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Abstract: In this paper, we consider a memory-type swelling porous-elastic system. First, we use
the multiplier method to prove explicit and general decay results to solutions of the system with
sufficient regularities. These decay results are established under a very general assumption on the
relaxation function and for suitable given data. We also perform several numerical tests to illustrate
our theoretical decay results. Our results generalize and improve many earlier results in the literature.
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1. Introduction

There are many different types of clay soils that swell considerably when water is
added or absorbed in them and shrink with the loss of the water. This type of soil is
termed expansive [1]. When a soil deposit is loaded, for example, by a structure or man-
made fill, deformation will occur. Normally, deformation downward is called settlement.
Deformation may also be directed upward, which is then called heave. A common cause of
heaving is that a building or pavement is constructed when the topsoil layer is relatively
dry. Then, the structure covering the soil increases in water content due to capillarity action,
and the soil swells.

Heave will result if the pressure exerted by the pavement or building is less than
the swelling pressure. The heave is usually uneven and causes structural damage [2].
Documented evidence shows that problems associated with expansive soils are worldwide
and occur in areas, such as South Africa, Australia, India, United States, South America,
and the Middle East [3]. Swelling soils causes serious engineering problems. Estimates
indicate that about 20–25% of land area in the United State is covered with such problematic
soils with an accompanied economic loss of 5.5 to 7 billions USD in 2003 [4].

Hence, it is crucial to study the ways to annihilate or at least minimize such damage.
The reader is referred to [5–13] for other details concerning swelling soil. As established by
Ieşan [14] and simplified by Quintanilla [15], the basic field equations for the linear theory
of swelling porous elastic soils are mathematically given by{

ρzztt = P1x − G1 + F1

ρuutt = P2x + G2 + F2,
(1)

where the constituents z and u represent the displacement of the fluid and the elastic solid
material, respectively. The positive constant coefficients ρz and ρu are the densities of each
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constituent. The functions (P1, G1, F1) represent the partial tension, internal body forces,
and eternal forces acting on the displacement, respectively. Similar definition holds for
(P2, G2, F2) but acting on the elastic solid. In addition, the constitutive equations of partial
tensions are given by [

P1
P2

]
=

[
a1 a2
a2 a3

]
︸ ︷︷ ︸

A

[
zx
ux

]
, (2)

where a1, a3 are positive constants and a2 6= 0 is a real number. The matrix A is positive
definite in the sense that a1a3 ≥ a2

2. Quintanilla [15] investigated (1) by taking

G1 = G2 = ξ(zt − ut), F1 = a3zxxt, F2 = 0,

where ξ is a positive coefficient, with initial and homogeneous Dirichlet boundary condi-
tions and obtained an exponential stability result. Similarly, Wang and Guo [16] consid-
ered (1) with initial and some mixed boundary conditions, taking

G1 = G2 = 0, F1 = −ρzγ(x)zt, F2 = 0,

where γ(x) is an internal viscous damping function with a positive mean. They used the
spectral method to establish an exponential stability result. Ramos et al. [17] looked into
the following swelling porous elastic soils{

ρzztt − a1zxx − a2uxx = 0, in (0, L)× IR+

ρuutt − a3uxx − a2zxx + γ(t)g(ut) = 0, in (0, L)× IR+,
(3)

and established an exponential decay rate provided that the wave speeds of the system are
equal. Recently, Apalara [18] considered the following

ρzztt − a1zxx − a2uxx = 0, in (0, 1)× (0, ∞),

ρuutt − a3uxx − a2zxx +
∫ t

0
g(t− s)uxx(x, s)ds = 0, in (0, 1)× (0, ∞),

z(x, 0) = z0(x), zt(x, 0) = z1(x), u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, 1],

u(0, t) = u(1, t) = z(0, t) = z(1, t) = 0, t ≥ 0,

(4)

where the relaxation function satisfies the condition

g′(t) ≤ −ξ(t)g(t), t ≥ 0 (5)

and established a general decay result. For more results in porous elasticity system, porous-
thermo-elasticity systems, Timoshenko system and other systems, we refer the reader to
see [15,16,19–33].

In this paper, we consider the problem (4), where the solution is (z, u) such that z
and u represent the displacement of the fluid and the elastic solid material. The positive
constant coefficients ρu and ρz are the densities of each constituent. The coefficients a1, a2
and a3 are positive constants satisfying specific conditions. We establish a new asymptotic
behavior of the above swelling porous elastic system under the condition

g′(t) ≤ −ξ(t)H(g(t)), t ≥ 0, (6)

where ξ and H are two functions that satisfy some conditions to be specified later. Precisely,
in our paper:

• We consider Problem (4) and establish a general decay result with a wider class of
relaxation functions than the one considered in the literature such that the one by
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Apalara [18] is a special case of our class. Our result is obtained by using the multiplier
method and some convexity properties.

