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Abstract: In this paper, a new approach to investigating the unsteady natural convection flow of
viscous fluid over a moveable inclined plate with exponential heating is carried out. The mathematical
modeling is based on fractional treatment of the governing equation subject to the temperature,
velocity and concentration field. Innovative definitions of time fractional operators with singular and
non-singular kernels have been working on the developed constitutive mass, energy and momentum
equations. The fractionalized analytical solutions based on special functions are obtained by using
Laplace transform method to tackle the non-dimensional partial differential equations for velocity,
mass and energy. Our results propose that by increasing the value of the Schimdth number and
Prandtl number the concentration and temperature profiles decreased, respectively. The presence of a
Prandtl number increases the thermal conductivity and reflects the control of thickness of momentum.
The experimental results for flow features are shown in graphs over a limited period of time for
various parameters. Furthermore, some special cases for the movement of the plate are also studied
and results are demonstrated graphically via Mathcad-15 software.

Keywords: Laplace transform; viscous fluid; ramped conditions; system parameters; porous material

1. Introduction

Fluids which are electrically conducted magneto-hydrodynamics (MHD) have wide ap-
plications in chemical engineering, modern technology and geophysical environments [1,2],
but double diffusive convection is a mixing process due to the interaction of different com-
ponents of fluid having different density gradients and rates of diffusion [3]. Oceanography
is the simplest example of this phenomena, in which the concentration of salt and heat
exists with distinct gradients and they diffuse with different rates. For more details we
refer to [4]. Natural or free convection flow which occurs in the presence of temperature
gradient is one of the most significant modes used to transfer heat and mass in many
geophysical phenomena and modern technological fields. At present, most researchers
are interested in focusing their attention on the dynamical systems which have rich ap-
plications concerning magnetic fields. Moreover, over the years, the study of mass and
thermal transport phenomenon for magneto-hydrodynamic (MHD) natural convective
flow of fluids under the impact of electrical conduction has gained much popularity in
view of their applications in meteorology, power elevators, chemical engineering, aero-
dynamic heating, geophysics, purification of mineral oil and solar physics. Results for
this type of motion for the case of viscous fluids over vertical planes are developed for
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diversified boundary conditions, for example, for an impulsively moving plate with radi-
ation effects and ramp wall temperature [5], dynamics of a fluid of heat absorbing type
with mass transfer [6], analytical study with a random unsteady shear stress boundary
condition [7]. The MHD free convective flow passing through a micro-channel along with
the conditions of temperature jump and velocity slip on the boundary has been studied
in [8]. For other related and useful investigations, see [9–12] and the references therein. In
all these investigations, it is remarkable to confer that the uniform magnetic flux in the fluid
is unyielding. Narahari and Debnath [13] conducted a useful analysis of MHD-natural
convective-flow by way of fixed heat flux with two cases; namely, either the intensity of
magnetic field is fixed respective to the fluid (MFFRF) or the area around the magnet is
fixed respective to the plate (MFFRP). Later, the results are obtained by Shah et al. [14,15] for
MHD natural convective flow up an erected plate through chemical reaction with varying
temperature of the plate in the cases for MFFRF and MFFRP. Furthermore, instability of
free convection and transition to turbulence on inclined plates have great significance due
to the fact that they are associated with cryogenic tanks and thermal stratification in heat
exchanges, etc. Among many investigations with dynamical applications, existing in the
literature, regarding natural flow of convective fluid through the inclined plates in porous
media, Sparrow and Hussar [16] studied the natural convection flow on inclined plates
coupled with generation of longitudinal vertices. Some notable investigations that have
been carried out for free convective flow of viscous fluid on inclined plates can be seen in
the references [17,18].

Nowadays, fractional order calculus—the branch of mathematics—has been rising
vastly due to its exclusive significant features in science and engineering that are absent in
non-fractional calculus, which deals with an arbitrary order of integration and differenti-
ation. Fractional differential equations are massively applied to model various daily life
physical problems because fractional calculus has memory effects, such as problems in fluid
flow, diffusion, relaxation, reaction–diffusion relaxation, oscillation, dynamical processes,
retardation processes in complex systems and many more engineering processes. For this
reason, classical models are unable to anticipate the preceding state of the processes. In
literature, most of the studies are focused on flow problems relative to several fractional
operators with local and non-local kernels such as Caputo, Atangana–Baleanu, Caputo–
Fabrizio, and a few others [19–22]; they indicate the current state but also the future state
of a system. Riaz et al. [23] investigated the effect of ramped conditions on temperature
and velocity by considering fractionalized convective flow model. Moreover, there is a
comparative study for fractional model of MHD Maxwell fluid to anticipate the heat effect
by Riaz et al. [24]. Some other fractional associated studies are discussed in detail; see
for instance [25,26]; most of the studies are focused on flow problems with non-integer
differential operators, heat transport MHD Jeffrey fluid movement and second grade fluid.

In this communication, the purpose of this exploration is to investigate the general
study of double diffusive magneto-free-convection flow for viscous fluid presented in
non-dimensional form, and to analyze the general motions of the oscillating inclined plate
constituted in a porous material, with the existence of an oblique externally electromagnetic
field whether moving or fixed, consistent with the porous layered plate. The thermal
transport phenomenon is discussed in the presence of constant concentration coupled
with thermal conductivity and first order chemical reaction. The influence of different
angles is discussed on the fluid velocity that the plate makes with the vertical and oblique
angles that the magnetic lines make with the porous layered inclined plate. Moreover,
the fluid velocity expressed in terms of thermal, mechanical, concentration contributions,
and solution expressions for such components are obtained. In the proposed model,
the temperature distribution is presented for the general function of time, and general
motions of the plate are considered. Special cases for the movement of the plate are studied
and several results are recovered corresponding to viscous fluids exist in the literature
as limiting cases by assigning different functions and parametric values in the general
solutions of the problem. The solutions relating to swaying movements of the plate are
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also discussed and demonstrated, those being the sum of transient and parts and steady
state. Furthermore, the consequences of different related physical parameters, such as
chemical reaction parameter Rc, magnetic field M, dimensionless time η, Schmidt number
Sc, Ratio of the buoyancy forces N and effective Prandtl number Pre f f , on non-dimensional
velocity, concentration and energy are discussed in detail and demonstrated graphically
using Mathcad-15 software. Motivated by the above consideration, the main theme of
this manuscript is to have the significance of fractional models corresponding to ordinary
existing models for second grade fluid. Further, some results are recovered from the
existing literature as limiting cases to validate our obtained results.

