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Abstract: The present research focuses on the use of a meshless method for the solution of nanoplates
by considering strain gradient thin plate theory. Unlike the most common finite element method,
meshless methods do not rely on a domain decomposition. In the present approach approximating
functions at collocation nodes are obtained by using radial basis functions which depend on shape
parameters. The selection of such parameters can strongly influences the accuracy of the numerical
technique. Therefore the authors are presenting some numerical benchmarks which involve the solu-
tion of nanoplates by employing an optimization approach for the evaluation of the undetermined
shape parameters. Stability is discussed as well as numerical reliability against solutions taken for the
existing literature.
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1. Introduction

In the broad context of meshless methods Meshless Local Petrov–Galerkin (MLPG) [1]
demonstrated to have strong capabilities to solve problems where weakly-singular traction
and displacement boundary integral equations are involved. Moreover, other problems
in this context have been analyzed and solved [2,3]. The main idea of meshless methods
is to go beyond the current limitations of finite element models for analyzing problems
in mechanics [4]. Unlike classical FEM shape functions are developed for a scattered
set of collocation nodes [4,5] and their generation defines different meshless approaches.
The one considered in the present work is named Radial Point Interpolation Method
(RPIM) [6–9] which has the fundamental property of Kronecker delta function [10–13].
This approach makes the RPIM extremely easy to be implemented and used for the solution
of any problem in structural mechanics.

It has been demonstrated to be extremely relevant in industrial applications for na-
noengineering that nanoelectromechanical (NEMS) systems have been widely considered
in the recent literature with several gradient elasticity problems [14,15]. It has been demon-
strated in recent literature that nano-structures are used for micro-sized systems and devices
such as biosensors, nano-actuators and nano-electro-mechanical systems [16].

Among the vast literature of nonlocal theories stress-driven models have been re-
cently presented for nanobeams presenting analytical solutions. For instance closed-form
solution of Bernoulli and Timoshenko type for Erigen-like formulations and stress field
and a bi-exponential averaging kernel functions characterized by a scale parameter is
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presented in [17–19]. Nonlocal strain gradient Bernoulli like beam models by considering
special bi-exponential averaging kernels and functionally graded materials has been pre-
sented in [20]. Nonlocal beam formulations have been presented within a thermodynamic
framework, variational formulation within its analytical solution has been provided in [21].
Nanobeams can be subjected to axial loads which leads to buckling, such effects must be
considered for a proper nanoengineering design, thus stress-driven buckling of nanobeams
can be found in [22,23]. In the context of dynamic problems vibrations in nonlocal integral
elasticity has been recently considered for beams and plates in [24,25].

Most of the nonlocal theories relies on homogenization approaches which aim at simpli-
fying the problem by considering less modelling parameters in composite materials [26,27].
It is remarked that size effects and microstructures paved the way in presenting innovative
and multiscale approches in solid mechanics [28,29].

It has been demonstrated by several researchers that higher-order elasticity is be-
coming of paramount importance for solid mechanics as mentioned in [30–32]. In most
researchers the term nonlocality has been brought by Eringen [33] and by Eringen and
Edelen [34] where it can be found that the constitutive relations have to be modified to take
into account their dependency on the mechanical properties of the entire body and not
only of the properties in the neighborhood of the material point. In this regard, in the
present work nonlocal effects have be meaning introduced by Altan and Aifantis [35,36],
which considered a simplified nonlocal model where all nonlocalities are concentrated
in a gradient model similar to the one proposed by Mindlin [37]. Such approach, known
as strain gradient theory, has been utilized also by others in other contexts in solid mechan-
ics [38–40]. Strain gradient theory [41] has been demonstrated to be a constrained version
of other higher-order unconstrained versions available in the literature such as couple
stress [42–44] as well as micropolar theories [45–47].

In the framework of plate theories thin plate model is very common within the area
of structural mechanics of investigating thin-walled structures [48,49]. Such approach can
be easily extended in order to consider composite structures such as laminated [50,51]
or sandwich ones [52].

To this day, the application of Mesh Free Methods for the analysis of structures
modeled according to the strain gradient theory appears to be limited. Static analysis
as well as buckling and free vibration of strain gradient beams and plates have been
studied by means of different Mesh Free techniques [53–56]. However, none of the works
mentioned makes use of the Mesh Free RPIM to perform the analysis.

In the present work the advantages of meshless methods are considered in the frame-
work of strain gradient composite thin plate theory to solve such numerical problem.

