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Abstract: Over the years, several researchers have worked to model phenomena in which the distri-
bution of data presents more or less heavy tails. With this aim, several generalizations or extensions
of the Lomax distribution have been proposed. In this paper, an attempt is made to create a hybrid
distribution mixing the functionalities of the Nadarajah–Haghighi and Lomax distributions, namely
the Nadarajah–Haghighi Lomax (NHLx) distribution. It can also be thought of as an extension of
the exponential Lomax distribution. The NHLx distribution has the features of having four param-
eters, a lower bounded support, and very flexible distributional functions, including a decreasing
or unimodal probability density function and an increasing, decreasing, or upside-down bathtub
hazard rate function. In addition, it benefits from the treatable statistical properties of moments and
quantiles. The statistical applicability of the NHLx model is highlighted, with simulations carried
out. Four real data sets are also used to illustrate the practical applications. In particular, results
are compared with Lomax-based models of importance, such as the Lomax, Weibull Lomax, and
exponential Lomax models, and it is observed that the NHLx model fits better.

Keywords: Nadarajah–Haghighi distribution; moments; Lomax distribution; data analysis

1. Introduction

Modeling heavy-tailed data is one of the important aspects in many engineering and
medical domains. Initial work on this topic was carried out by Pareto [1] to model income
data. In later years, the applications of Pareto, particularly the type II Lomax distribution
(see [2]), usually referred to as Lomax (Lx) distribution, branched into scientific fields
such as engineering sciences, actuarial sciences, medicine, income, and many more. The
distribution function (cdf) and probability density function (pdf) of the Lx distribution are
given by

FLx(x; η) = 1−
(

β

x + β

)α

and

fLx(x; η) =
α

β

(
β

x + β

)α+1
, x ≥ 0, η = (α, β) > 0,

respectively, where α is a shape parameter, and β is a scale parameter. We have FLx(x; η) =
fLx(x; η) = 0 for x < 0. References [3,4] considered the Lx distribution to model income
and wealth data. Reference [5] used the Lx distribution as an alternative to the exponential,
gamma, and Weibull distributions for heavy-tailed data. Reference [6] derived various
estimation techniques based on the Lx distribution. References [7,8] examined the various
structural properties and record value moments of the Lx distribution. Reference [9]
extensively studied and extended the family of distributions that were used in the Lx
distribution. Reference [10] considered the Lx distribution as an important distribution to
model lifetime data, since it belongs to the family of decreasing hazard rate.
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In continuation of this, many researchers have proposed several distributions that
deal with heavy-tailed data by generalizing the functional forms of the Lx distribution.
It mainly consists of adding scale/shape parameters accordingly. A few to mention are
the exponentiated Lx (EL) distribution in [11], beta Lx (BL) distribution in [12], Poisson Lx
distribution in [13], exponential Lx (EXL) distribution in [14], gamma Lx (GL) distribution
in [15], Weibull Lx (WL) distribution in [16], beta exponentiated Lx distribution in [17],
power Lx distribution in [18], exponentiated Weibull Lx distribution in [19], Marshall–
Olkin exponential Lx distribution in [20], type II Topp–Leone power Lx distribution in [21],
Marshall–Olkin length biased Lomax distribution in [22], Kumaraswamy generalized
power Lx distribution in [23] and sine power Lx distribution in [24]. For the purpose of
this study, a retrospective on the EXL distribution is required. To begin, it is defined by the
following cdf and pdf:

FEXL(x; ξ) = 1− e−λ
(

β
x+β

)−α

and

fEXL(x; ξ) =
λα

β

(
β

x + β

)−α+1
e−λ

(
β

x+β

)−α

, x ≥ −β , ξ = (α, β, λ) > 0,

respectively, where α is a shape parameter, and β and λ are scale parameters. We have
FEXL(x; ξ) = fEXL(x; ξ) = 0 for x < −β. Thus, the EXL distribution combines the func-
tionalities of the exponential and Lx distributions through a specific composition scheme.
This scheme may be called the extended Lx scheme (it will be discussed mathematically
later). As immediate remarks, the EXL distribution has three parameters and is with a
lower bounded support. It is shown in [14] that the pdf of the EXL distribution is unimodal
and has an increasing hazard rate function (hrf). Moreover, its quantile and moment
properties are manageable. On the statistical side, by considering the aircraft windshield
data collected in [25], it is proven in [14] that the EXL model outperforms several three- or
four-parameter extensions of the Lx model, including the EL, BL, and GL models. Thus,
strong evidence is for the use of the extended Lx scheme for the construction of efficient
distributions and models.

On the other hand, recently, a generalized version of the exponential distribution was
given by Nadarajah and Haghighi [26]. It can be presented as an alternative to the Weibull,
gamma, and exponentiated exponential (EE) distributions. It is called the Nadarajah–
Haghighi (NH) distribution. The cdf and pdf of the NH distribution are

FNH(x; τ) = 1− e1−(1+bx)a

and
fNH(x; τ) = ab(1 + bx)a−1e1−(1+bx)a

, x ≥ 0, τ = (a, b) > 0,

respectively. We have FNH(x; τ) = fNH(x; τ) = 0 for x < 0. Among its main features, the
pdf can have decreasing and uni-modal shapes, and the hrf exhibits increasing, decreasing,
and constant shapes. According to [26], if the pdfs of the gamma, Weibull, and exponenti-
ated exponential are monotonically decreasing, then it is not possible to allow increasing
hrf. However, such a hrf property can be achieved by the NH distribution.

In light of the above research work, we present a new distribution based on the ex-
tended Lx scheme with the use of the NH distribution as the main generator. It is called the
NH Lx (NHLx) distribution. In this sense, the NHLx distribution is to the NH distribution
what the EXL distribution is to the exponential distribution. The NHLx distribution can
also be presented as a generalization of the EXL distribution through the introduction of an
additional shape parameter. We investigate the theoretical and practical facets of the NHLx
distribution. Among its functional features, it has four parameters, it is lower-bounded (as
with the EXL distribution, with a bound governed by a scale parameter), its pdf exhibits
non-increasing and inverted J-shaped curves, and its hrf possesses increasing, decreasing,
and upside-down bathtub shapes. This combination of qualitative characteristics is rare
for a lower-bounded distribution and, in this way, it has better functionality to model
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lifetime data than the EXL and Lx distributions, among others. We illustrate this aspect by
considering four different data sets referenced in the literature.

The rest of the article covers the following aspects: Section 2 presents the most impor-
tant functions of the NHLx distribution, namely the cdf, pdf, hrf, and quantile function (qf),
along with a graphical analysis when necessary. Section 3 is devoted to moment analysis
and related functions. Section 4 concerns the maximum likelihood estimates of the NHLx
model parameters. The above section is completed by a simulation study in Section 5.
Concrete applications of the NHLx model are developed in Section 6. A conclusion is
formulated in Section 7.

2. NHLx Distribution

In order to understand the essence of the NHLx distribution, let us describe more
precisely the extended Lx scheme on the basis of the EXL distribution. One can remark
that FEXL(x; ξ) = FE

(
1

1−F∗Lx(x;η) ; λ
)

, where FE(x; λ) denotes the cdf of the exponential

distribution with parameter λ, and F∗Lx(x; η) = 1−
(

β
x+β

)α
for x ≥ −β, and F∗Lx(x; η) = 0

otherwise. Thus, F∗Lx(x; η) can be thought of as a support-extended version of FLx(x; η)
over the semi-finite interval [−β, ∞). It is worth noting that F∗Lx(x; η) is not a cdf anymore,
but it is increasing and satisfies limx→−β

1
1−F∗Lx(x;η) = 0 and limx→∞

1
1−F∗Lx(x;η) = ∞, which

ensure that FEXL(x; ξ) as a cdf is mathematically correct. It is worth noting that it can be
applied to any lifetime distribution in place of the generator exponential distribution.