2. Mathematical Model

We consider the time dependent, incompressible, electrically conducting natural
convective movement of viscous fluid over a porous inclined plate, which is also non-
conductive having infinite length. The x-axis is assumed along the vertical, and υ takes
an angle that the plate makes with the vertical, and this angle lies between 0 and π

2 , i.e.,
0 ≤ υ ≤ π

2 . An unvarying magnetic intensity with strength
−→
B0 = (B0 cos h̄, B0 sin h̄) is

exerted, where h̄ is a slanted angle that magnetic lines make with the porous layered
inclined plate, along with the assumptions asserted that the magnetic intensity is supposed
to be fixed for the plate or the fluid. Initially, it is supposed that both fluid and plate are
static with fixed species concentration C∞ and temperature T∞. As time η = 0+, motion in
the plate starts that excels the gravitational pull with certain ζ0 f (η) in opposition. Moreover,
the temperature is stabilized at the expense of relation in the form T∞ + Tw

(
1− ae−bη

)
,

whereas concentration is sustained at Cw. Here, f (·) is a continuous piece-wise function that
dies out at η = 0; ζ0 is assumed to be a constant with dimension of velocity. The choice of an
appropriate Cartesian coordinate system and use the Boussinesq’s approximation [27,28]
leads the relevant problem statement into the following system of governing equations:

∂ζ(ψ, η)

∂η
= ν

∂2ζ(ψ, η)

∂ψ2 + gβT(T(ψ, η)− T∞) cos(υ)

+ gβC(C(ψ, η)− C∞) cos(υ)−
[

σB2
0 sin2(h̄)

ρ
+

ν

k

]
ζ(ψ, η), (1)

ρCp
∂T(ψ, η)

∂η
= k

∂2T(ψ, η)

∂ψ2 − ∂qr

∂ψ
, (2)

∂C(ψ, η)

∂η
= δm

∂2C(ψ, η)

∂ψ2 − Rc(C(ψ, η)− C∞). (3)

with initial and boundary conditions as defined below:

ζ(ψ, 0) = 0, T(ψ, 0) = T∞, C(ψ, 0) = C∞,
∂ζ(ψ, 0)

∂η
= 0, ψ ≥ 0, (4)

ζ(0, η) = ζ0H(η) f (η), T(0, η) = T∞ + Tw(1− ae−bη), C(0, η) = Cw η > 0, ζ0 6= 0. (5)

ζ(ψ, η)→ 0, T(ψ, η)→ ∞, C(ψ, η)→ ∞ as ψ→ ∞. (6)

where ζ(ψ, η), T(ψ, η), C(ψ, η), ρ, βT , βC, υ, k, qr, g and Cp denote the fluid velocity, tem-
perature of the fluid, concentration, density, coefficient of volumetric thermal expansion,
coefficient of volumetric expansion for concentration, kinematic viscosity, themal conduc-
tivity, radiative heat flux, gravitational acceleration and heat capacity at constant pressure,
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respectively. The Rosseland diffusion approximation is adapted (for an optically thick
fluid) [11,29]

qr = −
4
3

σ1

kR

∂T4(ψ, η)

∂ψ
, (7)

where kR denotes the Rosseland mean attenuation coefficient and σ1 represents the Stefan–
Boltzman constant. For the case, the disparity between T (fluid temperature) and T∞ (free
stream temperature) is too small, i.e., |T − T∞| << 0.

The set of dimensionless quantities are introduced:

ζ∗ =
ζ

ζ0
, ψ∗ =

ζ0

ν
ψ, θ =

T − T∞

Tw
, N =

βC(Cw − C∞)

βTTw
, C∗ =

C− C∞

Cw − C∞
,

M =
σ0β2

0ν

ρζ2
0

, η∗ =
ζ2

0
ν

η, Nr =
16
3

σ1

kkR
T3

∞, Pr =
µCp

k
, ν = η0ζ0

2, Sc =
ν

δm
,

f ∗(η∗) = f (
ν

ζ2
0

η∗), Pre f f =
Pr

1 + Nr
,

1
K

=
ν2φ

kζ2
0

, b∗ =
ν

ζ2
0

b, Rc =
ν

ζ2
0

Rc.

After employing the dimensionless quantities, ignore the asterisk ∗ notation, the fol-
lowing partial differential equations in dimentionless form are derived as:

∂ζ(ψ, η)

∂η
=

∂2ζ(ψ, η)

∂ψ2 + θ(ψ, η) cos(υ) + NC(ψ, η) cos(υ)− Kζ(ψ, η)−M sin2(h̄)ζ(ψ, η), (8)

∂θ(ψ, η)

∂η
=

1
Pre f f

∂2θ(ψ, η)

∂ψ2 , (9)

∂C(ψ, η)

∂η
=

1
Sc

∂2C(ψ, η)

∂ψ2 − RcC(ψ, η). (10)

with conditions in dimensionless form as:

ζ(ψ, 0) = 0, θ(ψ, 0) = 0, C(ψ, 0) = 0, (11)

ζ(0, η) = f (η), θ(0, η) = 1− ae−bη , C(0, η) = 1 η > 0. (12)

ζ(ψ, η)→ 0, θ(ψ, η)→ 0, C(ψ, η)→ 0 as ψ→ ∞. (13)

3. Mathematical Preliminaries

In this section, we shall discuss the basic definitions with properties of some significant
and applicable special functions.

Special Functions

As stated in the introduction, for getting the analytical solution from a differential
equation with the application of Laplace integral transformation, the Laplace inverse trans-
formation of some terms in the differential equation is not trivial. To tackle this problem,
the solutions are expressed in the form of some special functions [30–32]. A number of
special functions are listed in the literature and some are mentioned here, for instance,
Mittag-Leffler [33], Robotnov and Hartley’s [34], Lorenzo and Hartley’s [35] Generalized
G and R functions, etc. Such functions establish the results in precise form and play an
important role in interpreting the linear integer order differential equation corresponding
to IVPs.
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In the following, we define the above mentioned special function definitions along
with their Laplace transformations and some special cases as:

1. Mittag-Leffler function. The Mittag-Leffler function is the generalization of the
exponential function and is defined as [33]

Eo(t) =
∞

∑
℘=0

t℘

Γ(℘ o+1)
; o > 0.