2. Theoretical Background

The present work considers the problem of laminated thin plates of rectangular plane
form of size a× b, where a, b indicate lengths with respect to x, y, respectively. The plate
thickness is indicated with h and the plate represents the middle plane of the actual plate
with z axis pointed normal to the x, y plate. Each ply which constitutes the stacking
sequence is indicated with hk and the total thickness is computed as h = ∑NL

k=1 hk, where
NL denotes the number of plies [57].

The present displacement field follows the classical thin plate theory and Cartesian
displacements can be represented as [58]

U = u− zD(s)u, (1)

where u is the vector collecting the three middle plane displacements of the material point
and D(s) is the derivative operation defined in [59]. The strain vector ε is given by

ε = ε(m) + zε(b), (2)
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in which ε(m) and ε(b) denote respectively the membrane and bending strains, respectively.
They can be evaluated as follows

ε(m) = D(m)u, ε(b) = D(b)u (3)

where the meaning of the differential operators D(m), D(b) is reported in [58,59].
Linear constitutive law is considered within the strain gradient theory as suggested

in [40] allows to relate the membrane stresses in the k-th layer σ(k) to the corresponding
strain components ε as shown below [60,61]

σ(k) =
(

1− `2∇2
)

Q̄(k)ε, (4)

in which the nonlocal parameter ` includes the micro/macro-scale interaction effects.
The dependency of the stresses on the strain distribution within the medium is empha-
sized by the presence of the Laplacian in Cartesian coordinate system: ∇2 = ∂2

∂x2 + ∂2

∂y2 .

On the other hand, Q̄(k) represents the plane stress-reduced stiffness coefficients matrix
of the k-th layer. The terms Q̄(k)

ij of this matrix depend on the orthotropic properties
of the layer (Young’s moduli E1, E2, Poisson’s ratio ν12 and shear modulus G12), as well
as by an arbitrary orientation θ(k) as indicated in the book [62]. the SN and SM are the stress
resultants that can be defined as follows

SN =

(
AD(m) + BD(b) − `2

(
AD(m)

xx + AD(m)
yy + BD(b)

xx + BD(b)
yy

))
u,

SM =

(
BD(m) + DD(b) − `2

(
BD(m)

xx + BD(m)
yy + DD(b)

xx + DD(b)
yy

))
u,

(5)

The differential operators D(m)
xx , D(m)

yy , D(b)
xx , D(b)

yy are defined in [58]. The constitutive
operators A, B, D represent instead the membrane, membrane-bending coupling and
bending stiffness matrices of the laminated composite plates [62].

In the current paper, isotropic and composite schemes are considered, therefore
for some configurations B 6= 0, thus, membrane and bending behaviors are coupled.
The variational form of the present equilibrium is represented by [58,63]

0 =
∫

Ω

{(
D(m)δu

)T(
AD(m) + BD(b)

)
u +

(
D(b)δu

)T(
BD(m) + DD(b)

)
u

+ `2
[(

D(m)
x δu

)T(
AD(m)

x + BD(b)
x

)
u +

(
D(m)

y δu
)T(

AD(m)
y + BD(b)

y

)
u

+
(
D(b)

x δu
)T(

BD(m)
x + DD(b)

x

)
u +

(
D(b)

y δu
)T(

BD(m)
y + DD(b)

y

)
u
]
− δuTq

}
dΩ

(6)

The present meshless technique is applied to such variational statements of the problem.

3. Mesh Free Methods

The present numerical solution is obtained using a Mesh Free approach.
As explained in detail in [4], with respect to traditional FEM, the two methods diverge

at the stage of geometry discretization. In conventional FEM, the continuum is discretized
by means of a mesh which also introduces predefined relationship between the nodes.
Shape functions and system equations are then written for each element in the mesh.

In a Mesh Free method the domain is not discretized. It is represented by a set of nodes
scattered in the domain and on its boundaries. Since no elements exist in this description,
the shape functions and the system equations are written for the nodes. This characteristics
allows to introduce a huge degree of flexibility, with respect to FEM, in term of adding
or removing nodes from the domain.
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The absence of the mesh implies the the relationship between the nodes representing
the domain are not defined a priori. Therefore, a new concept has to be introduced to explain
how the shape functions are constructed.