• We produce some numerical experiments to illustrate the energy decay results, for
this purpose, we develop a second-order numerical scheme to solve the problem (4)
based on finite element discretization and the Crank–Nicolson method in time that
has the property to be unconditionally stable.

• The result is significant to engineers and architects as it might help to attenuate the
harmful effects of swelling soils swiftly.

It is worth mentioning that (6) was first introduced in [34]. The rest of this paper is
organized as follows. In Section 2, we present some assumptions and material needed for
our work. In Section 3, we state and establish some essential lemmas needed in our proof.
Finally, we state and prove our main decay result in Section 4. We also, in Section 5, present
some numerical tests to illustrate our decay results as well as our conclusions.

2. Assumptions

In this section, we state some assumptions needed in the proof of our results. Through-
out this paper, c is used to denote a generic positive constant. For the relaxation function g,
we assume the following:
(A) g : [0,+∞)→ (0,+∞) is a C1 nonincreasing function satisfying

g(0) > 0 and 0 < ` :=
∫ +∞

0
g(s)ds < a3 −

a2
2

a1
. (7)

In addition, there exists a C1 function H : (0, ∞) −→ (0, ∞), which is linear or it is strictly
increasing and strictly convex C2 function on (0, r], r ≤ g(0), with H(0) = H′(0) = 0,
such that

g′(t) ≤ −ξ(t)H(g(t)), ∀t ≥ 0, (8)

where ξ is a positive nonincreasing differentiable function.

Remark 1 ([35]). If H is a strictly increasing and strictly convex C2 function on (0, r], with H(0) =
H′(0) = 0, then it has an extension H, which is a strictly increasing and strictly convex C2 function
on (0, ∞). For instance, if H(r) = a, H′(r) = b, H′′(r) = c, we can define H, for t > r, by

H =
c
2

t2 + (b− cr)t +
(

a +
c
2

r2 − br
)

. (9)

Lemma 1. The energy functional E, is defined by

E(t) =
1
2

∫ 1

0

[
ρzz2

t + a1z2
x + ρuu2

t +

(
a3 −

∫ t

0
g(s)ds

)
u2

x + 2a2zxux

]
dx +

1
2
(g ◦ ux)(t), (10)

where

(g ◦ v)(t) =
∫ 1

0

∫ t

0
g(t− s)|v(t)− v(s)|2 dsdx (11)

satisfies

E′(t) =
1
2

g′ ◦ ux −
1
2

g(t)
∫ 1

0
u2

xdx ≤ 1
2
(g′ ◦ ux)(t) ≤ 0. (12)

Proof. The routine multiplication of the first two equations of (4) by zt and ut, respectively,
and then integrating by parts over (0, 1), leads to

1
2

d
dt

∫ 1

0

[
ρzz2

t + a1z2
x + ρuu2

t + a3u2
x + 2a2zxux

]
dx−

∫ 1

0
uxt

∫ t

0
g(t− s)ux(s)dsdx = 0. (13)
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The estimation of the second term in the left hand side gives∫ 1

0
uxt

∫ t

0
g(t− s)(ux(t)− ux(s))dsdx−

∫ t

0
g(s)ds

∫ 1

0
uxutxdx

=
1
2

d
dt

g ◦ ux −
1
2

d
dt

∫ t

0
g(s)ds

∫ 1

0
u2

xdx− 1
2

g′ ◦ ux +
1
2

g(t)
∫ 1

0
u2

xdx.
(14)

Consequently, by substituting (14) into (13), we obtain (12).

3. Technical Lemmas

In this section, we present and establish some essential lemmas needed for our work.

Lemma 2 ([35]). There exist positive constants β0 and t1 such that

g′(t) ≤ −β0g(t), ∀t ∈ [0, t1]. (15)

Lemma 3 ([35]). For all u ∈ H1
0([0, 1]),

∫ 1

0

(∫ t

0
g(t− s)|ux(s)− ux(t)|ds

)2
dx ≤ Cα(h ◦ ux)(t), (16)

for any 0 < α < 1,

Cα =

(∫ ∞

0

g2(s)
αg(s)− g′(s)

ds
)

and h(t) = αg(t)− g′(t). (17)

It is worth mentioning that the constants Cα were first introduced in [36].

Lemma 4. The functional

F1(t) := ρu

∫ 1

0
utudx− a2

a1
ρz

∫ 1

0
ztudx

satisfies, for any ε1 > 0 and some constant a0,

F′1(t) ≤ −
a0

2

∫ 1

0
u2

xdx + ε1

∫ 1

0
z2

t dx +

(
ρu +

a2
2ρ2

z

4ε1a2
1

) ∫ 1

0
u2

t dx +
Cα

2a0
(h ◦ ux)(t), (18)

where a0 = a3 −
a2

2
a1
−
(∫ ∞

0 g(s)ds
)
> 0.