Based on the extended Lx scheme with the NH distribution as a generator, the cdf and
pdf of the NHLx distribution are specified by

FNHLx(x; ζ) = 1− e
1−
(

1+b
(

β
x+β

)−α
)a

and

fNHLx(x; ζ) =
abα

β

(
β

x + β

)−α+1
(

1 + b
(

β

x + β

)−α
)a−1

e
1−
(

1+b
(

β
x+β

)−α
)a

,

x ≥ −β ζ = (a, b, α, β) > 0,

respectively, where a and α are shape parameters, and b and β are scale parameters. We
have FNHLx(x; ζ) = fNHLx(x; ζ) = 0 for x < −β. Thus, the cdf has been derived from the
following formula: FEXL(x; ξ) = FNH

(
1

1−F∗Lx(x;η) ; τ
)

, x ∈ R. By taking a = 1, we remark

that FNHLx(x; ζ) = FEXL(x; ξ); the NHLx distribution is reduced to the EXL distribution
with λ = b. The asymptotic properties of the pdf depend on the values of α mainly; with
the use of standard asymptotic techniques, we establish that

lim
x→−β

fNHLx(x; ζ) =


∞ if α < 1
ba
β if α = 1

0 if α > 1
, lim

x→∞
fNHLx(x; ζ) = 0.

Figure 1 completes these asymptotic results by showing some curves of the pdf for
several parameter values.

In Figure 1, we see that the pdf can be inverted J decreasing or have uni-modal shapes.
It is very flexible to skewness, peakedness, and platness curves at a small value of β (at
least), and different selected parameter values of a, b, and α. Such flexibility is not observed
for the pdf of the EXL distribution, as visually shown in the figures in [14].
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The analysis of the corresponding hrf is now examined. By applying the definition
hNHLx(x; ζ) = fNHLx(x; ζ)/[1− FNHLx(x; ζ)], it is given by

hNHLx(x; ζ) =
abα

β

(
β

x + β

)−α+1
(

1 + b
(

β

x + β

)−α
)a−1

, x ≥ −β,

and hNHLx(x; ζ) = 0 for x < −β. Contrary to the pdf, the asymptotic properties of the hrf
mainly depend on the values of a and α; we have

lim
x→−β

hNHLx(x; ζ) =


∞ if α < 1
ba
β if α = 1

0 if α > 1
, lim

x→∞
hNHLx(x; ζ) =


∞ if aα > 1
ba

β if aα = 1
0 if aα < 1

.

In full generality, the possible shapes of the hrf are determinant for modeling purposes:
the more different shapes it has, the more the associated model is applicable to a wide
panel of data sets.

Figure 1. Curves of the pdf of the NHLx distribution for various parameter values, but with the fixed
value: β = 0.005.

Figure 2 presents the identified shapes for the hrf of the NHLx distribution. From
Figure 2, we see that the hrf can be increasing, decreasing, or upside-down bathtub-shaped,
with flexible convex–concave properties. In particular, these curve modulations are possible
thanks to the variation of the new additional parameters a. We are far beyond the curve
possibilities of the hrf of the EXL distribution, which is only increasing according to [14].
Thus, from one perspective, the NHLx distribution adds a new shape parameter a to the
EXL distribution in a thorough fashion, considerably improving its modeling properties.

The qf of the NHLx distribution is now studied. To begin, it is defined in function of
FNHLx(u; ζ) by QNHLx(u; ζ) = F−1

NHLx(u; ζ), u ∈ (0, 1). After some mathematical develop-
ment, we establish that

QNHLx(u; ζ) = β

{[
1
b

(
(1− log(1− u))

1
a − 1

)] 1
α

− 1

}
, u ∈ (0, 1).

Based on this qf, the main quartiles of the NHLx distribution can be explicated: by taking
u = 1/4, u = 1/2, and u = 3/4 into QNHLx(u; ζ), we get the first, second, and third quar-
tiles. In addition, several quantile-based functions, and skewness and kurtosis measures,
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can be listed and analyzed (see [27]). In addition, various quantile regression models can
be constructed (see [28]).