In Mesh Free methods, the field variable is interpolated using only the nodes falling
within a local domain, within the problem domain, called support domain. The support
domain can have different shapes, the most common being circular or rectangular, the latter
being the choice for this work. The numerical procedure for the shape functions calculation
is as follows. The support domain is first centered in a point of interest. The nodes falling
inside it are identified and the shape functions are constructed using only those nodes.
Once all the necessary calculations are performed, the support domain is moved to be
centered in the next point of interest and the procedure starts anew. The so-called point
of interest in which this local domain is centered can be either a node or, as chosen for this
work, a Gauss point.

It has been explained how in mesh free methods the domain is represented by a set
of scattered nodes rather than discretized by means of a mesh. Hence, it may seem
contradictory to talk about Gauss points in such context. As a matter of fact, the Gauss
points come from the necessity of numerically evaluate the integrals appearing in the weak
form of the equation of motion, as shown in Equation (6).

For the sole purpose of integrals evaluation, in fact, a so-called background mesh
needs to be introduced. The background mesh and nodal distribution are two independent
objects, as shown in Figure 1, and its sole purpose is the integrals evaluation.

Figure 1. Example of support domain, background mesh, Gauss integration points.

As stated, the only nodes used to construct the shape functions are the ones falling
within the support domain of the i-th point of interest. It follows that the size of the support
domain is an important aspect to ensure that the shape functions are computed properly.
The size of the local domain is evaluated as:

ds = αsdc (7)

where dc =
√

∆x2 + ∆y2 is the average nodal spacing and αs is a nondimensional parameter.
This αs parameter has to be tuned to ensure that the appropriate amount of nodes is

contained within the support domain.

4. Radial Point Interpolation Method (RPIM)

In the present approach solution is obtained in scattered points located in the given
plate rectangular domain. The approximating polynomials involved possess the Kronecker
delta property which allows a straightforward implementation of boundary conditions.
In the following implementation, in plane displacements u and v, transverse displacement
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w as well as rotations wx, wy are included in the numerical implementation even though
more primary variables are involved in the present formulation [58,59].

Since both isotropic and laminated plates are studied, the degrees of freedom for the
different cases are taken as shown in Table 1. In the context of the strain gradient theory,
the essential boundary conditions for the plate are shown in Table 2 where the four edges
are identified by the values of the physical coordinates x and y.

Table 1. Degrees of freedom considered for different kind of materials.

Material Degrees of Freedom

Isotropic w w,x w,y
Composite u v w w,x w,y

Table 2. Essential boundary conditions considered.

BCs x = 0, a y = 0, b

Supported v = w = ∂w
∂y = 0 u = w = ∂w

∂x = 0

Clamped u = v = w = ∂w
∂x = ∂w

∂y = 0 u = v = w = ∂w
∂x = ∂w

∂y = 0
Free No variables involved No variables involved

Any other higher-order derivative is carried out by numerical derivation of the afore-
mentioned parameters. Since both the deflection and its first derivatives are considered
unknown, the Hermite–RPIM formulation is here presented. Let’s consider a domain
enclosing n arbitrarily scattered nodes. The approximation of the generic displacement
w(x, y) can be expressed as:

w(x, y) = R>(x)a + R>,x(x)a
x + R>,y(x)a

y (8)

where R, R,x and R,y are the vectors including the radial basis functions (RBF) and their
derivatives. The correspondent coefficients are indicated using vectors a, ax and ay.
For the following numerical applications the well-known multi-quadrics (MQ) RBF is
used in its general form

Ri(x, y) = [(x− xi)
2 + (y− yi)

2 + C2]q (9)

where C = αCdc. Both q and αC are shape parameters that have to be tuned while dc is
the average nodal spacing.

The vectors of coefficients in Equation (8) can be obtained by enforcing the field function
and its derivatives to be satisfied at all the n nodes falling within the support domain of the point
of interest (x, y). The support domain is a local domain, typically circular or rectangular,
centered in a point of interest which can either be a node or an integration point.

This leads to 3n linear equations

W =

 R R,x R,y
R,x R,xx R,xy
R,y R,xy R,yy


a
ax

ay

 = G


a
ax

ay

 (10)

where W is a vector containing the function values of the degrees of freedom considered
in the collocation nodes and listed in Table 1. Thus, the independent parameter can be
carried out as

w(x, y) =
{

R> R>,x R>,y
}

G−1W = ΦΦΦ>W (11)

An example of what the shape functions look like as computed with this method is
given in Figure 2. A squared domain, represented by 3× 3 regularly distributed nodes, is
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considered and all of the nodes are used to construct the shape functions for this domain.
Figures 2–4 represent the shape functions and their first derivatives with respect to x and
y for the nodes in the bottom left corner, in the middle left side, in the middle of the do-
main and in the top right corner, respectively. For this particular case, the dimensionless
parameters of the RBF are chosen as C = 1 and q = 0.05.

