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Abstract: Gearboxes are widely used in industrial processes as mechanical power transmission
systems. Then, gearbox failures can affect other parts of the system and produce economic loss.
The early detection of the possible failure modes and their severity assessment in such devices is
an important field of research. Data-driven approaches usually require an exhaustive development
of pipelines including models’ parameter optimization and feature selection. This paper takes
advantage of the recent Auto Machine Learning (AutoML) tools to propose proper feature and model
selection for three failure modes under different severity levels: broken tooth, pitting and crack.
The performance of 64 statistical condition indicators (SCI) extracted from vibration signals under
the three failure modes were analyzed by two AutoML systems, namely the H2O Driverless AI
platform and TPOT, both of which include feature engineering and feature selection mechanisms.
In both cases, the systems converged to different types of decision tree methods, with ensembles of
XGBoost models preferred by H2O while TPOT generated different types of stacked models. The
models produced by both systems achieved very high, and practically equivalent, performances
on all problems. Both AutoML systems converged to pipelines that focus on very similar subsets
of features across all problems, indicating that several problems in this domain can be solved by a
rather small set of 10 common features, with accuracy up to 90%. This latter result is important in the
research of useful feature selection for gearbox fault diagnosis.

Keywords: AutoML; feature selection; fault severity assessment; gearboxes; XGBoost classifiers

1. Introduction

Gearboxes are crucial devices in industrial processes, as they play an important role
in power transmission. Then, fault detection and diagnosis in such devices are attracting
growing interest in researches, with focus on fault severity assessment. In particular, when
a fault is starting, the first stages of the failure mode are not easy to detect, in most cases,
and the incipient fault is not advised until reaching severe stages that can cause damages to
other devices, decrease the performance of the process, and produce economical losses [1,2].

Vibration signal is one of the most informative signals commonly used to determine
the health condition of rotating machines [3]. Once a vibration signal is available, data-
driven approaches can offer signal processing techniques to tackle the problem of fault
detection and diagnosis by identifying certain signal characteristics in time, frequency or
time-frequency domains, as proposed in [4] for gearboxes.

Particularly, gearboxes exhibit nonlinear and chaotic behavior [5], and these character-
istics are enhanced in the presence of faults [6–8]. Then, the identification of informative
characteristics in the vibration signal produced by faulty conditions is not easy to ac-
complish in gearboxes by using standard signal processing, and usually requires expert
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knowledge. Additionally, previous studies have visually shown that the vibration signal
behavior is non-monotonic to the fault severity increment in helical gearboxes [9,10]; that
is, the signal amplitude does not increase with the fault. Under this scenario, Machine
Learning (ML) approaches can address properly the task of fault detection and diagno-
sis. Moreover, signal processing permits different characterization of the vibration signal
useful for the application of ML-based approaches providing high-performance solutions,
commonly being the supervised fault classification.

ML-based classifiers using the k-nearest neighbor method (KNN) [11–14], artificial
neural networks (ANN) [15–18] and support vector machines (SVM) [19–23], are frequently
developed to propose fault classification models. Random Forest (RF) and Decision Trees
(DT) are also reported as fault classifiers for gearboxes because of their powerful perfor-
mance in cases where only a few samples are available and high dimensional feature
spaces [24–28].

The performance of a conventional ML-based fault classification model is highly
dependent on the input feature quality, avoiding the well-known curse of dimensionality,
and the selection of the best classification model. Particularly, feature selection is a stage
that must be carefully accomplished after features extraction is performed on the vibration
signal. Statistical condition indicators (SCI) serve as features extracted from the vibration
signal in the time domain, some of them being closely related to the vibration analysis
such as the root-mean-square, standard deviation, kurtosis, skewness, among others [29].
Other features are related to the biomedical field to analyze surface electromyography
signals [30,31]. The availability of a large set of features makes both feature selection or the
mining for new features a process that is not easily generalized.

Although the recent applications of Deep Learning (DL) models to fuse the stages
of feature extraction and selection are being widely reported [9,32–38], the selection of
fault-related features like SCI extracted from the raw vibration signal is still a field of
interest, mainly due to the easy understanding of such SCI. Moreover, the necessity of
developing the whole ML pipeline, including not only feature engineering and selection
but also classification model selection, hyperparameter optimization and validation, is
currently a challenge in ML system development, called Automated Machine Learning
(AutoML) [39,40].