Figure 2. Curves of the hrf of the NHLx distribution for various parameter values.

3. Moment Properties of the NHLx Distribution

The moment properties of the NHLx distribution are now under investigation. First,
for a random variable X with the NHLx distribution and any integer r, the rth moment of
X is defined by

µ∗r = E(Xr) =
∫ ∞

−∞
xr fNHLx(x; ζ)dx,

which can be explicated as

µ∗r =
∫ ∞

−β
xr abα

β

(
β

x + β

)−α+1
(

1 + b
(

β

x + β

)−α
)a−1

e
1−
(

1+b
(

β
x+β

)−α
)a

dx.

For given distribution parameters, this integral can be computed numerically with the
help of scientific software. An analytical expression involving sums is given in the next
proposition.

Proposition 1. Let X be a random variable with the NHLx distribution. Then, its rth moment can
be expressed as

µ∗r = βre
r

∑
j=0

∞

∑
k=0

(
r
j

)( j
α

k

)
(−1)r−j+k

b
j
α

Γ
(

1
a

(
j
α
− k
)
+ 1, 1

)
,

where e = exp(1) and Γ(x, y) =
∫ ∞

x ty−1e−tdt with y ∈ R and x > 0, which defines the
incomplete gamma function.

Proof. Let us apply the following change of variable:

u =

(
1 + b

(
β

x + β

)−α
)a

, du =
abα

β

(
β

x + β

)−α+1
(

1 + b
(

β

x + β

)−α
)a−1

dx,
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which satisfies limx→−β u = 1 and limx→∞ u = ∞. Then, we have

µ∗r = βre
∫ ∞

1

{[
1
b

(
u

1
a − 1

)] 1
α

− 1

}r

e−udu.

By applying the standard and generalized binomial formulas, we get

µ∗r = βre
r

∑
j=0

(
r
j

)
(−1)r−j

b
j
α

∫ ∞

1

(
u

1
a − 1

) j
α e−udu

= βre
r

∑
j=0

(
r
j

)
(−1)r−j

b
j
α

∞

∑
k=0

( j
α

k

)
(−1)k

∫ ∞

1
u

1
a

(
j
α−k

)
e−udu

= βre
r

∑
j=0

∞

∑
k=0

(
r
j

)( j
α

k

)
(−1)r−j+k

b
j
α

Γ
(

1
a

(
j
α
− k
)
+ 1, 1

)
.

This ends the proof of Proposition 1.

Based on Proposition 1, the mean of X can be expanded as

µ∗1 = βe
1

∑
j=0

∞

∑
k=0

(
1
j

)( j
α

k

)
(−1)1−j+k

b
j
α

Γ
(

1
a

(
j
α
− k
)
+ 1, 1

)

and the moment of order 2 of X can be expressed as

µ∗2 = β2e
2

∑
j=0

∞

∑
k=0

(
2
j

)( j
α

k

)
(−1)k−j

b
j
α

Γ
(

1
a

(
j
α
− k
)
+ 1, 1

)
.

From the above moments, we derive the variance of X by V = µ∗2 − (µ∗1)
2. Several

other moment measures can be expressed in a similar manner, including the dispersion
index, coefficient of variation, moment skewness, and moment kurtosis. More details on
the moment skewness and moment kurtosis will be provided later.

The two following points can be proven by following the lines of the proof of Proposition 1.

• The rth moment of X about the mean can be expressed as

µr = E[(X− µ∗1)
r]

= βre
r

∑
j=0

∞

∑
k=0

(
r
j

)( j
α

k

)
(−1)r−j+k

b
j
α

(
1 +

µ∗1
β

)r−j
Γ
(

1
a

(
j
α
− k
)
+ 1, 1

)
.

Based on it, the standard moment skewness measure is defined by SK = µ3/V
3
2 ,

and the standard moment kurtosis measure is defined by KU = µ4/V2, among other
moment measures.