Figure 2. Sample of shape functions generation for a reference unitary domain.

Figure 3. Shape functions of Figure 2 derived with respect to x.

Figure 4. Shape functions of Figure 2 derived with respect to y.

By following the same computational strategy of conventional finite element
method [58] the algebraic form of the variational statement can be carried out because
shape functions are evaluated at the collocation nodes. The needed integration is performed
by following well-known Gauss integration rules. Solution of the present static problem is
provided by Gauss elimination algorithm. The following section is dedicated to numerical
results, stability and accuracy.

5. Applications

In the following sections, the numerical results of the analysis are shown and com-
mented. Discussion about the degrees of freedom taken as variables in the problem and
numerical convergence analysis are introduced, as well as plots of both convergence and
deformed configurations which are also reported for clarity of representation.
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5.1. Isotropic Plates

This section shows the results of the numerical analysis of isotropic Kirchhoff nanoplates
modeled according to the second-order strain gradient theory and analyzed by means of a mesh
free RPIM. In this case, there is no coupling between the in plane and out of plane behav-
ior. Hence, the only unknown variables considered in the numerical implementation the are
transverse displacement w and the corresponding rotations wx, wy. The numerical codes are
developed in MATLAB.

The results in terms of mid transverse displacement are presented in the non-dimensional
form as follows:

w̄ =
1000wD

qza4 (12)

where w is the central plate deflection, qz is the magnitude of the transverse external load
and D is the bending rigidity D = Eh3/12(1− ν2).

Squared nanoplates with different constraints are analyzed, all having thickness
h = 0.34 nm. Young’s modulus and Poisson’s ratio are taken as 1100 GPa and 0.3, respec-
tively. Five different combinations of boundary conditions are accounted for, namely SSSS,
CCCC, SCSC, SFSF, SCSF.

Different nodal densities are also taken into account. Nanoplates represented by 3× 3,
5× 5, 7× 7 and 11× 11 equally spaced node grids are studied to analyze the convergence
of the method. The non-local parameter ` also varies according to the analysis and results
presented in the available literature [64].

The support domain used for the mesh free implementation has rectangular shape
and is centered in the Gauss points. Its dimensions are considered in the classical way [4]
ds = αsdc where dc is the average nodal spacing dc =

√
∆x2 + ∆y2 and αs is a dimensionless

parameter which, in this work, varies from 2 to 3. Note that, in this work, 2× 2 Gauss
integration points are used in each cell of the background integration mesh.

Results listed in Tables 3–6 compare the available analytical solutions [64] with
the present ones in terms of percentage error:

err% = 100
|we − w̄|

we
(13)

where we is the exact solution taken from the aforementioned references.
The provided comparison is performed for different boundary conditions, number

of collocation nodes and non-local parameter values.
As mentioned, in Mesh Free methods the background mesh and nodal distribu-

tion which represents the domain are two independent objects. However, in this work,
the analysis is performed considering the collocation nodes to be coincident with nodes
of the background mesh. This choice influences the convergence analysis in terms of mesh
refinement. A small number of nodes implies a coarser background mesh while high
number of nodes implies a finer mesh.

The αC and q coefficients characterizing the MQ radial basis functions, as well as the
non-dimensional αs support domain parameter, vary as the number of nodes changes.
On the contrary, they have been kept constant as the boundary conditions change. This
choice, although not very convenient, is made to show how the accuracy of the results
changes based only on the number of nodes used to represent the domain and on how re-
fined the background mesh is. The parameters are changed to provide the most suitable set
for the specific nodal distribution, so that the analysis is performed under some of the best
achievable conditions in each case. It is true that an optimal combination of shape parame-
ters may be found for all the different nodal distributions considered, but its application
on the different nodal densities will introduce new sources of error. Therefore, in this
work, we only focus on the influence that the nodal density and the integration have
on the accuracy of the results, while performing the analysis with the most convenient set
of parameters in each case.
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Table 3. Values of w̄ for 3× 3 nodal distribution, obtained for αC = 3, q = 1.3, αs = 2.