According to the case study and the related dataset, for example, fault classification of
gearboxes under different failure mode severity or multi-fault scenarios, where different
failure modes are combined, the ML-based approach requires the development of a new
pipeline for each scenario, that is, feature engineering and model adjustment. In most cases,
this process requires exhaustive training plans, including greedy searching on feature and
parameter spaces which demands computational efforts and optimization algorithms to
obtain a proper classification model as mentioned previously. This is why, the development
of ML pipelines automatically is nowadays highly required in practical problems associated
to high dimensional feature spaces and complex model requirements. The evaluation of
the different computational tools providing this support is well received by the ML-based
engineering applications community in helping to choose the proper model.

To face the automated development of ML pipelines systematically, this paper presents
the application of two AutoML systems for fault severity classification, with evaluation
and comparison from an empirical perspective. Particularly, the paper is focused on the
feature selection stage, including feature engineering over SCI extracted from vibration
signals related to the fault severity of three failure modes in gears, which are pitting, crack
and broken tooth. In the following, SCI are named statistical features or features. The
application of AutoML in the field of Prognosis and Health Management (PHM) is a more
difficult challenge as the industrial equipment, particularly rotating machines, usually work
under complex and time varying conditions of load and speed. Then, new contributions in
this field are required.

The goal is the comparison of the informative capability between the original statistical
features, through the performance evaluation of the ML classifiers proposed by the AutoML
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systems. The experimental framework uses the software tools H2O Driverless AI which
is equipped with evolutionary algorithms to perform feature engineering and selection,
and TPOT, which also uses an evolutionary search to build tree-based ML pipelines. Both
tools are relatively simple and straightforward to use, offering basic and intuitive con-
figurations for generating different types of pipelines using state-of-the-art techniques
and implementations.

Results of the evaluation and comparison between H2O DAI and TPOT show that
both platforms select common features regardless of the selected model. For some failure
modes, TPOT reduces the feature space but increase it in others. Moreover, accuracy
when using the whole feature space, without feature selection, remains very close for the
pipelines created by both platforms. Regarding H2O DAI, the informative capability of ten
time-domain vibration signal-related statistical features is highlighted, which are enough
to obtain proper classification performance.

Moreover, not only are the best features identified for each failure mode, but a common
set of features reports proper performance to classify all the failure modes. This is an
important contribution in the field of fault severity classification in gearboxes, for which
the search for a common set of features for several failure modes in the same machine are
still under research.

The rest of the paper is organized as follows. Section 2 presents the background
about the AutoML as an emerging area in ML, and the description of the failure modes in
gearboxes under study in this paper. Section 3 discusses the previous works regarding the
feature analysis for fault severity assessment in gearboxes by using vibration signals mainly,
and recent applications of AutoML on this domain. Section 4 describes the test bed of the
different cases study, the collection of the data set for each case and the corpus generations.
Section 5 details the experimental framework and results by using the AutoML software
H2O Driverless AI. Section 6 is devoted to the discussion, and finally Section 7 summarizes
and concludes the paper.

2. Background

This paper presents an analysis of the applicability of AutoML in the automatic
diagnosis of faults in rotating machinery, namely industrial gearboxes. Therefore, this
section is intended to provide an overview of both domains, with the former covered in
Section 2.1 and the latter discussed in Section 2.2.

2.1. Overview of AutoML

ML is everywhere now, with successful applications in diverse domains such as
automatic programming [41] and the prediction of complex chemical processes [42], and the
list of examples grows every day. This success, however, has created the need to simplify
and accelerate the development of problem-specific ML deployments. Among the different
strategies being taken, two paradigms are particularly promising: Transfer Learning [43–45]
and AutoML [39,40,46–51]. The former entails using a model generated on a source task to
solve a target task, simplifying learning on the target and making it more efficient. The latter,
on the other hand, employs a search process to discover large model architectures [49–51]
or to automatically derive complete ML pipelines [46–48]. Moreover, recent techniques are
even hybridizing both methods for the construction of Deep Learning models [52].

While Transfer Learning opens up a wide range of possibilities in the domain of
interest of the present work, such questions are left for future research. The focus of
this paper is on AutoML. To understand AutoML, it is first necessary to review what a
ML pipeline consists of. While different problems might require slight variations of the
general case, a typical ML pipeline includes: (1) Feature Engineering; (2) Feature Selection;
(3) Model/Algorithm selection; (4) Hyper-parameter optimization; and, finally, (5) Training
and Evaluation [39,40]. In fact, some AutoML systems even facilitate model deployment
for real-world use [48]. Each of the stages in a ML pipeline is a research area in and of itself,
characterized by large combinatorial search spaces and highly complex and non-linear
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interactions. However, in general, it is not possible to determine the optimal approach for
each stage based on the description or data of a particular ML task, much less the optimal
configuration of a complete pipeline.

