the output layer, while the AA2 model uses the swish activation function for
the hidden layers. The individual loss components L1 and L2 are defined as a weighted
combination of the normalized mean square error (NMSE) loss and the pseudo-Huber loss,
as defined below,
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NMSE Losses: LNMSE
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,

where ak,1 = vk,s −φs ◦ χe(vk) and ak,2 = vk − χd ◦ χe(vk).

(8)

Table 1. Hyperparameters explored to design the AA autoencoders for the linear advection example.

Hyperparameters AA1 AA2

Input/Output Augmented Input,
non-augmented output Augmented input and output

Hidden Units (50–1500) 629, 251, 62 629, 251, 62
Batch Size (8–128) 32 24

Latent Dimension (5–50) 15 15
Activation (ReLU, selu, linear,

tanh, swish) selu swish

The pseudo-Huber loss is a smooth approximation of the Huber loss function that
behaves as a L2 squared loss by being strongly convex near the desired minimum and as
a L1 absolute loss with reduced steepness near the extreme values. The scale at which
this transition happens and the steepness near the extreme values is controlled by the
δ parameter.

A piece-wise segmented training approach is adopted for both the models in which
only the L2 component of the total loss is minimized for the first 2500 epochs, followed by a
weighted combination of both the loss components w1L1 + w2L2 for the rest of the training.
The AA1 model is trained with mini batches of size 32 and the AA2 model is trained with
mini batches of size 24, while both models generate a latent space of dimension 15.

The training trajectories for the AA1 and AA2 models are shown in Figure 4. Even
though both models are trained for the same number of epochs, the lower training and
validation loss values for the AA2 model (see the left panel of Figure 4) indicates a higher
level of expressivity and overfitting due to the augmented dimension of the decoder outputs
and the resultant higher number of network hyperparameters (weights and biases). As
a result, the prediction errors for the test parameter values are found to be higher using
the AA2 model than those obtained with the AA1 model. Less overfitting is usually an
indication of better generalization performance, and hence the AA1 model is used to
generate the field predictions for both the seen and unseen data in the rest of this example.
On the other hand, when extrapolatory predictions or predictions for unseen data are
not required, a slightly overfit model such as AA2 can be considered preferable. This
is supported by the evolution of the losses corresponding to each decoder: L1 for the
prediction of shifted snapshots and L2 for the reconstruction of the true solution (see the
right panel of Figure 4). As the L1 loss is associated with the network’s ability to map
the true snapshot to a fixed snapshot, it is relatively easier to minimize and both models
perform equally well in this task. However, due to the higher expressivity of the AA2
model, it is able to minimize the L2 loss much more than the AA1 model, thus leading to
higher accuracy in the approximation of the true snapshots using training data.
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Figure 4. Training characteristics of two AA autoencoder networks trained using a parametric dataset
of snapshots for a 1D advecting Gaussian pulse parameterized with varying support of the pulse
profile, σ = {5, 10, 16}. AA1 denotes the model trained with the input features augmented by
parameter values, while AA2 denotes the model where both input features and output labels are
augmented. The left panel shows the decay of training and validation losses during training. The
right panel shows the evolution of the loss components during training.

Figure 5 presents the predictions of the high-dimensional shifted and true snapshots
obtained by the corresponding decoders φs and χd, respectively, of model AA1 as well
as a comparison of the prediction performance for different training parameter values in
terms of the spatial relative errors of the full-order predictions. The decoder predictions
are evaluated for the two parameter values at the boundaries of the training range σ = 5
and σ = 16 as they present distinct challenges. Autoencoders are known to struggle with
the extraction of discontinuities in the input feature space. The snapshot data for σ = 5
features a very steep gradient in the shape of the pulse profile which poses some of the
same challenges as a discontinuous profile. Moreover, a single encoder network χe is
being tasked, by design, to combine with two independent decoder networks χd and φs
to map into both a stationary discontinuity as well as a moving discontinuity. Thus the
spatial distribution of reconstruction error for the σ = 5 profile is more localized near the
moving pulse, whereas that of the σ = 16 profile is more uniformly spread out across
the spatial domain (see Figure 5b,d. Despite all of these minor differences in prediction
performance, there is a high degree of agreement between the full order decoder predictions
and the high-dimensional snapshots, with less than 4% relative error for all of the training
parameter values (see Figure 5e).