Proof. Direct computations using integration by parts gives

F′1(t) = −
(

a3 −
a2

2
a1

) ∫ 1

0
u2

xdx + ρu

∫ 1

0
u2

t dx− a2ρz

a1

∫ 1

0
ztutdx +

∫ 1

0
ux

∫ t

0
g(t− s)ux(s)dsdx. (19)

Applying Young’s inequalities, we obtain, for ε1 > 0,

− a2ρz

a1

∫ 1

0
ztutdx ≤ ε1

∫ 1

0
z2

t dx +
a2

2ρ2
z

4ε1a2
1

∫ 1

0
u2

t dx, (20)

and for ε2 > 0,∫ 1

0
ux

∫ t

0
g(t− s)ux(s)dsdx =

∫ t

0
g(s)ds

∫ 1

0
u2

xdx−
∫ 1

0
ux

∫ t

0
g(t− s)(ux(t)− ux(s))dsdx

≤
(∫ t

0
g(s)ds +

ε2

2

) ∫ 1

0
u2

xdx +
Cα

2ε2
(h ◦ ux)(t).

(21)
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Combining (19)–(21), we obtain

F′1(t) ≤ −
(

a3 −
a2

2
a1
−
∫ ∞

0
g(s)ds− ε2

2

) ∫ 1

0
u2

xdx + ε1

∫ 1

0
z2

t dx +

(
ρu +

a2
2ρ2

z

ε1a2
1

) ∫ 1

0
u2

t dx

+
Cα

2ε2
(h ◦ ux)(t).

(22)

Using assumption (A), taking ε2 = a0, where a0 = a3−
a2

2
a1
−
∫ ∞

0 g(s)ds, we obtain (18).

Lemma 5. Assume that (A) holds. Then, for any t1 > 0, the functional

F2(t) := −ρu

∫ 1

0
ut

∫ t

0
g(t− s)(u(t)− u(s))dsdx

satisfies, for any δ2, δ3 > 0,

F′2(t) ≤ −
ρuc0

2

∫ 1

0
u2

t dx + δ1

∫ 1

0
u2

xdx + δ3a2
2

∫ 1

0
z2

xdx

+

[
cCα

δ1
+

c
δ2
(1 + Cα) +

Cα

δ3
+ Cα

]
(h ◦ ux)(t),

(23)

where c0 =
∫ t1

0
g(s)ds.

Proof. Differentiating F2, taking into account (4), and using integrating by parts, we obtain

F′2(t) = −ρu

∫ t

0
g(s)ds

∫ 1

0
u2

t dx + a3

∫ 1

0
ux

∫ t

0
g(t− s)(ux(t)− ux(s))dsdx

−
∫ 1

0

∫ t

0
g(t− s)ux(s)ds

∫ t

0
g(t− s)(ux(t)− ux(s))dsdx

− ρu

∫ 1

0
ut

∫ t

0
g′(t− s)(u(t)− u(s))dsdx + a2

∫ 1

0
zx

∫ t

0
g(t− s)(ux(t)− ux(s))dsdx

= −ρu

∫ t

0
g(s)ds

∫ 1

0
u2

t dx +
∫ 1

0

(∫ t

0
g(t− s)(ux(t)− ux(s))

)2
dx

+

(
a3 −

∫ t

0
g(s)ds

) ∫ 1

0
ux

∫ t

0
g(t− s)(ux(t)− ux(s))dsdx

+ a2

∫ 1

0
zx

∫ t

0
g(t− s)(ux(t)− ux(s))dsdx− ρu

∫ 1

0
ut

∫ t

0
g′(t− s)(u(t)− u(s))dsdx.

(24)

Using Young’s inequality and Lemma 3, for any δ1 > 0, we obtain(
a3 −

∫ t

0
g(s)ds

) ∫ 1

0
ux

∫ t

0
g(t− s)(ux(t)− ux(s))dsdx ≤ δ1

∫ 1

0
u2

x(t)dx +
cCα

δ1
(h ◦ ux)(t). (25)

Similarly, we can find, for any δ2 > 0,
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− ρu

∫ 1

0
ut(t)

∫ t

0
g′(t− s)(z(t)− z(s))dsdx

= ρu

∫ 1

0
ut(t)

∫ t

0
h(t− s)(u(t)− u(s))dsdx− ρu

∫ t

0
ut(t)

∫ t

0
αg(t− s)(u(t)− u(s))dsdx

≤ δ2

∫ 1

0
u2

t (t)dx + ρ2
u

(∫ t
0 h(s) ds

)
2δ2

(h ◦ u)(t) + ρ2
u

α2

2δ2

∫ 1

0

(∫ t

0
g(t− s)(u(t)− u(s)ds

)2
dx

≤ δ2

∫ 1

0
u2

t (t)dx +
c

2δ2
(h ◦ ux)(t) +

α2cCα

2δ2
(h ◦ ux)(t)

≤ δ2

∫ 1

0
u2

t (t)dx +
c
δ2
(1 + Cα)(h ◦ ux)(t).