• The rth unconditional moment of X at a certain t > 0 can be expanded as

µr(t) = E[Xr | X ≤ t] =
βre

1− e
1−
(

1+b
(

β
t+β

)−α
)a

r

∑
j=0

∞

∑
k=0

(
r
j

)( j
α

k

)
(−1)r−j+k

b
j
α

×

[
Γ
(

1
a

(
j
α
− k
)
+ 1, 1

)
− Γ

(
1
a

(
j
α
− k
)
+ 1,

(
1 + b

(
β

t + β

)−α
)a)]

.

It is immediate that limt→∞ µr(t) = µr. The unconditional moments are useful in the
expression of various important functions, such as the mean residual life and reversed
mean residual life functions. For more information on these functions, see [29].
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4. Maximum Likelihood Estimates of the Parameters

We now consder the NHLx distribution as a statistical model, and we assume that
the parameters a, b, α, and β are unknown. We aim to give some details on the max-
imum likelihood estimates (MLEs) of the parameters. First, let n be a positive integer,
X1, X2, . . . Xn be independent and identically distributed random variables drawn from the
NHLx distribution, and x1, x2, . . . , xn be corresponding observations. Then, provided that
inf(x1, x2, . . . , xn) ≥ −β, the likelihood function and log-likelihood functions are defined by

L(x1, x2, . . . , xn; ζ) =
n

∏
i=1

fNHLx(xi; ζ)

=

(
abα

β

)n n

∏
i=1

(
β

xi + β

)−α+1 n

∏
i=1

(
1 + b

(
β

xi + β

)−α
)a−1

e
n−∑n

i=1

(
1+b

(
β

xi+β

)−α
)a

and

`(x1, x2, . . . , xn; ζ) = log L(x1, x2, . . . , xn; ζ)

= n log
(

abα

β

)
+ (1− α)

n

∑
i=1

log
(

β

xi + β

)
+ (a− 1)

n

∑
i=1

log

(
1 + b

(
β

xi + β

)−α
)

+ n−
n

∑
i=1

(
1 + b

(
β

xi + β

)−α
)a

,

respectively. Then, the MLEs of the parameters a, b, α, and β, say â, b̂, α̂, and β̂, respectively,
are defined by

ζ̂ = (â, b̂, α̂, β̂) = argmaxζ `(x1, x2, . . . , xn; ζ).

In the case where β is known and we have surely inf(x1, x2, . . . , xn) ≥ −β, the
MLEs of a, b, and α are the solution of the following equations: ∂

∂a `(x1, x2, . . . , xn; ζ) = 0,
∂
∂b `(x1, x2, . . . , xn; ζ) = 0 and ∂

∂α `(x1, x2, . . . , xn; ζ) = 0, where

∂

∂a
`(x1, x2, . . . , xn; ζ) =

n
a
+

n

∑
i=1

log

(
1 + b

(
β

xi + β

)−α
)

−
n

∑
i=1

(
1 + b

(
β

xi + β

)−α
)a

log

(
1 + b

(
β

xi + β

)−α
)

,

∂

∂b
`(x1, x2, . . . , xn; ζ) =

n
b
+ (a− 1)

n

∑
i=0

(
1 + b

(
β

xi + β

)−α
)−1(

β

xi + β

)−α

− a
n

∑
i=1

(
1 + b

(
β

xi + β

)−α
)a−1(

β

xi + β

)−α

and

∂

∂α
`(x1, x2, . . . , xn; ζ) =

n
α
−

n

∑
i=1

log
(

β

xi + β

)

+ (1− a)b
n

∑
i=1

(
1 + b

(
β

xi + β

)−α
)−1(

β

xi + β

)−α

log
(

β

xi + β

)

+ ab
n

∑
i=1

(
1 + b

(
β

xi + β

)−α
)a−1(

β

xi + β

)−α

log
(

β

xi + β

)
.
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The above expressions do not have closed-form solutions; hence, they are to be solved
numerically by iterative methods. These numerical values can be easily obtained using
specific tools in statistical software such as the R software, and the MLE of β is obtained by
taking its first-order statistics, as in [14]. It is also possible to determine the values of the
standard errors (SEs) of the MLEs. For more information, see [30].