Finally, prediction performance results of the AA1 model for high-fidelity snapshots
generated with an unseen parameter value σ = 8 ∈ σtest are presented in Figure 6. Loss
in accuracy with extrapolatory predictions for a geometrically parameterized dataset is
one of the well-known challenges faced by both intrusive and non-intrusive reduced order
modeling approaches, which requires particular attention to resolve representation issues
posed by the topology of the parametric solution manifold [75]. Thus, as expected, there
is a noticeable drop in accuracy for the prediction of full order solutions, with the errors
being especially localized near the moving pulse profile (see Figure 6b). This effect is also
reflected in the relative error plots for the two unseen parameter values in σtest. However,
the quality of predictions are still quite encouraging considering that these are purely
extrapolatory predictions on an unseen parameter instance, without any special treatment
of the solution manifold or modification of the training process.
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Figure 5. Prediction performance of φs and χd decoders on training data. (a,b) predictions of shifted
and true snapshots, respectively, for pulse size σ = 5 and (c,d) predictions of shifted and true
snapshots, respectively, for pulse size σ = 16 at an intermediate time t = 6.92 min using the AA1
model. (e) Relative errors for the decoder predictions using different values of the parameter from
the training set.
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Figure 6. Prediction performance of φs and χd decoders on unseen data. (a,b) predictions of shifted
and true snapshots, respectively, for unseen pulse size σ = 8 at time t = 6.92 min using the AA1
model. (c) Relative errors for the decoder predictions using two different values of the parameter
from the unseen test set.

4.2. Advecting Viscous Shock Problem

The second numerical example is described by the one-dimensional viscous Burgers’
equation (VBE) with Dirichlet boundary conditions [60] as given by

u̇ + u
∂u
∂x

= ν
∂2u
∂x2 ,

u(x, 0) = u0, x ∈ [0, L], u(0, t) = u(L, t) = 0,
(9)

where we set L = 1 and the maximum time tmax = 2. The solution of the above equation
is capable of generating shock discontinuities even with smooth initial conditions if the
viscosity ν is sufficiently small, due to the advection-dominated behavior. We consider the
initial condition

u(x, 0) ≡ u0 =
x

1 +
√

1
t0

exp
(

Re x2

4

) . (10)

An analytical solution of this problem is given by

u(x, t) =
x

t+1

1 +
√

t+1
t0

exp
(

Re x2

4t+4

) , (11)

where t0 = exp (Re/8) and Re = 1/ν. The high-fidelity snapshot data is generated by
directly evaluating the analytical solution over a uniformly discretized spatial domain
containing 200 grid points and for 500 uniform time steps. Figure 7 shows a visualization
of the time evolution of the initial condition for three different values of Re = 50, 300, 600.
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Figure 7. Time evolution of the high-fidelity snapshots for the advecting viscous shock problem (see
Equation (9)), parameterized with variable Reynolds number, Re.

A parametric dataset is generated by collecting 500 high-fidelity snapshots for different
values of the Reynolds number, Re = {50, 150, 300, 400, 500, 600}. The training dataset is
constructed using snapshots for Retrain = {50, 150, 300, 500}. The remaining snapshots for
Retest = {400, 600} constitute the test dataset. Figure 8 depicts the variation in RIC with
the number of retained POD modes for snapshots corresponding to different Re values.
The vertical dashed lines represent the number of POD modes required to attain 99.9%
RIC for snapshots of a given Re value. The gradual rise in the number of POD modes
required to attain 99.9% RIC with increasing values of Re clearly indicates how a growth of
advection-dominated behavior raises the effective Kolmogorov n-width of the system.