Using Young’s inequality and performing similar calculations as in (25), we obtain, for any
δ3 > 0

a2

∫ 1

0
ux

∫ t

0
g(t− s)(ux(t)− ux(s))dsdx ≤ δ3a2

2

∫ 1

0
u2

xdx +
Cα

δ3
(h ◦ ux)(t). (26)

Employing Lemma 3, we find

∫ 1

0

(∫ t

0
g(t− s)(ux(t)− ux(s))ds

)2
dx ≤ Cα(h ◦ ux)(t). (27)

Combining all the above estimates, we find, for any t ≥ t1

F′2(t) ≤ −ρu

(∫ t

0
g(s)ds− δ2

) ∫ 1

0
u2

t dx + δ2

∫ 1

0
u2

xdx + δ3a2
2

∫ 1

0
z2

xdx

+

[
cCα

δ1
+

c
δ2
(1 + Cα) +

Cα

δ3
+ Cα

]
(h ◦ ux)(t).

(28)

By taking δ2 = ρuc0
2 , we obtain the desired inequality (23).

Lemma 6. Assume that (A) holds. Then, the functional

F3(t) := −a2

∫ 1

0
(uzt − zut)dx

satisfies

F′3(t) ≤ −
a2

2
2ρu

∫ 1

0
z2

xdx +

(
a2

2
ρz

+
3a1

2ρu
+

3
2ρu

(
a1

ρz
− a3

ρu

)2
) ∫ 1

0
u2

xdx

+
3Cα

2ρu
(h ◦ ux)(t).

(29)

Proof. Direct computation gives

F′3(t) = −
a2

2
ρu

∫ 1

0
z2

xdx +
a2

2
ρz

∫ 1

0
u2

xdx + a2

(
a1

ρz
− a3

ρu

) ∫ 1

0
uxzxdx

− a2

ρu

∫ 1

0
zx

∫ t

0
g(t− s)ux(s)dsdx.

(30)
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Using Young’s inequality, we find

a2

(
a1

ρz
− a3

ρu

) ∫ 1

0
uxzxdx

≤
a2

2η2

2

∫ 1

0
z2

xdx +
1

2η2

(
a1

ρz
− a3

ρu

)2 ∫ 1

0
u2

xdx.

Exploiting Young’s inequality again, we obtain

a2

ρu

∫ 1

0
zx

∫ t

0
g(t− s)ux(s)dsdx

=
a2

ρu

∫ 1

0
zx

∫ t

0
g(t− s)(ux(s)− ux(t))dsdx +

a2

ρu

(∫ t

0
g(s)ds

) ∫ 1

0
uxzxdx

≤
a2

2η2

2

∫ 1

0
z2

xdx +
1

2η2ρ2
u

∫ 1

0

(∫ t

0
g(t− s)(|ux(s)| − |ux(t)|)ds

)2
dx

+
1

2η2ρ2
u

(∫ t

0
g(s)ds

)2 ∫ 1

0
u2

xdx ++
a2

2η2

2

∫ 1

0
z2

xdx

≤ a2
2η2

∫ 1

0
z2

xdx +
Cα

2η2ρ2
u
(h ◦ ux)(t) +

a1

2η2ρ2
u

∫ 1

0
u2

xdx.

By taking η2 = 1
3ρu

and using the fact that
∫ t

0 g(s)ds ≤ a1, estimate (29) is established.

Lemma 7. The functional

F4(t) := −ρz

∫ 1

0
ztzdx

satisfies, for any ε3 > 0,

F′4(t) ≤ −ρz

∫ 1

0
z2

t dx +

(
a1 +

a2
2

ε3

) ∫ 1

0
z2

xdx + ε3

∫ 1

0
u2

xdx. (31)

Proof. It is straight forward to see that

F′4(t) = −ρz

∫ 1

0
z2

t dx + a1

∫ 1

0
z2

xdx + a2

∫ 1

0
zxuxdx.

Using Young’s inequality and the fact that a1a3 > a2
2, we obtain (31).

Lemma 8. Under the assumption (A), the functional

F5(t) :=
∫

Ω

∫ t

0
p(t− s)|ux(s)|2dsdx (32)

satisfies, along the solution of Equation (4), the estimate

F′5(t) ≤ −
1
2
(g ◦ ux)(t) + 3a1

∫ 1

0
u2

x dx, (33)

where p(t) =
∫ +∞

t g(s)ds.
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Proof. Taking the derivative of F5 and using the fact p′(t) = −g(t), we have

F′5(t) = p(0)
∫ 1

0
|ux(t)|2dx +

∫ 1

0

∫ t

0
p′(t− s)|ux(s)|2dsdx

= −
∫ 1

0

∫ t

0
g(t− s)|ux(s)− ux(t)|2dsdx

− 2
∫ 1

0
ux(t)

∫ t

0
g(t− s)(ux(s)− ux(t))dsdx + p(t)

∫ 1

0
|ux(t)|2dx.