Based on the MLEs, we define the estimated pdf of the NHLx distribution by fNHLx(x; ζ̂).
Conceptually, the curve of this estimated function must be close to the shape of the his-
togram of the data, among other visual criteria.

5. Simulation Study

In this section, we perform 1000 Monte Carlo simulation studies for three differ-
ent sets of parameters and each of the sample sizes of n ∈ {50, 100, 250, 500, 750, 1000}.
By considering the order (a, b, α, β), these sets of parameters are Set I = (0.5, 1.5, 5, 0.5),
Set II = (0.5, 1.5, 4, 0.75), and Set III = (1.5, 0.5, 4, 0.5). Table 1 shows the mean MLEs
(MMLEs), biases and mean squared errors (MSEs) of the studies.

From Table 1, it can be observed that as the sample size increases, the biases and MSEs
of the MLEs decrease, and with the increase in the sample sizes, the MMLEs are closer to
the true parameter values. These results prove the accuracy of the considered parameter
strategy estimation.

Table 1. Simulation results related to the MLEs of the NHLx model parameters.

n
â b̂ α̂ β̂

MMLE Bias MSE MMLE Bias MSE MMLE Bias MSE MMLE Bias MSE

Set I

50 2.4691 1.9691 13.3180 2.9450 1.4450 54.9364 9.2113 4.2113 310.9836 0.7425 0.2425 1.2292
100 1.9081 1.4081 3.6890 2.4782 0.9782 40.3076 6.9163 1.9163 128.6739 0.5886 0.0886 0.4186
250 1.5403 1.0403 2.0234 1.8814 0.3814 7.3395 6.0152 1.0152 58.5405 0.5465 0.0465 0.1517
500 1.2723 0.7723 0.9669 1.6510 0.1510 2.3173 5.3303 0.3303 11.0218 0.5143 0.0143 0.0322
750 1.1679 0.6679 0.6544 1.5840 0.0840 0.8996 5.1302 0.1302 2.9589 0.5053 0.0053 0.0090
1000 1.1355 0.6355 0.5534 1.5507 0.0507 0.6974 5.1039 0.1039 2.2337 0.5046 0.0046 0.0067

Set II

50 2.4179 1.9179 6.9777 3.2423 1.7423 170.7508 6.0725 2.0725 268.0909 0.8891 0.1391 1.7534
100 2.0139 1.5139 4.3307 2.3196 0.8196 34.8643 4.3855 0.3855 28.9119 0.7571 0.0071 0.1972
250 1.5278 1.0278 1.8965 1.7518 0.2518 6.5711 4.1402 0.1402 6.6622 0.7548 0.0048 0.0465
500 1.2650 0.7650 0.9185 1.6067 0.1067 1.7551 4.0561 0.0561 2.5538 0.7509 0.0009 0.0198
750 1.1526 0.6526 0.5826 1.5615 0.0615 1.0451 3.9887 −0.0113 1.1312 0.7459 −0.0041 0.0083
1000 1.1297 0.6297 0.5391 1.5262 0.0262 0.5502 3.9882 −0.0118 0.6922 0.7470 −0.0030 0.0054

Set III

50 2.6338 1.1338 6.5559 0.6993 0.1993 18.5802 5.2280 1.2280 246.0191 0.5697 0.0697 1.6784
100 2.0040 0.5040 2.9493 0.5758 0.0758 1.3542 4.7413 0.7413 46.4162 0.5341 0.0341 0.1676
250 1.5413 0.0413 1.1911 0.4969 −0.0031 0.1653 4.1298 0.1298 8.1507 0.5022 0.0022 0.0432
500 1.2694 −0.2306 0.4318 0.4946 −0.0054 0.0944 4.0379 0.0379 2.6806 0.4975 −0.0025 0.0139
750 1.1916 −0.3084 0.2963 0.4779 −0.0221 0.0413 3.9693 −0.0307 0.9247 0.4957 −0.0043 0.0055
1000 1.1182 −0.3818 0.2738 0.4934 −0.0066 0.0286 3.9998 −0.0002 0.6297 0.4989 −0.0011 0.0038