Figure 8. The relative information content for a different number of retained POD modes. The
singular values are computed by taking an SVD of the high-fidelity snapshots for the advecting
viscous shock problem (see Equation (9)), parameterized with variable Reynolds number, Re.

4.2.1. AA Autoencoder Models for Varying Advection Strength

In this section, we present the numerical results on the training of AA autoencoder
networks for the viscous advecting shock problem parameterized with variable Re values,
as discussed before. Following the idea of a registration-type approach, as discussed in
Section 3.2, a high-fidelity simulation snapshot at roughly the midpoint of the simulation
time period is chosen as the shifted snapshot for training the shift decoder. This choice is,
however, arbitrary and any other high-fidelity snapshot could have been selected without
affecting the effectiveness of the approach.

The results reported here are obtained with two different AA autoencoder models—
AA3 and AA4. The primary objective of this comparison is to evaluate the ability of AA
autoencoders not just to predict snapshots for unseen parameter values, but also to forecast
solutions at time points not included in the time history of the training snapshots. With
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that objective in mind, the AA3 model is trained using all of the time snapshots available
for each training parameter value, while the AA4 model is trained using the first 90% of the
time snapshots, i.e., until t = 1.80, for each training parameter value. Similar to the previous
numerical example, the available high-fidelity snapshots for each training parameter value
are divided into two sets—starting from the initial time point every alternate snapshot is
used for training the AA autoencoder model, while the rest are reserved for validation
purposes. As in the previous example, the losses computed on the validation data points
during training are solely used to monitor the extent of overfitting, and later to evaluate the
accuracy of prediction on unseen data points corresponding to a training parameter value.

After a careful exploration of the design space, a set of optimal values for the hy-
perparameters were obtained to construct models AA3 and AA4 (see Table 2). Both the
models are trained for 5000 epochs using minibatches of size 24 and employing the Adam
optimizer. The AA3 model training is initialized with a learning rate of 5× 10−4 that decays
stepwise by 10% every 330 epochs, whereas the initial learning rate for the AA4 model
is chosen to be 3× 10−4 and it is allowed to decay by 10% every 309 epochs. Both the
input features and the output labels are constructed by augmenting the training snapshots
with the corresponding scaled parameter values. The encoder network χe for model AA3
is constructed with a single hidden layer of size 50 that connects an input feature (i.e.,
augmented snapshot) of dimension N = 201 to an encoded latent vector representation of
dimension k. On the other hand, the AA4 model is defined with two hidden layers of sizes
100 and 50. For both the models, the decoder networks χd and φs are set up to be mirror
images of the encoder network. From Figure 8 it can be seen that at least a minimum of
3 POD modes are required to attain 99% RIC for any of the chosen Re values. However,
while exploring a range of possible latent space dimensions, 3 ≤ k ≤ 10, it was observed
that a latent space of dimension k = 5 was adequate in capturing the essential dynamical
features of the entire parametric training dataset. Hence, k = 5 is selected as the optimal
latent space dimension for both models AA3 and AA4. All hidden layers are endowed with
the swish activation function, while the output layers are designed to have a linear activation.
The individual loss components L1 and L2 are defined by a weighted combination of the
NMSE loss and the pseudo-Huber loss, as discussed in the previous numerical example.

Table 2. Hyperparameters to design the AA autoencoders for the viscous advecting shock example.

Hyperparameters AA3 AA4

Input/Output Augmented input and output Augmented input and output
Hidden Units (50–150) 50 100, 50

Batch Size (8–128) 24 24
Latent Dimension (3–10) 5 5

Activation (selu, tanh, swish) swish swish
Initial Learning Rate
(1× 10−3–1× 10−5) 5× 10−4 3× 10−4