The exponential function is a special case of this function; for o = 1, we get

E1(t) =
∞

∑
℘=0

t℘

Γ(℘+ 1)
= et.

Moreover,

L
{

Eo
(
−ato

)}
= L

{
∞

∑
℘=0

(−a)℘t℘o

Γ(℘ o+1)

}
=

qo

q
(
qo + a

) ; o > 0.

2. Erdelyi’s function. This function is the generalization of the Mittag-Leffler function
and is described as [36]

Eo,β(t) =
∞

∑
℘=0

t℘

Γ(℘ o+β)
; o, β > 0.

Setting β = 1, we have

Eo,1(t) =
∞

∑
℘=0

t℘

Γ(℘ o+1)
= Eo(t).

For o = 1 and β = 2, we have

E1,2(t) =
et − 1

t
.

Similarly, for o = 1
2 and β = 1, we get

E 1
2 ,1(t) = et2

er f c(−t)

When o = 2 and β = 2, we have

E2,2

(
t2
)
=

sinh(t)
t

,

where er f c(t) = 2√
π

∫ ∞
t e−u2

du [30] is known as the complementary error function.
Further,

L
{

Eo,β(t)
}
=

∞

∑
℘=0

Γ(℘+ 1)
Γ(℘ o+β)

1
q℘+1 ; o, β > 0.

3. Robotnov and Hartley function. This was presented by Hartley and Lorenzo [34]
and later on studied by Robotnov for utilization in solid mechanics as well. It is
confined as

Fo(−at) = to−1
∞

∑
℘=0

(−a)℘t℘o

Γ(℘ o+1)
; o > 0.

Here,

Eo
(
−ato

)
=

∞

∑
℘=0

(−a)℘t℘o

Γ(℘ o+1)
, Fo(−at) = to−1Eo

(
−ato

)
,
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so
L
{

Fo(−at)
}
=

1
qo + a

; o > 0.

4. Miller and Ross’ function. It was proposed by Miller, and Ross [37]. This function is
stated as:

Et(o, a) = to
∞

∑
℘=0

(at)℘

Γ(o+ ℘+ 1)
; Re(o) > 1,

L{Et(o, a)} = q−o

q− a
; Re(o) > 1.

5. Generalized R-function. Lorenzo and Hartley [35] developed this function; it is
written as:

Ro,β(a, t) =
∞

∑
℘=0

akt(℘+1)o−β−1

Γ((℘+ 1) o −β)
; Re(o − β) > 0.

It is easy to see that R1,0(a, t) = eat, aR2,0
(
−a2, t

)
= sin(at) and R2,1

(
−a2, t

)
= cos(at).

When a = 1, β = o − 1, we get

Ro,o−1(1, t) =
∞

∑
℘=0

(
to
)℘

Γ(℘ o+1)
= Eo

(
to
)

.

Similarly, for a = 1, β = o − ν, yields

Ro,o−ν(1, t) = tν−1
∞

∑
℘=0

(
to
)℘

Γ(℘ o+ν)
= tν−1Eo,ν

(
to
)

.

Moreover,

L
{

Ro,β(a, t)
}
=

qβ

qo − a
; Re(o − β) > 0, Re(q) > 0.

6. Generalized G-function. Lorenzo and Hartley [35] also introduced this function
which is the generalization of R-function and is specified as:

Go,b,j(a, t) =
∞

∑
℘=0

a℘Γ(j + ℘)

Γ(j)Γ(℘+ 1)
t(j+℘)o−b−1

Γ((℘+ 1) o −b)
; Re(oj− b) > 0.

For j = 1, we have

Go,b,1(a, t) =
∞

∑
℘=0

a℘t(1+℘)o−b−1

Γ((℘+ 1) o −b)
= Ro,b(a, t).

Moreover,

∫ s

0
Go,b,j(a, t)dt =

∞

∑
℘=0

a℘Γ(j + ℘)

Γ(j)Γ(℘+ 1)
s(j+℘)o−b(

(j+℘)o−b
)
Γ((℘+ 1) o −b)

=
∞

∑
℘=0

a℘Γ(j + ℘)

Γ(j)Γ(℘+ 1)
s(j+℘)o−b

Γ((℘+ 1) o −b + 1)
= Go,b−1,j(a, s).

Moreover,

L
{

Go,b,j(a, t)
}
=

qb(
qo − a

)j ; Re(oj− b) > 0, Re(q) > 0,
∣∣∣∣ a
qo

∣∣∣∣ < 1.



Math. Comput. Appl. 2022, 27, 8 7 of 25

Next, we define Caputo, CF and ABC fractional operators used in this paper to
fractionalize the proposed problem.

• Caputo fractional operator having power law kernel is described as:

CD℘
η f (z, η) =

1
Γ(1− ℘)

∫ η

0

1
(η − τ)℘

∂ f (z, τ)

∂τ
dτ, 0 < ℘ < 1.

with Laplace transformation

L
(

CD℘
η f (z, η)

)
= s℘L( f (z, η))− s℘−1 f (z, 0).

• CF fractional operator with a non-singularized and local kernel is described as:

CFD℘
η f (z, η) =

1
1− ℘

∫ η

0
exp
(
−℘(η − τ)

1− ℘

)
∂ f (z, τ)

∂τ
dτ, 0 < ℘ < 1.

Its Laplace transformation is obtained as:

L
(

CFD℘
η f (z, η)

)
=

sL( f (z, η))− f (z, 0)
(1− ℘)s + ℘

.

• The Atangana–Baleanu fractional operator in a Caputo sense (ABC) with non-singularized
and non-local kernel is defined in the following way:

ABCD℘
η f (z, η) =

1
1− ℘

∫ η

0
E℘

(
−℘(η − τ)℘

1− ℘

)
∂ f (z, τ)

∂τ
dτ, 0 < ℘ < 1.

Its Laplace transformation is obtained as:

L
(

ABCD℘
η f (z, η)

)
=

s℘L( f (z, η))− s℘−1 f (z, 0)
(1− ℘)s℘ + ℘

.

where ℘ is named as the fractional parameter.