(34)

Using Young’s inequality, we have the following

− 2
∫ 1

0
ux(t)

∫ t

0
g(t− s)(ux(s)− ux(t))dsdx

≤ 2γ
∫ 1

0
|ux(s)|2dx +

∫ t
0 g(s)
2γ

∫ 1

0

∫ t

0
g(t− s)|ux(s)− ux(t)|2dsdx

≤ 2γ
∫ 1

0
|ux(s)|2dx +

∫ ∞
0 g(s)

2γ

∫ 1

0

∫ t

0
g(t− s)|ux(s)− ux(t)|2dsdx.

(35)

Choosing γ = a1 > 0 and using the fact that p(t) ≤ p(0) < a1, then estimate (33) is
established.

Lemma 9. The functional L defined by

L(t) = µE(t) +
4

∑
i=1

µiFi(t) (36)

satisfies, for suitable choice of µ, µ1, µ2, µ3, µ4 and for all t ≥ t1,

L′(t) ≤ −4a1

∫ 1

0
u2

x dx−
∫ 1

0
z2

x dx−
∫ 1

0
u2

t dx−
∫ 1

0
z2

t dx +
1
4
(g ◦ ux)(t), (37)

where t1 = g−1(r), and

L(t) ∼ E(t). (38)

Proof. By taking the derivative of the functional L and using the above estimates, with
choosing η1 = 1

µ3
, ε1 = 1

µ1
, ε3 = 1

µ4
, we find

L′(t) ≤ µα

2
(g ◦ ux)(t)−

(
µ3

a2
2

2ρu
− µ2δ3a2

2 − µ4

[
a1 + a2

2µ4

]) ∫ 1

0
z2

xdx

−
(

µ1
a0

2
− µ2δ1 − µ3

[
a2

2
ρz

+
3a1

2ρu
+

3
2

(
a1

ρz
− a3

ρu

)]
− 1

) ∫ 1

0
u2

xdx

−
(

µ2ρzc0

2
− µ1

[
ρu +

a2
2µ1ρ2

z

4a2
1

]) ∫ 1

0
u2

t dx

− (µ4ρz − 1)
∫ 1

0
z2

t dx

−
(

µ

2
− µ1

Cα

2a0
− µ2

[
cCα

δ1
+

c
δ2
(1 + Cα) +

Cα

δ3
+ Cα

]
− 3µ3

2ρu
Cα

)
(h ◦ ux)(t)

(39)

First, we choose µ4 so that µ4ρz > 1. Then, we select µ3 large enough such that

β1 := µ3
a2

2
2
− µ4

[
a3 + a2

2µ4

]
> 1, (40)
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and then we choose µ1 large enough that

β2 := µ1
a0

2
− µ3

[
a2

2
ρz

+
3a1

2ρu
+

3
2

(
a1

ρz
− a3

ρu

)]
− 1 > 4a1. (41)

After fixing µ1, we select µ2 large enough such that

β3 :=
µ2ρzc0

2
− µ1

[
ρu +

a2
2µ1

4a2
1

ρ2
z

]
> 1. (42)

Now, for any fixed µ1, µ2, µ3, µ4, we pick δ3 < β1
2µ2a2

2
, δ1 < β2

2µ2
, so that the following

estimates are satisfied

µ3
a2

2
2
− µ2δ3a2

2 − µ4

[
a3 + a2

2µ4

]
> 1. (43)

µ1
a0

2
− µ2δ1 − µ3

[
a2

2
ρz

+
3a1

2ρu
+

3
2

(
a1

ρz
− a3

ρu

)]
− 1 > 4a1. (44)

Since αg2(s)
αg(s)−g′(s) < g(s), using the Lebesgue dominated convergence theorem, we can find

αCα =
∫ ∞

0

αg2(s)
αg(s)− g′(s)

ds −→ 0, as α→ 0. (45)

Hence, there exists some 0 < α∗ < 1, such that if α < α∗, then

αCα <
1

8
(

µ1
2a0

+ µ2

[
c
δ1
+ c

δ2
+ 1

δ3
+ 1
]
+ µ3

3
2ρu

) . (46)

By putting α = 1
2µ and choosing µ sufficiently large such that

µ

4
− cµ2

δ2
> 0, (47)

which gives

µ

2
− cµ2

δ2
− Cα

(
µ1

2a0
+ µ2

[
c
δ1

+
c
δ2

+
1
δ3

+ 1
]
+

3µ3

2ρu

)
> 0. (48)

Hence, we conclude that (37) holds. Moreover, we can choose µ even larger (if needed) so
that (38) is satisfied, which means that, for some constants α1, α2 > 0,

α1E(t) ≤ L(t) ≤ α2E(t).