Figure 9 shows the salient features of the training process for models AA3 and AA4.
The left plot shows the decay of the training and validation losses during training, and
the right plot shows the decay of the two loss components, L1 and L2, for both models.
Due to its higher capacity (more hidden layers and more neurons) model AA4 is capable
of attaining lower values of training and validation losses as compared to model AA3.
This is possibly an indication that model AA4 is able to learn the essential features of the
high-dimensional state space more effectively, thus enabling improved prediction over data
points that lie within the bounds of the training time history, as will be shown in the later
experiments. On the other hand, this also causes the L1 loss component of model AA4 to
have a sharper decay than the L2 component, whereas model AA3 shows a more balanced
decay of the two loss components. The latter trait is considered more preferable, as the
effectiveness of any latent space dynamics model is dependent upon the accuracy of the true
decoder χd, that is measured by the L2 loss component. Therefore, in situations when the



Math. Comput. Appl. 2022, 27, 34 16 of 28

entire time history is available for model training, a smaller capacity AA autoencoder model
like AA3 is capable of achieving the desirable training outcomes. Hence, following the
principle of parsimony, model AA3 is chosen to generate the latent space representations
that are used to train LSTM dynamics models in the next two sections.

Figure 9. Training characteristics of two AA autoencoder networks trained using a parametric dataset
of snapshots for the advecting viscous shock problem parameterized with variable Reynolds number,
Re = {50, 150, 300, 500}. AA3 denotes the model trained with the entire time snapshot history for
every parameter value, while AA4 denotes the model trained with the initial 90% of the time snapshot
history for each parameter value. The left panel shows the decay of training and validation losses
during training. The right panel shows the evolution of the loss components during training.

Figures 10 and 11 present a performance comparison of models AA3 and AA4 in
predicting the true and shifted snapshots for two of the training parameter values, Re = 50
and Re = 500, respectively. Each individual plot shows the evolution of either a solution
field or an error field in the x− t space, where the x-axis represents time and the y-axis
represents space. The plots in the left column depict the solution fields predicted by the
AA3 and AA4 models, the plots in the middle column depict the high-dimensional solution
fields, and the plots in the right column depict the pointwise error between the high-
dimensional and the predicted solution fields. It is evident from the first two columns that
models AA3 and AA4 are able to qualitatively capture both the true and shifted solution
fields. A closer look at the right column reveals that the approximation error of model
AA3 is randomly spread throughout the simulation time history (see Figures 10b and 11a,b,
whereas the approximation error of model AA4 rises gradually as predictions are sought
further away from the end point of the training time history, i.e., t > 1.8. This confirms
the previously discussed observation that, due to the higher network capacity, model AA4
offers more accurate predictions than model AA3 for time points that lie within the bounds
of the training time history that is common to both models, i.e., 0 < t ≤ 1.8. However,
model AA4 gradually loses predictive capability over the unseen time points given by
t > 1.8, whereas model AA3 still generates accurate predictions, despite its lower network
capacity.

Figure 12 depicts the time trajectory of the spatial relative errors for the predictions
obtained by models AA3 and AA4 over the parametric training dataset. The spatial relative
errors are computed as the ratio of the spatial l2-norm of the prediction error to the spatial
l2-norm of the high-dimensional solution at every computational time point. Figure 12a
shows the spatial relative errors for the shift decoder predictions while Figure 12b shows
the corresponding errors for the true decoder predictions, for every value in the parametric
training dataset, Retrain = {50, 150, 300, 500}. The relative error plots not only validate the
previously discussed observations about the prediction capabilities of models AA3 and
AA4, but also highlight that even for t > 1.8, model AA4 offers encouraging extrapolatory
predictions with a relative error of less than 4%.
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(a) Prediction of true snapshots for Re = 50 using models AA3 and AA4

(b) Prediction of shifted snapshots for Re = 50 using models AA3 and AA4

Figure 10. Prediction performance of χd and φs decoders on training data. Predictions of (a) true
and (b) shifted snapshots for a training parameter value, Re = 50, using models AA3 and AA4. The
left column shows the predicted solutions, the center column shows the high-fidelity solutions, and
the right column shows the error between the two.