4. Solution of the Problem

To get the solution of the considered problem, it is extremely essential to point out
that without finding the expressions for the temperature and concentration we cannot
established the expression of fluid velocity that is our target. The exact expressions for the
temperature and concentration are to be found using the modern definition of CF and ABC
non-integer operators from Equations (9) and (10).

4.1. Exact Solution of Heat Profile with CF Time Fractional Derivative

The fractional model for Equation (9) formulated on the base of the Caputo–Fabrizio
fractional time derivative is provided as:

d2θ(ψ, η)

dψ2 − Pre f f
CFDα

ηθ(ψ, η) = 0. (14)

Applying the Laplace Transformation technique to write the solution of Equation (14)
with conditions as Equations (11)–(13), we have

d2θ̄(ψ, q)
dψ2 − Pre f f

q
(1− α)q + α

θ̄(ψ, q) = 0. (15)
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with

θ̄(0, q) =
1
q
− a

q + b
and θ̄(ψ, q)→ 0 as ψ→ ∞. (16)

and its solution is given by

θ̄(ψ, q) = χ1e
ψ

√
qPre f f

(1−α)q+α + χ2e
−ψ

√
qPre f f

(1−α)q+α . (17)

we applied conditions for temperature given by Equation (16) to determined unknown
constants χ1 and χ2; we get

θ̄(ψ, q) = (
1
q
− a

q + b
)e
−ψ

√
qPre f f

(1−α)q+α . (18)

which can be expressed as

θ̄(ψ, q) = θ̄1(ψ, q)− aθ̄2(ψ, q). (19)

To get the required solution of Equation (19), Laplace inverse transformation is used,
which is written as:

θ(ψ, η) = θ1(ψ, η)− aθ2(ψ, η). (20)

where

θ1(ψ, η) = L−1


e
−ψ

√
qPre f f

(1−α)q+α

q


= 1−

2Pre f f

π

∫ ∞

0

Sin( ψ√
1−α

x)

x(Pre f f + x2)
e(−

α
1−α ηx2)dx,

θ2(ψ, η) = (θ3 ∗ θ4)(η),

θ3(ψ, η) = L−1
{

1
q + b

}
= e−bη ,

θ̄4(ψ, q) = e
−ψ

√
qPre f f

(1−α)q+α , (21)

It is difficult to find θ4(ψ, η) from exponential form, so we express θ̄4(ψ, q) in its
equivalent form as

θ̄4(ψ, q) =
∞

∑
k=0

∞

∑
j=0

(−1)j(−ψ)k(Pre f f )
k
2 (α)jΓ( k

2 + j)

k!j!(1− α)
k
2+jΓ( k

2 )
.

1
qj . (22)

Employing inverse Laplace transformation, we get

θ4(ψ, η) =
∞

∑
k=0

∞

∑
j=0

(−1)j(−ψ)k(Pre f f )
k
2 (α)jΓ( k

2 + j)

k!j!(1− α)
k
2+jΓ( k

2 )
.
η j−1

Γ(j)
. (23)
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4.2. Exact Solution of Heat Profile with ABC Time Fractional Derivative

The fractional model for Equation (9) formulated on the base of the ABC fractional
time derivative is provided as:

d2θ(ψ, η)

dψ2 − Pre f f
ABCDα

ηθ(ψ, η) = 0. (24)

Applying the Laplace transformation technique to write the solution of Equation (24)
with conditions as Equations (11)–(13); we have

d2θ̄(ψ, q)
dψ2 − Pre f f

qα

(1− α)qα + α
θ̄(ψ, q) = 0. (25)

with

θ̄(0, q) =
1
q
− a

q + b
and θ̄(ψ, q)→ 0 as ψ→ ∞. (26)

and its general solution has the form

θ̄(ψ, q) = χ3e
ψ

√
qα Pre f f

(1−α)qα+α + χ4e
−ψ

√
qα Pre f f

(1−α)qα+α . (27)

we applied the conditions for temperature mentioned in Equation (26) to determine the
unknown constants χ3 and χ4; we get

θ̄(ψ, q) = (
1
q
− a

q + b
)e
−ψ

√
qα Pre f f

(1−α)qα+α . (28)

Moreover, we can write

θ̄(ψ, q) = θ̄5(ψ, q)− aθ̄6(ψ, q). (29)

to get the required solution of Equation (29), using Laplace inverse transformation, which
is written as:

θ(ψ, η) = θ5(ψ, η)− aθ6(ψ, η). (30)

where

θ̄5(ψ, q) =
1
q

e
−ψ

√
qα Pre f f

(1−α)qα+α . (31)

It is difficult to find θ5(ψ, η) concerning the exponential form, so we express θ̄5(ψ, q)
in its equivalent form as

θ̄5(ψ, q) =
∞

∑
k=0

∞

∑
j=0

(−1)j(−ψ)k(Pre f f )
k
2 (α)jΓ( k

2 + j)

k!j!(1− α)
k
2+jΓ( k

2 )
.

1
qjα+1 . (32)

Employing the inverse Laplace transformation, we get

θ5(ψ, η) =
∞

∑
k=0

∞

∑
j=0

(−1)j(−ψ)k(Pre f f )
k
2 (α)jΓ( k

2 + j)

k!j!(1− α)
k
2+jΓ( k

2 )
.

η jα

Γ(jα + 1)
. (33)



Math. Comput. Appl. 2022, 27, 8 10 of 25

θ6(ψ, η) = (θ7 ∗ θ8)(η),

θ7(ψ, η) = L−1
{

1
q + b

}
= e−bη ,

θ̄8(ψ, q) = e
−ψ

√
qα Pre f f

(1−α)qα+α , (34)

Similarly, concerning Equation (31), to compute θ8(ψ, η) we express θ̄8(ψ, q) in its
series equivalent form as

θ̄8(ψ, q) =
∞

∑
k=0

∞

∑
j=0

(−1)j(−ψ)k(Pre f f )
k
2 (α)jΓ( k

2 + j)

k!j!(1− α)
k
2+jΓ( k

2 )
.