4. The Main Result

In this section, we state and prove our main result and give some examples to illustrate
our theoretical result.

Theorem 1. Assume (A) holds. Then, there exist positive constants λ1 and λ2 such that the
energy of (4) satisfies, for all t > t1 = g−1(r),

E(t) ≤ λ2H−1
1

(
λ1

∫ t

g−1(r)
ξ(s)ds

)
, (49)
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where H1(t) =
∫ r

t
1

sH′(s)ds, is strictly decreasing and convex on (0, r], with limt→0 H1(t) = +∞.

Proof. Let the functional L defined by

L(t) = L(t) + F5(t). (50)

By using Lemma 8, there exists a positive constant γ such that

L′(t) ≤ −a1

∫ 1

0
u2

x dx−
∫ 1

0
z2

x dx−
∫ 1

0
u2

t dx−
∫ 1

0
z2

t dx− 1
4
(g ◦ ux)(t) ≤ −γE(t). (51)

Then,

γ
∫ t

0
E(s) ds ≤ −L(t) + L(0) ≤ L(0). (52)

Consequently, ∫ ∞

0
E(s) ds < ∞. (53)

Making use of (10), (12) and (37), and exploiting Lemma 2, we find, for a positive constant
γ0

F ′(t) ≤ −γ0E(t) + c
∫ t

t1

g(t− s)
∫ 1

0
|ux(t)− ux(s)|2 dxds, (54)

where F (t) = L(t) + cE(t).

Now, we estimate the second term in the right-hand side of (54). For that, we distin-
guish two cases :
Case 1: H is linear. We multiply (54) by ξ(t) and use hypothesis (A) to obtain for a positive
constants γ1,

ξ(t)F ′(t) ≤ −γ1ξ(t)E(t) + cξ(t)
∫ t

t1
g(t− s)

∫ 1
0 |ux(t)− ux(s)|2dxds

≤ −γ1ξ(t)E(t) + c
∫ t

t1
ξ(s)g(t− s)

∫ 1
0 |ux(t)− ux(s)|2dxds

≤ −γ1ξ(t)E(t)− c
∫ t

t1
g′(s)

∫ 1
0 |ux(t)− ux(t− s)|2dxds

≤ −γ1ξ(t)E(t)− cE′(t).

(55)

Using the fact ξ ′(t) ≤ 0, the functional Ψ := ξF + cE satisfies Ψ(t) ∼ E(t) and

Ψ′(t) ≤ −γ1ξ(t)E(t) ≤ −γ2ξ(t)Ψ(t), ∀t ≥ t1. (56)

Then, after integration over (t1, t), we have

Ψ(t) ≤ c1 e−c2
∫ t

t1
ξ(s) ds, ∀t ≥ t1. (57)

Then, using the fact that Ψ(t) ∼ E(t), (49) is established.
Case 2: H is nonlinear. Due to estimate (53), we can choose a constant 0 < q < 1 so that
the function I defined by

0 < I(t) := q
∫ t

t1

∫ 1

0
|ux(t)− ux(s)|2 dxds < 1, ∀t ≥ t1. (58)
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Let us define

χ(t) := −
∫ t

t1

g′(s)
∫ 1

0
|ux(t)− ux(t− s)|2dxds. (59)

By (12), we find that χ(t) ≤ −cE′(t). Since H is strictly convex on (0, r] and H(0) = 0, then

H(θz) ≤ θH(z), 0 ≤ θ ≤ 1, and z ∈ (0, r]. (60)

Using (58), assumption (A) and Jensen’s inequality leads to

χ(t) = 1
qI(t)

∫ t
t1

I(t)(−g′(s))q
∫ 1

0 |ux(t)− ux(t− s)|2 dx ds

≥ 1
qI(t)

∫ t
t1

I(t)ξ(s)H(g(s)) q
∫ 1

0 |ux(t)− ux(t− s)|2 dx ds

≥ ξ(t)
qI(t)

∫ t
t1

H(I(t)g(s)) q
∫ 1

0 |ux(t)− ux(t− s)|2 dx ds

≥ ξ(t)
q H

(
1

I(t)

∫ t
t1

I(t)g(s) q
∫ 1

0 |ux(t)− ux(t− s)|2 dx ds
)

= ξ(t)
q H

(
q
∫ t

t1
g(s)

∫ 1
0 |ux(t)− ux(t− s)|2 dx ds

)
= ξ(t)

q H
(

q
∫ t

t1
g(s)

∫ 1
0 |ux(t)− ux(t− s)|2 dx ds

)
,

(61)

where H is an extension of H such that H is strictly increasing and strictly convex C2

function on (0, ∞). Hence, we obtain∫ t

t1

g(s)
∫ 1

0
|ux(t)− ux(t− s)|2 dx ds ≤ 1

q
H−1

(
qχ(t)
ξ(t)