(a) Prediction of the true snapshots for Re = 500 using models AA3 and AA4

(b) Prediction of the shifted snapshots for Re = 500 using models AA3 and AA4

Figure 11. Prediction performance of χd and φs decoders on training data. Predictions of (a) true
and (b) shifted snapshots for a training parameter value, Re = 500, using models AA3 and AA4. The
left column shows the predicted solutions, the center column shows the high-fidelity solutions and
the right column shows the error between the two.
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(a) Relative errors of the shift decoder predictions

(b) Relative errors of the true decoder predictions

Figure 12. Relative errors of (a) φs and (b) χd predictions using the AA3 and AA4 models for
snapshots generated with the training parameter values.

Figures 13 and 14 show the performance of models AA3 and AA4 while predicting
the true and shifted snapshots using parameter values from the test dataset, Re = 400
and Re = 600, respectively. Figure 15 presents the spatial relative errors of the predictions
made by models AA3 and AA4 for the two test parameter values. Even for the unseen test
parameter values, the true and shifted solution fields computed by the AA autoencoder
models are closely aligned with the high-dimensional solution fields. This is reflected in the
error field plots as well as the spatial relative error plots, which are bounded below the 5%
relative error. The results in this section demonstrate that even for a nonlinear advection-
dominated problem, a trained AA autoencoder network can offer accurate extrapolatory
predictions for unseen parameter instances as well as short-term extrapolatory predictions
for unseen time.

4.2.2. LSTM Models for System Dynamics

In this section, numerical results are presented for the modeling of the temporal
evolution of the latent space coefficients defined by a pre-trained AA autoencoder network
for the advective viscous shock problem parametrized by variable Re. As the focus of this
work is to demonstrate the efficiency and flexibility of the AA autoencoder architecture,
hence for the sake of simplicity, the latent space dynamics are modeled in an autoregressive
fashion using traditional LSTM networks.
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(a) Prediction of true snapshots for Re = 400 using models AA3 and AA4

(b) Prediction of shifted snapshots for Re = 400 using models AA3 and AA4

Figure 13. Prediction performance of χd and φs decoders on unseen data. Predictions of (a) true and
(b) shifted snapshots for a test parameter value, Re = 400, using models AA3 and AA4. The left
column shows the predicted solutions, the center column shows the high-fidelity solutions and the
right column shows the error between the two.

(a) Prediction of true snapshots for Re = 600 using models AA3 and AA4

(b) Prediction of shifted snapshots for Re = 600 using models AA3 and AA4

Figure 14. Prediction performance of χd and φs decoders on unseen data. Predictions of (a) true and
(b) shifted snapshots for a test parameter value, Re = 600, using models AA3 and AA4. The left
column shows the predicted solutions, the center column shows the high-fidelity solutions, and the
right column shows the error between the two.
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Figure 15. Relative errors of φs (left) and χd (right) predictions using the AA3 and AA4 models for
snapshots generated with the unseen test parameter values.

Two different approaches are adopted to construct these dynamics models. In the first
method, an independent LSTM network is trained for the encoded snapshots corresponding
to each parameter value in Retrain = {50, 150, 300, 500}. The AA3 model is chosen to
compute the encoded latent representations of the high-dimensional snapshots. For the
datasets characterized by weaker advection, i.e., Re = 50 and Re = 150, a smaller capacity
LSTM network is defined using two stacked LSTM cells with 32 hidden dimensions each
and swish activation. For the datasets with higher values of Re = 300 and Re = 500, a
higher capacity network consisting of two stacked LSTM cells with 150 hidden units was
found to be necessary to accurately capture the dynamics. The network is trained to read
an input consisting of 5 time steps and predict the next element in the time series. The
first 90% time steps are used for training the LSTM model and the remaining 10% are used
for testing the extrapolatory predictive capability of the trained LSTM model. Training is
performed for 4000 epochs using the Adam optimizer with minibatches of size 24 and with
an initial learning rate of 2× 10−5 that decays by 10% every 304 epochs. For minimization
of the network hyperparameters, losses in the latent space predictions are computed using
the NMSE loss. Scaling the input features used for training the LSTM model was found to
offer no additional benefits to the training process or improved prediction accuracy. Some
preliminary testing with the use of dropout layers also yielded inconclusive evidence to
support or recommend their use for further training.