1
qjα . (35)

Employing inverse Laplace transformation, we get

θ8(ψ, η) =
∞

∑
k=0

∞

∑
j=0

(−1)j(−ψ)k(Pre f f )
k
2 (α)jΓ( k

2 + j)

k!j!(1− α)
k
2+jΓ( k

2 )
.
η jα−1

Γ(jα)
. (36)

4.3. Exact Solution of Mass Profile with CF Time Fractional Derivative

The fractional model for Equation (10) formulated on the base of Caputo–Fabrizio
fractional time derivative is provided as:

d2C(ψ, η)

dψ2 − Sc

(
CFDα

η + Rc

)
C(ψ, η) = 0. (37)

Solving Equation (37) using (11)–(13) and employing Laplace Transformation tech-
nique, the resulting equations are written as:

d2C̄(ψ, q)
dψ2 − Sc

(
q

(1− α)q + α
+ Rc

)
C̄(ψ, q) = 0. (38)

with

C̄(0, q) =
1
q

and C̄(ψ, q)→ 0 as ψ→ ∞. (39)

The solution in general form is

C̄(ψ, q) = χ5e
ψ

√
Sc

(
q

(1−α)q+α
+Rc

)
+ χ6e

−ψ

√
Sc

(
q

(1−α)q+α
+Rc

)
. (40)

Concerning the values of constants χ5 and χ6, conditions for concentration are imple-
mented given Equation (39), so

C̄(ψ, q) =
1
q

e
−ψ

√
Sc

(
q

(1−α)q+α
+Rc

)
. (41)

It is complicated to find C(ψ, η) from the exponential form, so C̄(ψ, q) in its equivalent
form is:

C̄(ψ, q) =
∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−ψ)k(−1)n(Rc)
k
2−m(Sc)

k
2 αnΓ( k

2 + 1)Γ(m + n)

k!m!n!(1− α)m+nΓ( k
2 −m + 1)Γ(m)

· 1
q1+n . (42)

The required solution for the diffusion equation, after taking the Laplace inverse, is
written as:
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C(ψ, η) =
∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−ψ)k(−1)n(Rc)
k
2−m(Sc)

k
2 αnΓ( k

2 + 1)Γ(m + n)

k!m!n!(1− α)m+nΓ( k
2 −m + 1)Γ(m)

· ηn

Γ(1 + n)
. (43)

4.4. Exact Solution of Mass Profile with ABC Time Fractional Derivative

The fractional model for Equation (10) formulated on the base of the ABC fractional
time derivative is provided as:

d2C(ψ, η)

dψ2 − Sc

(
ABCDα

η + Rc

)
C(ψ, η) = 0. (44)

Solving Equation (44) using (11)–(13) and employing the Laplace transformation
technique, the resulting equations are written as:

d2C̄(ψ, q)
dψ2 − Sc

(
qα

(1− α)qα + α
+ Rc

)
C̄(ψ, q) = 0. (45)

with

C̄(0, q) =
1
q

and C̄(ψ, q)→ 0 as ψ→ ∞. (46)

The solution in general form is

C̄(ψ, q) = χ7e
ψ

√
Sc

(
qα

(1−α)qα+α
+Rc

)
+ χ8e

−ψ

√
Sc

(
qα

(1−α)qα+α
+Rc

)
. (47)

Concerning the values of constants χ7 and χ8, conditions for concentration are imple-
mented given Equation (39), so

C̄(ψ, q) =
1
q

e
−ψ

√
Sc

(
qα

(1−α)qα+α
+Rc

)
. (48)

It is complicated to find C(ψ, η) from the exponential form, so C̄(ψ, q) in its equivalent
form is written as

C̄(ψ, q) =
∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−ψ)k(−1)n(Rc)
k
2−m(Sc)

k
2 αnΓ( k

2 + 1)Γ(m + n)

k!m!n!(1− α)m+nΓ( k
2 −m + 1)Γ(m)

· 1
qαn+1 . (49)

The required solution for the diffusion equation, after taking the Laplace inverse, is
written as:

C(ψ, η) =
∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−ψ)k(−1)n(Rc)
k
2−m(Sc)

k
2 αnΓ( k

2 + 1)Γ(m + n)

k!m!n!(1− α)m+nΓ( k
2 −m + 1)Γ(m)

· ηαn

Γ(αn + 1)
. (50)

4.5. Exact Solution of Velocity Profile with CF Time Fractional Derivative

The fractional model for Equation (8) formulated on the base of the Caputo–Fabrizio
fractional time derivative is provided as:

CFDα
ηζ(ψ, q) =

d2ζ(ψ, η)

dψ2 + θ(ψ, η) cos(υ) + NC(ψ, η) cos(υ)− Kζ(ψ, η)−M sin2(h̄)ζ(ψ, η). (51)

Implementing the technique of the Laplace transformation and making use of the con-
cerned stated conditions concerning Equation (51), the differential equation is obtained as:(

q
(1− α)q + α

)
ζ̄(ψ, q) =

d2ζ̄(ψ, q)
dψ2 + θ̄(ψ, q) cos(υ) + NC̄(ψ, q) cos(υ)− Kζ̄(ψ, q)−M sin2(h̄)ζ̄(ψ, q), (52)
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with the stated conditions for the considered problem

ζ̄(0, q) = F(q) and ζ̄(ψ, q)→ 0 as ψ→ ∞, (53)

where ζ̄(ψ, q) and F(q) denote the Laplace transformations for ζ(ψ, η) and f (η), respec-
tively. Substituting θ̄(ψ, q) and C(ψ, q), as mentioned in Equation (18) and Equation (41)
into Equation (52), it can be expressed in more precise form

d2 ζ̄(ψ, q)
dψ2 −

(
b2q + c2
q + c1

)
ζ̄(ψ, q) = − cos(υ)

(
1
q
− a

q + b

)
e
−ψ

√
b1qPre f f

q+c1 − N cos(υ)
q

e−ψ
√

b1qSc
q+c1

+Rc . (54)

The obtained solution of Equation (54) with the conditions mentioned in Equation (53)
is represented as:

ζ̄(ψ, q) = F(q)e
−ψ

√
b2q+c2

q+c1 + cos(υ)
(

q + c1

b3q + c2

)(
1
q
− a

q + b

)e
−ψ

√
b1qPre f f

q+c1 − e
−ψ

√
b2q+c2

q+c1


+ N cos(υ)

(
q + c1

b4q + c3

)
1
q

e
−ψ

√
b1qSc
q+c1

+Rc − e
−ψ

√
b2q+c2

q+c1

. (55)