BC `̀̀ (nm)(nm)(nm) Exact Result Error (%)

SSSS

0 4.0624 2.8622 29.5441
0.2 4.0330 2.8338 29.7347
0.5 3.8844 2.6956 30.6045
1 3.4231 2.3142 32.3946

CCCC

0 1.2653 1.0716 15.3086
0.2 1.2333 1.0555 14.4166
0.5 1.0979 0.9785 10.8753
1 0.7946 0.7762 2.3156

SCSC

0 1.9171 1.5481 19.2478
0.2 1.8783 1.5269 18.7084
0.5 1.7093 1.4247 16.6501
1 1.3040 1.1519 11.6641

SFSF

0 15.0113 13.5089 10.0085
0.2 14.9470 13.4511 10.0080
0.5 14.6165 13.1711 9.8888
1 13.5451 12.3957 8.4857

SCSF

0 11.2359 10.8262 3.6463
0.2 11.1703 10.7635 3.6418
0.5 10.8454 10.4568 3.5831
1 9.8416 9.5731 2.7282

Table 4. Values of w̄ for 5× 5 nodal distribution, obtained for αC = 2.38, q = 0.01, αs = 2.4.

BC `̀̀ (nm)(nm)(nm) Exact Result Error (%)

SSSS

0 4.0624 3.8549 5.1078
0.2 4.0330 3.8262 5.1277
0.5 3.8844 3.6844 5.1488
1 3.4231 3.2736 4.3674

CCCC

0 1.2653 1.3058 3.2008
0.2 1.2333 1.2774 3.5758
0.5 1.0979 1.1466 4.4357
1 0.7946 0.8384 5.5122

SCSC

0 1.9171 1.8851 1.6692
0.2 1.8783 1.8509 1.4588
0.5 1.7093 1.6903 1.1116
1 1.3040 1.2914 0.9663

SFSF

0 15.0113 14.8721 0.9273
0.2 14.9470 14.8087 0.9253
0.5 14.6165 14.5144 0.6985
1 13.5451 13.7290 1.3577

SCSF

0 11.2359 11.2265 0.0837
0.2 11.1703 11.1623 0.0716
0.5 10.8454 10.8529 0.0692
1 9.8416 9.9527 1.1289

In addition, a visualization of the convergence trend is shown in Figure 5 as well
as a visualization of the deformed configuration of the nanoplates here analyzed shown
in Figure 6.

Observing the results, it should be remarked that while in the case of the non-local
parameter ` = 0 the results converge monotonically in most of the cases, this trend is no
longer followed as the value assumed by ` changes. To explain this behavior, it is necessary
to acknowledge the relative influence that both the nodal coordinates and the nodal density
have on the numerical results.
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Table 5. Values of w̄ for 7× 7 nodal distribution, obtained for αC = 1.06, q = 1.3, αs = 3.

BC `̀̀ (nm)(nm)(nm) Exact Result Error (%)

SSSS

0 4.0624 3.9617 2.4788
0.2 4.0330 3.9310 2.5291
0.5 3.8844 3.7815 2.6491
1 3.4231 3.3461 2.2494

CCCC

0 1.2653 1.2796 1.1302
0.2 1.2333 1.2470 1.1108
0.5 1.0979 1.1177 1.8034
1 0.7946 0.8305 4.5180

SCSC

0 1.9171 1.9072 0.5164
0.2 1.8783 1.8668 0.6123
0.5 1.7093 1.7035 0.3393
1 1.3040 1.3220 1.3804

SFSF

0 15.0113 14.9049 0.7088
0.2 14.9470 14.8228 0.8309
0.5 14.6165 14.5063 0.7539
1 13.5451 13.7327 1.3850

SCSF

0 11.2359 11.2019 0.3026
0.2 11.1703 11.1255 0.4011
0.5 10.8454 10.8058 0.3651
1 9.8416 9.9248 0.8454

Table 6. Values of w̄ for 11× 11 nodal distribution, obtained for αC = 1.06, q = 1.3, αs = 2.3.

BC `̀̀ (nm)(nm)(nm) Exact Result Error (%)

SSSS

0 4.0624 4.0472 0.3742
0.2 4.0330 4.0174 0.3868
0.5 3.8844 3.8711 0.3424
1 3.4231 3.4424 0.5638

CCCC

0 1.2653 1.2794 1.1144
0.2 1.2333 1.2464 1.0622
0.5 1.0979 1.1084 0.9564
1 0.7946 0.8018 0.9061

SCSC

0 1.9171 1.9272 0.5268
0.2 1.8783 1.8872 0.4738
0.5 1.7093 1.7163 0.4095
1 1.3040 1.3111 0.5445

SFSF

0 15.0113 15.0198 0.0566
0.2 14.9470 14.9430 0.0214
0.5 14.6165 14.6178 0.0089
1 13.5451 13.7315 1.3761