In Figure 16, the latent space coefficients of the high-dimensional snapshots as defined
by the AA3 autoencoder model are compared with the predictions generated by the
individual LSTM models. As the AA3 model defines a latent space of dimension 5, hence
each plot depicts 5 latent space modes. The plots in panels (a)–(c) are obtained with LSTM
models that are trained on the latent space coefficients corresponding to snapshots in the
parametric training dataset, i.e., Re = 50, 300, 500, respectively. The modal trajectories in
panel (d) are obtained by evaluating the latent space coefficients for a test parameter value
Re = 400 using the AA3 model and then training a LSTM model to learn the evolution
of these coefficients. As mentioned before, the LSTM models are trained on the first 90%
time steps of each timeseries and the boundary of the training data is marked by a dashed
vertical line in each plot. The encoded true snapshots and the LSTM predictions for both the
training and even the test parameter values display a high degree of agreement, especially
for time steps within the LSTM training time window. It is also encouraging to observe
that for a short length outside the training time window, even the extrapolatory predictions
obtained from the trained LSTM models are in agreement with the encoded true snapshots.
This behavior can also be seen in Figure 17 where the true decoder of the AA3 model is
applied to the LSTM predictions and the results are compared with the high-dimensional
snapshots. These plots are populated with the predicted and high-dimensional solution
snapshots at four different intermediate times with the x-axis representing the spatial grid.
The plotting time steps are distributed uniformly throughout the simulation time window
and are chosen in such a way that the final time step t = 1.90 lies outside the LSTM
training time window. It is clear that the trained autoencoder(AE)-LSTM model captures
the viscous advecting shock-like feature fairly well, even for the extrapolatory time step.
This demonstrates the ease of constructing dynamics models in a latent space defined by



Math. Comput. Appl. 2022, 27, 34 21 of 28

the parametric AA autoencoder model, even while adopting a standard implementation
of a simple and lightweight LSTM network. While some discrepancies emerge with
extrapolatory and longer-time prediction windows, this can be attributed to the well-
known issues with the autoregressive modeling of time series data using standard LSTM
networks [70]. However, for applications where time series predictions are desired over
shorter time windows, the proposed AA autoencoder+LSTM approach shows the capacity
for effective extrapolatory predictions.
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(a) LSTM prediction for Re = 50 (b) LSTM prediction for Re = 300

(c) LSTM prediction for Re = 500 (d) LSTM prediction for Re = 400

Figure 16. Comparing latent space predictions obtained using a parametric AA autoencoder and
LSTM models. The LSTM models are trained separately for each training parameter value as
presented in (a) Re = 50, (b) Re = 300, (c) Re = 500 and for a test parameter value shown in (d)
Re = 400. All LSTM models are trained using the first 90% of the total time steps (as demarcated by
the vertical lines in each figure), and the remaining time steps are used for evaluating extrapolatory
predictions.

Figure 16. Comparing latent space predictions obtained using a parametric AA autoencoder and
LSTM models. The LSTM models are trained separately for each training parameter value as pre-
sented in (a) Re = 50, (b) Re = 300, (c) Re = 500 and for a test parameter value shown in (d) Re = 400.
All LSTM models are trained using the first 90% of the total time steps (as demarcated by the vertical
lines in each figure), and the remaining time steps are used for evaluating extrapolatory predictions.
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(a) Decoded AE-LSTM prediction for Re = 50 (b) Decoded AE-LSTM prediction for Re = 300

(c) Decoded AE-LSTM prediction for Re = 500 (d) Decoded AE-LSTM prediction for Re = 400

Figure 17. Comparing predictions of the high-dimensional solutions for the parametric advecting
viscous shock problem using an AA autoencoder and LSTM models. The LSTM models are individu-
ally trained for each parameter value and are presented as (a) Re = 50, (b) Re = 300, (c) Re = 500,
and (d) Re = 400.