Now, taking Laplace inverse, the solution of Equation (55), for velocity field, is
written as:

ζ(ψ, η) =

η∫
0

ω1(ψ, s)· f (η − s)ds +
1
b3

cos(υ)

θ(ψ, η)−ω2(ψ, η) + a

η∫
0

e−bsω1(ψ, η − s)ds


+

c7

b3
cos(υ)

 η∫
0

e−c6sθ(ψ, η − s)ds−
η∫

0

e−c6sω2(ψ, η − s)ds + a

η∫
0

s∫
0

e−c6(η−s)ω1(ψ, s− u)e−bududs


+

N
b4

cos(υ)[C(ψ, η)−ω2(ψ, η)] +
Nc9

b4
cos(υ)

 η∫
0

e−c8sC(ψ, η − s)ds−
η∫

0

e−c8sω2(ψ, η − s)ds

, (56)

4.6. Exact Solution of Velocity Profile with ABC Time Fractional Derivative

The fractional model for Equation (8) formulated on the base of ABC fractional time
derivative is provided as:

ABCDα
ηζ(ψ, q) =

d2ζ(ψ, η)

dψ2 + θ(ψ, η) cos(υ) + NC(ψ, η) cos(υ)− Kζ(ψ, η)−M sin2(h̄)ζ(ψ, η). (57)

Implementing the technique of Laplace transformation and making use of the con-
cerned stated conditions for Equation (57), the differential equation is obtained as:(

qα

(1− α)qα + α

)
ζ̄(ψ, q) =

d2ζ̄(ψ, q)
dψ2 + θ̄(ψ, q) cos(υ) + NC̄(ψ, q) cos(υ)− Kζ̄(ψ, q)−M sin2(h̄)ζ̄(ψ, q), (58)

with the stated conditions for the considered problem

ζ̄(0, q) = F(q) and ζ̄(ψ, q)→ 0 as ψ→ ∞, (59)

where ζ̄(ψ, q) and F(q) denote the Laplace transformations for ζ(ψ, η) and f (η), respec-
tively. Substituting θ̄(ψ, q) and C(ψ, q), as mentioned in Equation (28) and Equation (48)
into Equation (58), it can be expressed in more precise form

d2ζ̄(ψ, q)
dψ2 −

(
b2qα + c2

qα + c1

)
ζ̄(ψ, q) = − cos(υ)

(
1
q
− a

q + b

)
e
−ψ

√
b1qαPre f f

qα+c1 − N cos(υ)
q

e
−ψ

√
b1qαSc
qα+c1

+Rc
. (60)
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The obtained solution of Equation (60) with the conditions mentioned in Equation (59)
is represented as:

ζ̄(ψ, q) = F(q)e
−ψ

√
b2qα+c2

qα+c1 + cos(υ)
(

qα + c1
b3qα + c2

)(
1
q
− a

q + b

)e
−ψ

√
b1qαPre f f

qα+c1 − e
−ψ

√
b2qα+c2

qα+c1


+ N cos(υ)

(
qα + c1

b4qα + c3

)
1
q

e
−ψ

√
b1qαSc
qα+c1

+Rc − e
−ψ

√
b2qα+c2

qα+c1

. (61)

Now, taking Laplace inverse, the solution of Equation (61), for velocity field, is writ-
ten as:

ζ(ψ, η) =

η∫
0

ω3(ψ, s)· f (η − s)ds +
1
b3

cos(υ)

θ(ψ, η)−ω4(ψ, η) + a

η∫
0

e−bsω3(ψ, η − s)ds

+
c7

b3
cos(υ)

×

 η∫
0

Fα(−c6s)θ(ψ, η − s)ds−
η∫

0

Fα(−c6s)ω2(ψ, η − s)ds + a

η∫
0

s∫
0

e−b(η−s)ω1(ψ, s− u)Fα(−c6u)duds


+

N
b4

cos(υ)[C(ψ, η)−ω4(ψ, η)] +
Nc9

b4
cos(υ)

 η∫
0

Fα(−c8s)C(ψ, η − s)ds−
η∫

0

Fα(−c8s)ω2(ψ, η − s)ds

, (62)

Furthermore, in the above expressions

ω1(ψ, η) = L−1

e
−ψ

√
b2q+c2

q+c1


=

∞

∑
n=0

∞

∑
m=0

∞

∑
p=0

(−1)p(−ψ)n ·(b2)
n
2 ·(c5)

m ·(c1)
p ·Γ( n

2 +1)Γ(m+p)

n!m!p!(m−1)!·Γ( n
2−m+1)

· (η)
m+p−1

Γ(m + p)
,

ω2(ψ, η) = L−1


e
−ψ

√
b2q+c2

q+c1

q


=

∞

∑
n=0

∞

∑
m=0

∞

∑
p=0

(−1)p(−ψ)n ·(b2)
n
2 ·(c5)

m ·(c1)
p ·Γ( n

2 +1)Γ(m+p)

n!m!p!(m−1)!·Γ( n
2−m+1)

· (η)m+p

Γ(m + p + 1)
,

ω3(ψ, η) = L−1

e
−ψ

√
b2qα+c2

qα+c1


=

∞

∑
n=0

∞

∑
k=0

(−ψ)n ·(b2)
n
2 ·(c4)

n
2 −k ·Γ( n

2 +1)

n!k!Γ( n
2−k+1)

·Gα,αk, n
2
(−c1, t),

ω4(ψ, η) = L−1


e
−ψ

√
b2qα+c2

qα+c1

q


=

∞

∑
n=0

∞

∑
k=0

(−ψ)n ·(b2)
n
2 ·(c4)

n
2 −k ·Γ( n

2 +1)

n!k!Γ( n
2−k+1)

·Gα,αk−1, n
2
(−c1, t),
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Moreover,

b1 =
1

1− α
, b2 = b1 + K + M sin2(h̄), b3 = b2 − b1Pre f f , b4 = b2 − b1Sc − Rc,

c1 =
α

1− α
, c2 = c1(K + M sin2(h̄)), c3 = c2 − c1Rc, c4 =

c2

b2
, c5 = c4 − c1,

c6 =
c2

b3
, c7 = c1 − c6, c8 =

c3

b4
, c9 = c1 − c8, and (℘ ∗ χ)(t) =

∫ t

0
℘(t)χ(t− τ)dτ.