The general goal of AutoML is to simplify the design process of a ML pipeline,
by automatically determining how to instantiate a ML pipeline based on a problem’s
training data and a user-defined objective or scoring function. A general ML pipeline is
presented in Figure 1, highlighting the elements that are usually addressed by an AutoML
system. One of the most widely used variants of AutoML is Neural Architecture Search
(NAS), which deals with the automated design of neural networks with a search process.
While NAS has a long history [53,54], it has recently had a resurgence thanks to the intrinsic
difficulty of developing Deep Neural Networks manually [49–51]. However, NAS is very
specific to Deep Networks, focusing primarily on the Model/Algorithm selection part of
the ML pipeline. The most ambitious version of AutoML are systems that cover most of the
elements of the ML pipeline. Such systems work under the assumption that it is necessary
to consider the interactions of all the stages in a ML pipeline; that is, an optimal pipeline
will exhibit synergy among most, if not all, of the stages. To do so, it is necessary to solve a
complex optimization problem, which requires performing a search within all possible ML
pipelines. Given the complexity of such a search space, this type of AutoML systems often
employ heuristic or meta-heuristic algorithms, such as Evolutionary Algorithms (EAs) [55].

RAW SIGNALS
BASIC FEATURE 

EXTRACTION

FEATURE 
ENGINEERING

FEATURE 
SELECTION

ALGORITHM 
SELECTION

HP OPTIMIZATION
TRAINING AND 

EVALUATION

BASIC ML
PIPELINE

AutoML

Figure 1. General ML pipeline and focus of an AutoML system.

Two such AutoML systems are TPOT [47] and H2O Driverless AI [48], with the former
being an open-source academic software and the latter a commercial product specifically
designed for industrial use (Driverless AI by H2O also offers academic versions of the
software). TPOT is built on top of Scikit-learn [56], and while H2O is not, both share
many of the underlying ML algorithms. TPOT uses genetic programming (GP), a form
of EA, such that ML pipelines are coded using variable size tree structures. GP is the
main search procedure in TPOT, indeed it can be seen as a basic GP system with a highly
specialized primitive set and search space [55]. H2O Driverless AI, on the other hand,
also uses EAs to perform Feature Engineering and Feature Selection, a task for which EAs
are known to produce good results in difficult ML problems [45]. However, it employs a
wider variety of mechanisms to generate the final pipeline, including Bayesian optimization
for hyperparameter tuning and a large set of predefined engineered features from which
the system can extend a problems feature space. In this work, we evaluate both systems
to perform our experimental evaluation of AutoML because of their general simplicity
and straightforward usage, where the user only needs to set very basic and intuitive
configurations. Such is the goal of an AutoML system, to simplify the design process of a
ML pipeline. Finally, it is important to highlight that the goal of this work is not specifically
to compare the systems, even though their relative performances are contrasted. Our
approach is to leverage the information produced by the ML pipelines produced by each
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system to better understand the feature selection problem in the domain of fault diagnosis
in gearboxes, helped by this kind of AutoML systems.

2.2. Faults in Gearboxes

A gear is a toothed wheel usually attached to a rotating shaft. In a gear train, the teeth
of one gear engage the teeth on the other gear. Gears and gear trains are important
mechanical power transmission devices in industrial applications to produce speed and
torque conversions from a rotating power source to another device. Gearboxes may work
under constant or varying operation conditions of load and speed. According to the
assembly of gear wheels, gear trains can be classified as a simple gear train, compound
gear train, reverted gear train and planetary gear train [57]. In this work, the experimental
test bed is a simple gear train assembled as a one-stage spur gearbox, with a number of
teeth, Z1 and Z2, as shown in Figure 2.

Figure 2. One stage gearbox.

In heavy machinery, complex multistage gearboxes are used and the interaction of
the gearbox elements with the working environment can drive the gears to faults that may
cause significant economic losses. For that reason, fault diagnosis in gears has been the
subject of intensive research [57].