)
. (62)

Therefore, (54) becomes

F ′(t) ≤ −σ1E(t) + cH−1
(

qχ(t)
ξ(t)

)
, ∀t ≥ t1. (63)

Now, for ε < r, let

F1(t);= H′
(

ε
E(t)
E(0)

)
F (t) + E(t), (64)

which is equivalent to E. Using the fact that E′ ≤ 0, H′ > 0, H′′ > 0, then (63) converts to

F ′1(t) = ε
E′(t)
E(0) H′′

(
ε

E(t)
E(0)

)
F (t) + H′

(
ε

E(t)
E(0)

)
F ′(t) + E′(t)

≤ −σ1E(t)H′
(

ε
E(t)
E(0)

)
+ cH′

(
ε

E(t)
E(0)

)
H−1

(
qχ(t)
ξ(t)

)
+ E′(t).

(65)

Due to the argument given in (Arnold [37] (pp. 61–64)), we obtain

H∗(s) = s(H′)−1(s)− H
(
(H′)−1(s)

)
, if s ∈ (0, H′(r)], (66)

where H∗ be the conjugate of H in the sense of Young, and H∗ satisfies the following
Young’s inequality

AB ≤ H∗(A) + H(B), if A ∈ (0, H′(r)], B ∈ (0, r]. (67)
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Thus, with A = H′
(

ε
E(t)
E(0)

)
and B = H−1

(
qχ(t)
ξ(t)

)
, using (12) and (65)–(67), we arrive at

F ′1(t) ≤ −σ1E(t)H′
(

ε
E(t)
E(0)

)
+ cH∗

(
H′
(

ε
E(t)
E(0)

))
+ c

qχ(t)
ξ(t)

+ E′(t)

≤ −σ1E(t)H′
(

ε
E(t)
E(0)

)
+ cε

E(t)
E(0)

H′
(

ε
E(t)
E(0)

)
+ c

qχ(t)
ξ(t)

+ E′(t). (68)

Using the fact that ε
E(t)
E(0) < r, then H′

(
ε

E(t)
E(0)

)
= H′

(
ε

E(t)
E(0)

)
and multiplying (68) by ξ(t),

we find

ξ(t)F ′1(t) ≤ −σ1ξ(t)E(t)H′
(

ε
E(t)
E(0)

)
+ cεξ(t)

E(t)
E(0)

H′
(

ε
E(t)
E(0)

)
+ cqχ(t) + ξ(t)E′(t)

≤ −σ1ξ(t)E(t)H′
(

ε
E(t)
E(0)

)
+ cεξ(t)

E(t)
E(0)

H′
(

ε
E(t)
E(0)

)
− cE′(t). (69)

Hence, by taking F2(t) = ξ(t)F1(t) + cE(t), we find for some positives constants b1, b2 > 0,

b1F2(t) ≤ E(t) ≤ b2F2(t). (70)

Consequently, with a suitable choice of ε, we obtain, for some constant σ > 0 ,

F ′2(t) ≤ −σξ(t)
(

E(t)
E(0)

)
H′
(

ε
E(t)
E(0)

)
= −σξ(t)H2

(
E(t)
E(0)

)
, ∀t ≥ t1. (71)

where H2(t) = tH′(εt). Since H′2(t) = H′(εt) + εtH′′(εt), then, making use of the strict
convexity of H on (0, r], we find that H′2(t), H2(t) > 0 on (0, 1]. Thus, with

R(t) =
b1F2(t)

E(0)
∼ E(t). (72)

By (71), we find for some positive constant ϑ1 > 0,

R′(t) ≤ −ϑ1ξ(t)H2(R(t)), ∀t ≥ t1. (73)

Then, by integration over (t1, t) yields∫ t

t1

−R′(t)
H2(R(t))

ds ≥ ϑ1

∫ t

t1

ξ(s) ds, (74)

which gives

∫ εR(t1)

εR(t)

1
sH′(s)

ds ≥ ϑ1

∫ t

t1

ξ(s) ds. (75)

Hence, let us define a function H1(t) =
∫ r

t
1

sH′(s) ds, using the properties of H, the fact H1

is strictly decreasing function on (0, r] and limt→0 H1(t) = +∞, we obtain

R(t) ≤ 1
ε

H−1
1

(
ϑ1

∫ t

t1

ξ(s) ds
)

. (76)

Consequently, from (72) and (76), we obtain the desired result (49).

Example 1. (1) Let g(t) = ae−bt, t ≥ 0, a, b > 0 are constants, and a is chosen so that (A) is
satisfied; then

g′(t) = −bH(g(t)) with ξ(t) = b and H(s) = s.
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Thus, under the assumptions of Theorem 1, we conclude that the solution of (4) satisfies, for
two constants d1, d2 > 0, the energy estimate

E(t) ≤ d1e−d2t, ∀ t > t1.