6. Applications of the NHLx Model
6.1. Heavy-Tailed Data Applications

Two real data sets taken from [31], namely the theft and claim data, are considered
to illustrate the proposed methodology. These data sets are known to have heavy tail
features. Table 2 presents the estimation of the tails of several standard distributions,
namely the lognormal, Weibull, gamma, and exponential distributions, and the proposed
NHLx distribution, taken at several values. The survival function, denoted by S(x) for all
distributions in full generality, determines the tail probabilities at the point x.



Math. Comput. Appl. 2022, 27, 30 9 of 13

Table 2. Estimation of the tail probabilities of various distributions for the considered data sets.

Models (Theft Data) S(8000) S(10,000) S(20,000)

NHLx 0.12090 0.10840 0.07531
lognormal 0.05972 0.04418 0.01536
Weibull 0.03970 0.02270 0.00200
gamma 0.03755 0.01897 0.00070
exponential 1.9067 × 10−2 7.0851 × 10−3 5.0197 × 10−5

(Claim data) S(330) S(430) S(530)

NHLx 0.94477 0.86505 0.73682
Weibull 0.370878 0.19394 0.08713
gamma 0.34625 0.19193 0.10045
lognormal 0.32961 0.20544 0.13060
exponential 0.32557 0.23171 0.16491

It is obvious from Table 2 that the NHLx model has a better fit in both data sets,
and its corresponding tail probabilities are also fairly high. This means that the proposed
distribution is also a heavy-tailed distribution, which was compared to other heavy-tailed
distributions and contains more mass at the tail ends than the other distributions considered
for comparison.

The rest of the study is devoted to the in-depth analysis of two famous data sets in
the literature, highlighting the efficiency of the estimated NHLx model under real-life
scenarios.

6.2. Practical Applications

The first data set contains 65 successive eruptions of the waiting times (in seconds) of
the Kiama Blowhole data. It was studied in [32,33]. The second data set is about intensive
care unit (ICU) patients for varying time periods of 37 patients. It was analyzed in [34] and,
more recently, in [35].

The descriptive measures such as mean, median, skewness, and kurtosis have been
computed for both the eruption data and ICU data sets. The results are presented in Table 3.

Table 3. Descriptive measures for the two data sets.

Data Sets Mean Median Skewness Kurtosis

Eruption data 46.5486 29.3811 47.9415 43.2141

ICU data 19.9494 12.5919 47.9426 43.2148

From the measures of skewness and kurtosis, it is clear that the data are highly skewed
and heavy-tailed. Furthermore, the mean value is larger than the median.

For comparison purposes, we consider some of the most accurate extended Lx models:
the WL, EXL, and Lx models.

The MLEs and the corresponding SEs of these models are listed in Table 4.
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Table 4. MLEs with SEs in parentheses of the considered models for the two data sets.

Data Sets Models a b α β

Eruption data

NHLx 0.1052 0.0095 6.0546 7
(0.0246) (0.0080) (1.2023) (-)

WL 1.9842 2.9883 0.1915 2.0231
(3.8721) (2.8437) (0.1422) (8.2844)

EXL - 1.5369 0.0452 7
(0.1418) (0.0016) (-)

Lx - - 1.8007 46.7964
(0.4426) (13.9539)

ICU data

NHLx 0.0886 0.0132 8.0704 3
(0.0443) (0.0381) (4.2954) (-)

WL 4.3066 1.6119 0.2584 3.7699
(5.4222) (0.4737) (0.1369) (4.7682)