Figure 17. Comparing predictions of the high-dimensional solutions for the parametric advecting
viscous shock problem using an AA autoencoder and LSTM models. The LSTM models are individu-
ally trained for each parameter value and are presented as (a) Re = 50, (b) Re = 300, (c) Re = 500,
and (d) Re = 400.

In the second approach, a parametric LSTM (pLSTM) network is trained on the
encoded snapshots obtained by the AA3 model. An encoded representation is obtained for
every snapshot corresponding to the training parameter values, Retrain = {50, 150, 300, 500}.
Moreover, the encoded snapshots are augmented by explicitly attaching the corresponding
scaled parameter values as labels. The pLSTM network is defined using three stacked
LSTM cells with 128 hidden units each and swish activation. The network is trained to
read an input consisting of 8 time steps and predict the next element in the time series.
Training is performed for 50,000 epochs using the Adam optimizer with minibatches of size
150, and with an initial learning rate of 1× 10−3, that decays by 20% every 2083 epochs.
For optimization of the network hyperparameters, losses in the latent space predictions
are computed using the NMSE loss. Similar to the previous approach, scaling the input
features for the pLSTM network were not found to be beneficial.

Figure 18a,b show the comparison between the encoded true snapshots and the latent
space predictions of the pLSTM model for snapshots corresponding to training parameter
values Re = 150 and Re = 300, respectively. The pLSTM model can be clearly seen to
approximate the time trajectory of the latent space coefficients accurately. In Figure 18c,d,
the true decoder of the AA3 model is applied to the latent space predictions at four
intermediate time steps and the results are compared to the high-dimensional solution
snapshots. The solutions predicted by the combined AA3+pLSTM model perfectly match
the high-dimensional simulation snapshots.

In the next set of numerical experiments, the trained pLSTM model is deployed
to emulate the evolution of the latent space coefficients in a recursive fashion, i.e., the
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pLSTM model outputs for one time step are recursively rolled into the time step input
window and used for pLSTM predictions at the next time step. Figure 19 shows two
such examples of recursive pLSTM predictions for training parameter values Re = 50
and Re = 500, starting from randomly chosen initial time points. In panel (a), pLSTM
predictions of the latent space evolution for Re = 50 are computed by randomly choosing
the encoded high-dimensional solution at t = 0.26 as the initial data, and marching
forward until t = 2 in a recursive fashion. Similarly, in (b), the initial point is chosen
to be t = 0.50 and the latent space evolution for Re = 500 is computed recursively. In
both cases, the predicted trajectories show remarkable agreement with the encoded high-
dimensional solution trajectories. Finally, in (c) and (d), the pLSTM latent space predictions
are decoded using model AA3 to compare with the high-dimensional solution snapshots at
four intermediate time steps. Again, the predicted solutions are found to closely align with
the true high-dimensional snapshot data.
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(a) pLSTM prediction for Re = 150 (b) pLSTM prediction for Re = 300

(c) Decoded pLSTM prediction for Re = 150 (d) Decoded pLSTM prediction for Re = 300

Figure 18. Comparing predictions obtained using a parametric AA autoencoder and a parametric
LSTM (pLSTM) model. (a) and (b) show the latent space predictions using the pLSTM model and
the encoded high-dimensional snapshots for training parameter values Re = 150 and Re = 300,
respectively. (c) and (d) compare the corresponding decoded pLSTM predictions with the high-
dimensional snapshots at four intermediate time steps.

Figure 18. Comparing predictions obtained using a parametric AA autoencoder and a parametric
LSTM (pLSTM) model. (a,b) show the latent space predictions using the pLSTM model and the en-
coded high-dimensional snapshots for training parameter values Re = 150 and Re = 300, respectively.
(c,d) compare the corresponding decoded pLSTM predictions with the high-dimensional snapshots
at four intermediate time steps.
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(a) pLSTM prediction for Re = 50 (b) pLSTM prediction for Re = 500

(c) Decoded pLSTM prediction for Re = 50 (d) Decoded pLSTM prediction for Re = 500

Figure 19. Comparing recursive predictions obtained using a parametric AA autoencoder and a
parametric LSTM (pLSTM) model. (a) and (b) show the recursive latent space predictions using the
pLSTM model and the encoded high-dimensional snapshots for training parameter values Re = 50
and Re = 500, respectively. (c) and (d) compare the corresponding decoded pLSTM predictions with
the high-dimensional snapshots at four intermediate time steps.