(2) For g(t) = ae−(1+t)ν
, for t ≥ 0, 0 < ν < 1, and a is chosen so that condition (A) is

satisfied, then

g′(t) = −ξ(t)H(g(t)) with ξ(t) = ν(1 + t)ν−1 and H(s) = s.

Thus, under the assumptions of Theorem 1, we conclude that the solution of (4) satisfies, for
some constant C > 0, the energy estimate

E(t) ≤ Ce−c(1+t)ν
, when t is large enough.

(3) Consider the following relaxation function,

g(t) =
a

(1 + t)ν
, t ≥ 0,

for ν > 1, and a is chosen so that hypothesis (A) remains valid. Then

g′(t) = −bH(g(t)) with ξ(t) = b and H(s) = sp,

where b is a fixed constant, p = 1+ν
ν , which satisfies 1 < p < 2. Thus, under the assumptions

of Theorem 1, we conclude that the solution of (4) satisfies, for some constant C > 0 and
t1 > 0, the energy estimate

E(t) ≤ C
(1 + t)ν

, ∀ t > t1.

5. Numerical Tests

In this section, numerical experiments are performed to illustrate the energy decay
results in Theorem 1. For this purpose, we developed a second-order numerical scheme
to solve the problem (4) based on finite element discretization and the Crank–Nicolson
method in time that has the property of being unconditionally stable.

The spatial interval (0, L) = (0, 1) is subdivided into 100 sub-intervals, where the
temporal interval (0, T) = (0, 1000) is subdivided into N with a time step ∆t = T/N. We
ran our code for N time steps (N = T/∆t) using the following initial conditions:

z0(x) = sin(πx), u0(x) = 2 sin(πx),

z1(x) = u1(x) = sin(
π

2
x)

The numerical tests are done in the light of the Example 1 as follows

• Test 1: For the first numerical test, we choose the following entries:

ρz = ρu = a1 = a2 = 1, a3 = 2,

and the relaxation function
g(t) = e−2t, t ≥ 0.

Thus, under the assumptions of Theorem 1, the solution of (4) satisfies the energy
estimate

E(t) ≤ Eh(t) = Ce−
1
5 t, ∀t > t1

where C is a constant depends on the energy at t = 0.
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• Test 2: In the second numerical test, we consider the following entries so that condition
(A) is satisfied

ρz = ρu = a1 = a2 = 1, a3 = 3

and the following relaxation function

g(t) =
1
3

e−
√

1+t, t ≥ 0

Then, under the assumptions of Theorem 1, the solution of (4) satisfies the en-
ergy estimate

E(t) ≤ Eh(t) = Ce−
√

1+t, for a t large enough

where C is a constant depends on the energy at t = 0.
• Test 3: For last test, we consider the third case of Example 1 with the same entries of

Test 1 and with an polynomial relaxation function

g(t) =
1

(1 + t)3 , t ≥ 0.

Under the assumptions of Theorem 1, the solution of (4) satisfies the energy estimate

E(t) ≤ Eh(t) = C
1

(1 + t)3 , ∀t > t1,

where C is a constant depends on the energy at t = 0.

For Test 1, we examine the exponential decay case. Under the initial and boundary
conditions above, we plot in Figure 1 the decay behavior of the solution (z, u) in time and
space. In Figure 2, we plot the energy decay and we made a zoom on the time interval
[950, 1000] to show the difference between the curves of E(t) and Eh(t) and according to
the parameters chosen in this test the time t1 is too small.

Next, by following the same process, we present the numerical results of Test 2 in
Figures 3 and 4. We observed that the energy decay satisfies the energy inequality in Test
2, when the time is large enough that t ≥ 840 (as we can observe in the zoomed in part of
Figure 4).

Finally, Figures 5 and 6 show the results of Test 3, which are demonstrated the damping
behavior. Furthermore, the energy inequality is satisfied for t1 = 120 (as we can observe on
the zoom part of Figure 6).

As a conclusion, we observed that the energy decay uniformly for all tests and satisfies
the results of Theorem 1.

(a) (b)

Figure 1. Test 1: The approximate solution (z, u) in the x-t plane. (a) z(x, t). (b) u(x, t).
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Figure 2. Test 1: energy decay.

(a) (b)

Figure 3. Test 2: The approximate solution (z, u) in the x-t plane. (a) z(x, t). (b) u(x, t).

Figure 4. Test 2: energy decay.
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(a) (b)

Figure 5. Test 3: The approximate solution (z, u) in the x-t plane. (a) z(x, t). (b) u(x, t).

Figure 6. Test 3: energy decay.

6. Conclusions

In this work, we considered a swelling porous elastic soil system with a viscoelastic
damping term. We obtained a general decay result with a large class of the relaxation
functions associated with the memory term. We also preformed numerical tests to justify
our theoretical decay result. Our result generalizes the one of [18] and gives a sharper
decay rate in specific cases.
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