EXL - 1.4432 0.0951 3
(0.1743) (0.0366) (-)

Lx - - 2.7744 21.0499
(1.2094) (10.8889)

The measures of goodness of fit are used to verify whether a data set is distributionally
compatible with a given model. To judge the accuracy of a model, we use the Cramér–
von Mises (W*), Anderson–Darling (A*), and Kolmogorov–Smirnov (K-S) statistics (D),
along with the K-S p-Value related to D. Adequacy measures are widely used to determine
which model is best. Here, we traditionally consider the Akaike information criterion
(AIC), consistent AIC (CAIC), Bayesian information criterion (BIC), and Hannan–Quinn
information criterion (HQIC), which are based on the MLEs of the models. The model
with the minimum W*, A*, D, AIC, CAIC, BIC, and HQIC value and maximum p-Value is
chosen as the best one that fits the data. We may refer to [36] for the precise definitions of
these measures. Their values for the considered models and the two data sets are collected
in Table 5.

From Table 5, it is witnessed that the two data sets have a better fit for the proposed
NHLx model than the other three models.

Table 5. Values of the statistical measures for the considered models.

Models W* A* D p-Value AIC CAIC BIC HQIC

Eruption data

NHLx 0.0998 0.7471 0.0761 0.8520 592.9289 593.3289 599.4056 595.4804
WL 0.1119 0.8036 0.1062 0.4656 597.1462 597.8242 605.7818 600.5482
EXL 0.2213 1.4388 0.1230 0.2873 607.4000 607.5968 611.7178 609.101
Lx 0.1182 0.8570 0.2317 0.0021 619.4907 619.6874 623.8085 621.1917

ICU data

NHLx 0.2666 1.7021 0.2047 0.0905 242.5222 243.2495 247.355 244.226
WL 0.3459 2.1002 0.2071 0.0838 252.6803 253.9303 259.124 254.952
EXL 0.547 3.044 0.2266 0.0448 264.4479 264.8008 267.6697 265.5837
Lx 0.3404 2.0824 0.3091 0.0017 256.5615 256.9144 259.7833 257.6973

The histogram plots and estimated pdfs of the considered models are reported in
Figure 3.

From Figure 3, we see that both histograms exhibit the skewed nature of the two data
sets, and the estimated pdf curves depict that the NHLx model is observed to have a better
pattern of closeness to the histogram plot when compared to the other three models.
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(a) (b)

Figure 3. Curves of the estimated pdfs of the considered models for the two data sets. (a) Eruption
data. (b) ICU data.

7. Conclusions

In this paper, we propose a new four-parameter Lomax distribution called the
Nadarajah–Haghighi Lomax distribution. It aims to provide a new lower-bounded distribu-
tion that combines the functionalities of the Nadarajah–Haghighi and Lomax distributions,
and extends the modeling scope of the so-called exponential Lomax distribution. We have
derived various properties, including the expression of the probability density, hazard and
quantile functions, and diverse kinds of moments. The maximum likelihood method is
used for estimating the model parameters. Simulation studies show its effectiveness by
considering different sets of parameters. Furthermore, the support of two real data sets is
taken to illustrate the applications of the Nadarajah–Haghighi Lomax distribution and it is
compared with other Lomax-based distributions. From the obtained results, it is very easy
to understand that the Nadarajah–Haghighi Lomax distribution has a better fit than the
other Lomax models. The perspectives of new work based on the Nadarajah–Haghighi
Lomax distribution are numerous, including:

• the development of various extensions, such as parametric-functional, multivariate,
and discrete versions;

• the creation of new families of distributions;
• the construction of diverse regression models;
• by viewing the related cdf as a sigmoidal function, one can think of studying the

“confidential intervals” (or “confidential bounds”) and “supersaturation” to the hori-
zontal asymptote (at the median level) in the Hausdorff sense (see [37]). These two
characteristics are important for researchers in choosing an appropriate model for
approximating specific data from very different branches of scientific knowledge, such
as computer virus propagation (see [38]).
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