SCSF

0 11.2359 11.2265 0.1317
0.2 11.1703 11.1623 0.0510
0.5 10.8454 10.8529 0.0120
1 9.8416 9.9527 0.6899

In a case as the one under analysis, of a plate with fixed geometry, it comes natural
to understand that representing the problem domain with a small or large number of nodes
influences the accuracy of the results. In mesh free methods, this numerical phenomenon
occurs because the nodal spacing directly enters the calculation of derivatives of any order.
As explained in previous sections, the strain gradient theory requires the computation
of high order derivatives of the RBF. This implies that the spacial coordinates of the nodes
are multiplied several times, once per each derivative order, for each other. For small nodal
densities, meaning less nodes, these coordinates have larger values which implies that
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larger numbers appear in the shape functions. However, as the nodal density increases,
the coordinates of the nodes get smaller and smaller. When these numbers enter the shape
functions, they yields larger errors. The balancing of these two aspects, nodal density and
magnitude of the nodal coordinates, may cause the alteration in the trend exhibited by
the convergence.

Overall, results of the analysis are quite accurate, never reaching 2% error value
for the highest nodal density. As expected, the errors increase as the value of the non-local
parameter increases, for the reason mentioned above.
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Figure 5. Convergence analysis results.
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Figure 6. Deformed shapes of square isotropic nanoplates with different boundary conditions.

5.2. Composite Plates

A similar analysis is also performed on squared cross-ply laminates.
Simply-supported (SSSS) laminates with lamination schemes 0, (0/90), (0/90)2 and

(0/90)4, subjected to a sinusoidal load are analyzed. The material property used are
taken as E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2. Moreover, the thickness is given by
h = a/100. As in the previous section, the results are compared in terms of non-dimensional
mid-deflection:

w̄ = w0
E2h3

qsa4 (14)

where qs is the magnitude of the sinusoidal load, taken as 1. The analysis is performed
using 11× 11 regularly distributed nodes to represent the domain and 2× 2 Gauss points
to perform the numerical integration. The results of the analysis, compared in terms
of percentage error as shown in Equation (13), are shown in Table 7.
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Table 7. Non dimensional values of w̄ mid deflection for composite nanoplates, obtained
for αC = 1.85, q = −1.6, αs = 2.4.

`̀̀ (nm)(nm)(nm) Laminate Ref. [65] Result Error (%)

0

0 0.004312 0.004349 0.858071
(0/90) 0.010636 0.010693 0.535916
(0/90)2 0.005065 0.005109 0.868707
(0/90)4 0.004479 0.004520 0.915383

0.05

0 0.002170 0.002137 1.520737
(0/90) 0.003931 0.004033 2.594760
(0/90)2 0.002444 0.002351 3.805237
(0/90)4 0.002233 0.002167 2.955665

0.1

0 0.001450 0.001490 2.758621
(0/90) 0.002522 0.002584 2.458366
(0/90)2 0.001623 0.001605 1.109057
(0/90)4 0.001490 0.001497 0.469799

In this case, since the nodal density is kept constant, there is no need to change
the values of the non-dimensional parameters.

Even in this case, the values of the percentage error remain contained, never even
reaching 4%.

6. Conclusions

In this work, strain gradient nanoplates, both isotropic and laminated, have been
analyzed by means of the Radial Point Interpolation Method. The aim was to apply
a RPIM formulation to thin plates modeled via strain gradient theory. The paper provides
detailed theoretical notions on mesh free methods in general as well as accurate explanation
on the RPIM theoretical and numerical implementation. Moreover, theoretical notions are
here reported in both explicit and matrix formulation.

This work proves the validity of the RPIM for problems with higher order of deriva-
tives involved. Isotropic second order strain gradient Kirchhoff nanoplates with various
boundary conditions are first analyzed. More specifically, SSSS, CCCC, SCSC, SFSF and
SCSF boundary conditions are accounted for. Numerical convergence with the analyti-
cal results achieved in recent literature was studied. Results variation as the non-local
parameter `, introduced by the strain gradient theory, varies has also been studied. In
a similar way, cross-ply composite plates subjected to a sinusoidal load are also analyzed.
In this case, 11 × 11 nodes are used to represent the domain and different lamination
sequences are considered. The paper provides a detailed explanation of the RPIM method
theoretical and numerical implementation as well as theoretical notions in both explicit and
matrix form. This work proves the validity of the RPIM for problems with higher order
of derivatives involved.
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