One of the most dangerous damages in gears is the crack at the tooth root, that is
caused because of significant changes in tooth stiffness [58]. A physical simulation of a man-
made crack is shown in Figure 3a, where a different length and depth of crack throughout
the base of the tooth were implemented. Tooth pitting is another common failure mode of
a gearbox, which can appear at several levels according to pitted areas: slight micro pitting,
macro pitting, macro pitting over 50%–100% of the gear tooth surface, and macro pitting
over all the gear tooth surface [59]. Tooth pits can be simulated like circles of different
diameter, depth and several number of holes over the tooth surface. A physical simulation
of man-made pitting is shown in Figure 3b, where pits with different diameter and depth
were implemented. Finally, another important research topic is the analysis of the effect
of a broken tooth on the gearbox vibration, which is caused by an excessive impact load
or unstable load. Under this fault, the size of the contact surface between the meshing
teeth is decreased. In addition, the tooth becomes shorter and the contact length along
the in volute profile of the damaged tooth is also decreased [60]. A physical simulation of
the man-made broken tooth is shown in Figure 3c, where a different percentage of tooth
loss was implemented. The simulated physical failure modes were implemented at the
Vibrations Laboratory of the Universidad Politécnica Salesiana (UPS-Ecuador), and they
are used in this work for generating the dataset of vibration signals.



Math. Comput. Appl. 2022, 27, 6 6 of 25

(a) (b)

(c)

Figure 3. Details of the simulated faults for the three case studies. (a) Schemes and photography of
crack levels. (b) Schemes and photography of pitting levels. (c) Schemes and photography of broken
tooth levels.

3. Previous Work

Fault severity assessment in gears by using ML has been widely reported. This
section is devoted to approaches using feature extraction by calculating statistical features,
and focused on the problem of feature selection, and also recent approaches using artificial
features extracted from DL models.

In [12], the identification of five different gear crack levels is performed by using
features obtained from Wavelet Packet Decomposition (WPD). The first set of features is
composed by 620 statistical features calculated from the wavelet coefficients at different
levels, which are then reduced to seven significant principal components. KNN is used as
a classifier and compared to other statistical models such as linear discriminant analysis,
quadratic discriminant analysis, classification and regression trees, and naive Bayes classi-
fier. Another approach to crack fault level identification is discussed in [13] by considering
25 features extracted from the time and frequency domains. A two-stage feature selection
and weighting technique via Euclidean distance evaluation is proposed to select sensitive
features and to weigh the selected features according to their sensitivity to each fault level.
The Weighted K-Nearest Neighbor (WKNN) classifier is adopted to identify three gear
crack levels under different loads and motor speeds.
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Four different crack levels are detected in [61] by using statistical features and decision
trees (DT). Similar work using DT and ARMA feature extraction from the vibration signals
is presented in [62]. Ordinal rough approximation operators based on fuzzy covering and
feature selection algorithms for ordinal classification are proposed in [63] for gear crack
level identification. Finally, a DL approach using a Long Short-Term Memory (LSTM) based
recurrent neural network is discussed in [64], to detect tooth crack growth at different
stages, where the vibration signal is the input to the LSTM network. The LSTM prediction
error is used as a measure of fault severity.

The detection of localized pitting damages in a worm gearbox by a vibration visual-
ization method and ANNs is presented in [18]. Twelve statistical features are calculated
from vibration signals in time and frequency domains for multi-class recognition, where
each class is related to a severity level. In [29], a pitting severity assessment is tackled with
supervised learning using an SVM-based ranking model that learns the ordinal information
contained in the dataset. Thirty-four statistical features were calculated from vibration
signals in the time and frequency domain, among others specifically designed for gearbox
damage diagnosis. Three levels of damage were estimated. The approach in [65] uses
Stacked Auto Encoders (SAE) for unsupervised feature extraction, feature reduction based
on QR decomposition is then applied on the feature matrix provided by the SAE to obtain
low dimensional data feeding an unsupervised K-means clustering.

Fault severity in broken tooth is also tackled by different approaches. The approach
in [9] introduces Stacked Convolutional Autoencoders (SCAE) together with a Deep Con-
volutional Neural Network (DCNN) as a method for unsupervised hierarchical feature
extraction for fault severity assessment in a helical gearbox. In that proposal, statistical
features are not extracted, but the artificial ones are provided by the DCNN after training
with initialization parameters given by an SCAE. These features feed a multilayer percep-
tron for classification. Another approach is provided in [38], where artificial features are
provided by a CNN. The spectrogram of the vibration signal is used as the input to the
CNN, the output of the last convolutional layer is connected to one softmax layer and
finally, these outputs feed an SVM-based decision layer. An approach based on fuzzy
transition is developed in [10] to predict the broken tooth severity in helical gearboxes.
This is accomplished by two steps: a set of statistical features extracted from the vibrations
signal are uses as input for a static fuzzy model to compute the weights of fuzzy transitions
(WFT), and then a dynamic equation using WFT predicts the next degradation state of the
rotating device. All the previous works focus on the same dataset related to ten severity
damages of broken tooth in helical gearboxes.