The function Gh,b,l(., τ) used in the above expressions is known as the Generalized
Lorenzo Hartly function. The function F−aη is known as the Robotnov and Hartley function.
The Laplace inverse of these functions is defined as:

L−1

{
sb

(sh − j)l

}
= Gh,b,l(j, τ);

Re(hl − b) > 0,

Re(s) > 0,∣∣∣∣ j
sh

∣∣∣∣ < 1

and

L−1
{

1
qβ + α

}
= Fβ(−αη); β > 0

Now, in the next section, we shall explore the fluid dynamics under the effect of
oscillating motion or slow acceleration of the plate coupled with the objective for deep
understanding of the physical aspects of the acquired results.

5. Various Cases Concerning the Motion of the Plate

We will establish the solution expression relative to motions generated due to oscilla-
tion of the plate and slow acceleration in the plate (when γ < 1).

5.1. Case-I: f (η) = H(η)ηγ (for Variable Accelerating Plate)

Now, substituting f (η) = H(η)ηγ, with γ > 0, into Equation (56), we get

ζ(ψ, η) =

η∫
0

ω1(ψ, s)·(η − s)γds +
1
b3

cos(υ)

θ(ψ, η)−ω2(ψ, η) + a

η∫
0

e−bsω1(ψ, η − s)ds


+

c7

b3
cos(υ)

 η∫
0

e−c6sθ(ψ, η − s)ds−
η∫

0

e−c6sω2(ψ, η − s)ds + a

η∫
0

s∫
0

e−c6(η−s)ω1(ψ, s− u)e−bududs


+

N
b4

cos(υ)[C(ψ, η)−ω2(ψ, η)] +
Nc9

b4
cos(υ)

 η∫
0

e−c8sC(ψ, η − s)ds−
η∫

0

e−c8sω2(ψ, η − s)ds

, (63)

which represents motion of fluid caused by highly, slowly or constantly accelerating plate.
Additionally, consider the case for γ = 0, i.e., when f (η) = H(η) is
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ζ(ψ, η) =

η∫
0

ω1(ψ, s)ds +
1
b3

cos(υ)

θ(ψ, η)−ω2(ψ, η) + a

η∫
0

e−bsω1(ψ, η − s)ds


+

c7

b3
cos(υ)

 η∫
0

e−c6sθ(ψ, η − s)ds−
η∫

0

e−c6sω2(ψ, η − s)ds + a

η∫
0

s∫
0

e−c6(η−s)ω1(ψ, s− u)e−bududs


+

N
b4

cos(υ)[C(ψ, η)−ω2(ψ, η)] +
Nc9

b4
cos(υ)

 η∫
0

e−c8sC(ψ, η − s)ds−
η∫

0

e−c8sω2(ψ, η − s)ds

, (64)

5.2. Case-II: f (η) = cos(ωη) H(η) or sin(ωη)H(η) (for Oscillating Plate)

Putting f (η) = cos(ωη) H(η) or sin(ωη)H(η) into Equation (56), we obtain

ζc(ψ, η) =

η∫
0

ω1(ψ, s) cos(ω(η − s))ds +
1
b3

cos(υ)

θ(ψ, η)−ω2(ψ, η) + a

η∫
0

e−bsω1(ψ, η − s)ds


+

c7

b3
cos(υ)

 η∫
0

e−c6sθ(ψ, η − s)ds−
η∫

0

e−c6sω2(ψ, η − s)ds + a

η∫
0

s∫
0

e−c6(η−s)ω1(ψ, s− u)e−bududs


+

N
b4

cos(υ)[C(ψ, η)−ω2(ψ, η)] +
Nc9

b4
cos(υ)

 η∫
0

e−c8sC(ψ, η − s)ds−
η∫

0

e−c8sω2(ψ, η − s)ds

, (65)

ζs(ψ, η) =

η∫
0

ω1(ψ, s) sin(ω(η − s))ds +
1
b3

cos(υ)

θ(ψ, η)−ω2(ψ, η) + a

η∫
0

e−bsω1(ψ, η − s)ds


+

c7

b3
cos(υ)

 η∫
0

e−c6sθ(ψ, η − s)ds−
η∫

0

e−c6sω2(ψ, η − s)ds + a

η∫
0

s∫
0

e−c6(η−s)ω1(ψ, s− u)e−bududs


+

N
b4

cos(υ)[C(ψ, η)−ω2(ψ, η)] +
Nc9

b4
cos(υ)

 η∫
0

e−c8sC(ψ, η − s)ds−
η∫

0

e−c8sω2(ψ, η − s)ds

, (66)

6. Results Validation

In order to discuss the validation of our derived results, we take h̄ = π
2 , K = 0,

υ = 0 and α → 1 in Equations (56) and (62) then recover the corresponding equations
as Shah et al. [15] obtained for the viscous fluid case. Furthermore, when f (η) = H(η)
(the Heaviside unit step function) K = 0, υ = 0 and h̄ = π

2 with α → 1 in relations (56)
and (62). The achieved solution expressions are the same as those derived by Narahari
and Debnath [13] (Equation (11-a) taking a = 0) and also Tokis [38] (Equation (12)) for the
case when thermal and concentration effects are ignored. Evidently, by adjusting f (·) in
different appropriate forms, the exact solution of fluid motion of theses types are recovered.
This proves the authenticity of our newly established solution expressions.

7. Results and Discussion

In this work, the general equations of double diffusive magneto-free convection for
viscous fluid are presented in non-dimensional form, and are applied to a moving heated
vertical plate as in the boundary layer flow up, with the existence of an externally magnetic
field which is either moving or fixed consistent with the plate. The thermal transport
phenomenon is discussed in the presence of constant concentration coupled with the first
order chemical reaction with exponential heating. An innovative definition of CF and
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ABC time fractional operators is implemented to hypothesize the constitutive mass, energy
and momentum equations. The solutions based on special functions are obtained using
the Laplace transform method to tackle the non-dimensional partial differential equations
for velocity, mass and energy. Moreover, the heat transfer aspects, flow dynamics and
their credence on the parameters, involved in the problem like effective Prandtl number
‘Pre f f ’, dimensionless time ‘η’, Schmidt number ‘Sc’, Ratio of buoyancy forces N, fractional
parameter α and chemical reaction parameter Rc, are drawn out by graphical illustrations.
The analytically derived results are summarized in Figures 1–11; the behavior of fluid
velocity is discussed for four different values of α = 0.1, 0.3, 0.6, 0.9 along with involving
physical parameters, by considering a = 0.70, b = 0.10, η = 0.8, N = 0.25, h̄ = π

2 , M = 0.6,
Pre f f = 0.71, Sc = 0.6, K = 0.3, Rc = 0.7, γ = 0.7 for the function f (η) = H(η)ηγ.