Figure 19. Comparing recursive predictions obtained using a parametric AA autoencoder and a
parametric LSTM (pLSTM) model. (a,b) show the recursive latent space predictions using the pLSTM
model and the encoded high-dimensional snapshots for training parameter values Re = 50 and
Re = 500, respectively. (c,d) compare the corresponding decoded pLSTM predictions with the
high-dimensional snapshots at four intermediate time steps.

5. Conclusions and Future Work

In this study, we propose a novel advection-aware autoencoder network that can
find a low-dimensional nonlinear embedding of the salient physical features of advection-
dominated transport problems. Such systems are known to exhibit instabilities and in-
efficient compression ratios when expressed in terms of a linear subspace defined by
POD-Galerkin projection-based reduced order models. The novelty of the proposed design
lies in the definition of a latent space vector that can simultaneously be efficiently mapped
to the corresponding high-fidelity simulation snapshot as well as an arbitrary snapshot that
effectively emulates the advective features of the high-fidelity snapshot. We demonstrate
that for a linear advection problem that requires about 60 linear POD basis modes to accu-
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rately capture solution features, the AA autoencoder model can achieve a stable nonlinear
embedding using a latent representation of dimension 15, and for a viscous advecting shock
problem that requires about 15 POD basis modes, the AA autoencoder model can produce
accurate representations with a nonlinear embedding of dimension 5. We also develop
a fully, non-intrusive ROM framework by combining the AA autoencoder architecture
with a separately trained LSTM network that captures the temporal dynamics in the latent
space defined by the AA autoencoder model. This non-intrusive ROM formulation is
extended to parametric problems by concatenating the parameter information to both the
high-dimensional input snapshots for the AA autoencoder as well as the low-dimensional
latent states used for the LSTM training, and then training each model independently. The
proposed parametric, non-intrusive ROM is numerically evaluated on the parametric test
problem involving a viscous advecting shock. The results indicate that the framework is
capable of learning essential underlying features by exhaustively exploring different types
of parametric design spaces. Moreover, evaluations with unseen parameter values reveal
that the model is also able to produce accurate extrapolatory predictions. The numerical
examples presented here demonstrate that the proposed approach is capable of handling
not just uniform advection, but also nonlinear problems involving viscous shocks. The
key to extending this approach to a wider class of advection-dominated problems such as
solitary waves, chaotic systems, and systems governed by multiple traveling waves, lies
in the appropriate selection of a shifted snapshot that optimally endows the latent space
with information about the underlying advective transport. The registration-type approach
of selecting an intermediate high-fidelity simulation snapshot as the shifted snapshot, as
adopted here, is a versatile strategy that can be extended even to problems with multiple
traveling features. For the examples studied here, the efficacy of the approach was found
to be independent of the choice of the particular intermediate time step. However, a sys-
tematic sensitivity analysis is required to understand the effect of this choice for systems
characterized by multiple traveling waves and chaotic dynamics.

Currently, we are engaged in developing a robust, end-to-end algorithm for concurrent
training of the AA autoencoder and the dynamics model, and formulating design guide-
lines to help the end user choose between concurrent and separately trained ROMs. One
important step towards this goal is to explore the addition of physics-based regularizing
constraints to the loss function, in order to resolve some of the instabilities in the training
trajectory. We are also interested in investigating the use of other ML-based and classical
time series learning strategies to model the dynamical features of the latent space coeffi-
cients. Another planned direction of future work is aimed at the development of a method
that can efficiently map the high-fidelity solution on to a regular, logically rectangular
grid. This will allow us to construct AA autoencoder models using convolutional and
deconvolutional layers that can more efficiently extract localized spatial patterns in the
input features.
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