Research on AutoML arises as a way to face the challenge of automating the Combined
Algorithm Selection and Hyper-parameter tuning, called CASH by [66], and recent appli-
cations can be found. The review in [67] tackles the use of AutoML for developing smart
devices to obtain auto generated embedded code ready to test and execute. An Automated
Hyperparameter Search-Based Deep Learning Model for Highway Traffic Prediction is
performed by AutoML in [68]. In the field of process monitoring, ref. [69] uses AutoML to
optimize the parameters of a soft-sensor for monitoring the lysine fermentation process.
The authors in [70] propose in the future research that the AutoML approach could be used
for parameter optimization of a Variational Auto Encoder for nonlinear process monitoring.

However, ML-based fault diagnosis has just started to be analyzed under this approach
with only a few works in the field of fault diagnosis for rotating machines. In [71] an
approach using the Google DeepMind Team method called Neural Architecture Search
(NAS) with reinforcement learning is proposed, as an AutoML tool for the automated
search of a multiscale cascade CNN applied to the fault diagnosis of the gearbox data set of
the PHM 2009 Data Challenge. In particular, two problems were addressed: fault detection
and fault severity classification. Inspired by the NAS method, in [72] a neural network
architecture automatic search method based on reinforcement learning is applied to rolling
bearing fault diagnosis for two cases studies: the Case Western Reserve University (CWRU)
bearing dataset and the locomotive bearing data set. Inspired by AutoML approaches,
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a self-optimizing module is proposed in [73] to dynamically adjust the knowledge base
selection and parameter setting for training an Extreme Learning Machine based on physical
knowledge. The self-optimizing module was applied on the CWRU bearing dataset.

4. Case Study

This section introduces the test bed and the experimental plan to acquire the database
of vibration signals from three gearbox failure modes: pitting, crack and broken tooth.
Next, details of the dataset are provided.

4.1. Experimental System and Data Acquisition

The real test bed available at the Universidad Politécnica Salesiana is shown in Figure 4,
where realistic conditions of load and speed can be configured. The test bed is composed by
a one stage gearbox (a) with spur gears, an induction motor (b) Siemens 1LA7 096-6YA60
2Hp 1200 rpm under variable speed controlled by a variable-frequency driver (c), and a
magnetic brake system (d) for manual load control (e) via belt transmission (f). The four
accelerometers (g) are IMI Sensor 603C01, 100 mV/g, placed in a vertical manner. The data
acquisition cards (h) are National Instrument NI 9234 and cDAQ-9188, including anti-
aliasing filtering with a sample frequency of 50 KS/s and, finally, the laptop with signal
acquisition software (i) developed in Labview and Matlab.

Figure 4. Test bed under realistic conditions.

The spur gears in the gearbox are made from steel E410, with a center distance of
90 mm, the ratio Z1/Z2 of the teeth number is 32/48, the module is 2.25 and the pressure
angle is 20◦. The vibration signals were collected with all four accelerometers, but this
work only analyses the vibration signals collected from the accelerometer (A1) placed over
Z1 in a vertical manner, as shown in Figure 5. The accelerometer (A1) provides the most
informative vibration signal because it is close to the motor [74].

Three failure modes are considered, namely pitting, crack and broken tooth, each one
configured on the gear Z1, as detailed in Table 1. For pitting, the severity level is related
to the number of holes, their diameter and depth. For cracks, the severity level is related
to the depth, width and length of the crack throughout the tooth. The broken tooth was
implemented as a percentage of transverse breakage on the tooth. Vibrations signals were
collected for nine severity levels for each failure mode, where P1 labels the Normal (N)
or healthy state, and P2 to P9 label each fault severity level. An example of the vibration
signals in the time domain of each failure mode in normal conditions, severity levels P2
and P9, is presented in Figure 6. These figures show the change of the vibration amplitude,
but this change is not monotonic regarding the severity level. Details about these failure
modes are given in Section 2.2.
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Figure 5. Schematic experimental setup.
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Figure 6. Samples of a vibration signal for simulated faults for the three case studies.
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Table 1. Severity level characteristics of the three failure modes.