Figures 1 and 2 represent the influence of Pre f f via CF and ABC with α = 0.1, 0.3, 0.6, 0.9,
on fluid temperature. It is indicated that advances in Prandtl number reduce the tempera-
ture profile of the moving fluid for distinct values of fractional parameter. The boundary
layer of temperature profile gets thicker due to the fact that there is a small rate of thermal
diffusion and the resultant temperature profile decreases.

Concerning Figures 3 and 4, the action of Sc on concentration profile along with
the applications of CF and ABC fractional operators are analyzed for various values of
fractional parameter as α = 0.1, 0.3, 0.6, 0.9. It is remarked that the concentration profile of
the fluid will decrease as Sc increases. Physically, the reduction in the boundary layer of
concentration happened to correspond to enhancing the Schmidt number.

Concerning Figures 5 and 6, the action of Sc on the velocity profile along with the
applications of CF and ABC fractional operators are analyzed for various values of frac-
tional parameter as α = 0.1, 0.3, 0.6, 0.9. It is remarked that the velocity of the fluid flow
will decrease as Sc increases. Physically, the Schmidt number Sc is mathematically defined
as the ratio of momentum to mass diffusivity. It is a fact that the layer of momentum
diffusivity of the fluid is more viscous; as a result velocity decreases. Schmidt number
Sc signified concentration and velocity in free convection flow regimes of fluids concern
relative effectiveness momentum.

Figures 7 and 8 represent the effects of N by the application of CF and ABC fractional
operators on the fluid velocity at time η = 1.4 for both aiding and opposing flows by
considering various values of α. For adding flows N > 0, the thermal buoyancy force is
supported by the buoyancy force (caused by species diffusion), which results in the rise in
the velocity for the rise in the values of N. For opposing flows N < 0, the buoyancy force
results in a reversal flow effect and hence resists the flow of fluid.

Figures 9 and 10 portray the behavior of Rc on fluid velocity via CF and ABC time
fractional operators for distinct values of α and take time as fixed for both operators. It
is realized that the velocity decreases corresponding to the increase in the value of Rc.
Further, it is pointed out that the momentum profiles describe the same behaviour for both
the fractional derivative operators.

Figures 11 and 12 illustrate the variation in velocity field via CF and ABC time
fractional operators for different values of α with η = 0.8, 1.6, 2.6; it can be claimed that
the velocity profile is elevated corresponding to large values of time. Moreover, we see
that the smooth decline in the velocity from definite large values at the endpoint to the
asymptotical value is enlarged.

Figure 13 illustrates the impacts of time η with α = 0.20, 0.40, 0.60, 0.80 on velocity
field with the application of CF and ABC time fractional operators, it can be observed
that the velocity profile is elevated corresponding to large values of time. Moreover, a
comparison is conducted between the contours portrayed for velocity profile via CF and
ABC. It is remarked that the velocity curve with non-integer operator ABC is superior as
compared to CF time fractional operator.
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Figure 1. Trace of dimensionless temperature for dissimilar values of Pre f f via CF.

Figure 2. Trace of dimensionless temperature for dissimilar values of Pre f f via ABC.
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Figure 3. Trace of dimensionless concentration for dissimilar values of Sc via CF.

Figure 4. Trace of dimensionless concentration for dissimilar values of Sc via ABC.
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Figure 5. Trace of dimensionless velocity for dissimilar values of Sc via CF.

Figure 6. Trace of dimensionless velocity for dissimilar values of Sc via ABC.



Math. Comput. Appl. 2022, 27, 8 20 of 25

Figure 7. Trace of dimensionless velocity for dissimilar values of N via CF.

Figure 8. Trace of dimensionless velocity for dissimilar values of N via ABC.
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Figure 9. Trace of dimensionless velocity for dissimilar values of Rc via CF.

Figure 10. Trace of dimensionless velocity for dissimilar values of Rc via ABC.
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Figure 11. Trace of dimensionless velocity for dissimilar values of η via CF.

Figure 12. Trace of dimensionless velocity for dissimilar values of η via ABC.
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Figure 13. Comparison of dimensionless velocity profil for dissimilar values of η between CF
and ABC.

8. Conclusions

In this paper, the general equations of double diffusive magneto-free convection for
viscous fluid are presented in non-dimensional form. Thermal transport phenomenon is
discussed in the presence of constant concentration coupled with first order chemical reac-
tion with exponential heating.The governing partial differential equation is inscribed into a
dimensionless form. The fractional model is developed by using the modern interpretation
of CF and ABC fractional time derivative operators. The Laplace transformation technique
is applied to establish the analytical solution for velocity, concentration and energy equa-
tions,in terms of the generalized Lorenzo Hartly function known as the G-function for the
proposed problem. Moreover, using conferred dissimilar parameters, i.e., effective Prandtl
number Pre f f , fractional parameter α, Schmidt number Sc, Ratio of buoyancy forces N
and chemical reaction parameter Rc, the impacts of all these parameters on fluid velocity
field, constant concentration and temperature for varying values of fractional parameter
were analyzed with the help of graphical illustrations. Some noteworthy remarks and
concluding results from this work are:

• It is detected that the velocity field declined with the larger values of Rc. Moreover,
reduction in the velocity and concentration profile are observed for growing values of
Sc for varying values of α.

• It is found that the fluid velocity intensifies for N > 0, but the opposite trend is
observed for N < 0.

• The increasing values of the time η stimulate the velocity distribution.
• The accumulative values of the parameter Pre f f decline in the temperature profile

are noticed.
• Involvement of concentration factor of fluid velocity in the fluid movement is signifi-

cant and cannot be overlooked.
• It is depicted that for both non-integer operators CF and ABC, velocity field, concen-

tration and temperature profile represent the same behavior for parametric analysis
of the proposed problem.
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