Label Severity Level Severity Level Severity Level
Pitting Crack Broken Tooth

P1 N N N

P2

Holes: 2 Depth: 1 mm

12.5%Diameter: 1 mm Width: 1 mm
Depth: 1 mm Length: 4 mm

4.1% 4.9%

P3

Holes: 2 Depth: 1mm

25.0%Diameter: 1.5 mm Width: 1 mm
Depth: 1.5 mm Length: 8 mm

7.3% 9.8%

P4

Holes: 4 Depth: 1 mm

37.5%Diameter: 1.5 mm Width: 1 mm
Depth: 1.5 mm Length: 10 mm

14.7% 12.3%

P5

Holes: 4 Depth: 1mm

50.0%Diameter: 2 mm Width: 1 mm
Depth: 2 mm Length: 12 mm

23.1% 14.7%

P6

Holes: 6 Depth: 1 mm

62.5%Diameter: 2 mm Width: 1 mm
Depth: 2 mm Length: 16 mm

34.6% 19.7%

P7

Holes: 6 Depth: 1 mm

62.5%Diameter: 2.5 mm Width: 1 mm
Depth: 2.5 mm Length: 20 mm

49.91% 25%

P8

Holes: 8 Depth: 2 mm

87.5%Diameter: 2.5 mm Width: 1.5 mm
Depth: 2.5 mm Length: along the tooth

66.5% 50.0%

P9

Holes: irregular Depth: 4 mm

100%Diameter: irregular Width: 1.5 mm
Depth: 2.5 mm Length: along the tooth

83.1% 100%

4.2. Dataset

The dataset of vibration signals were collected under the following conditions:

• The time length of each example is 10 s. Then, the signal is composed by 500,000 sam-
ples, according to the sample frequency of the DAQ card;

• The motor rotates at constant speeds of 180 rpm, 720 rpm and 960 rpm;
• The constant load was configured for no-load (0 N m), and loads generated with

constant voltage application on the magnetic brake on 5 VDC (1.44 Nm) and 10 VDC
(3.84 Nm);

• Each example configured under different speed and load were repeated 15 times.

Therefore, each severity level is composed by 135 examples and the whole dataset
considering nine severity levels has 1215 examples. After that, 64 statistical features over
the time domain of the vibration signal were extracted for each example to build the corpus
matrix. The time domain offers a suitable condition indicator with easy interpretability.
Some statistical features are mean, variance, standard deviation, kurtosis, skewness, energy,
absolute mean, crest factor, norm entropy, Shannon entropy, sure entropy, among others.
Detailed definitions of each condition indicator can be found in [29–31]. Then, the corpus
is a 1215 × 64 matrix.
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5. Experiments and Results

This section presents our general methodology to evaluate both the AutoML tools
used in this paper, and the implementation details and the main findings. The methodology
is presented in Figure 7, where processes (rounded squares), inputs and outputs (squares)
are stated. In all of the work presented, it is important to always consider that there are
three specific case studies that are analyzed, namely pitting, crack and broken tooth, each of
the gearbox faults studied in this paper. The section is divided into two main subsections,
each one devoted to one of the AutoML systems considered in this work.

Figure 7. Methodological Framework.

5.1. AutoML with H2O Driverless AI

The experimental approach presented in this paper is focused on characterizing the
performance of AutoML in each case study. This is done by analyzing H2O performance at
different levels. First, we focus on basic generalization or testing performance, the most
common approach towards evaluating ML solutions. Second, we evaluate the incidence of
the Feature Engineering process on AutoML performance. It is widely understood that Fea-
ture Engineering is essential to obtain optimal performance with many ML algorithms [45].
Third, we evaluate the Feature Selection performed by AutoML, by analyzing the estimated
feature importance provided by H2O and evaluating the impact that these features have on
predictive accuracy. Finally, we will qualitatively compare in Section 6 the performance of
the obtained AutoML results with those previously published in this domain The goal is to
illustrate the differences and similarities of the AutoML pipelines relative to the standard
development of ML pipelines.

5.1.1. System Configuration

H2O Driverless AI (DAI) offers an elementary user interface and control settings. In
this work, we are using the version 1.6.5 of DAI, running on an IBM Power 8 HPC server,
with two CPUs and 160 CPU cores, 512 GB RAM and two NVIDIA Tesla P100 GPUs with
16 GB RAM each. There are basically four elements that need to be configured by the user
to perform the AutoML process, these are (We do not cover the complete setup process,
only the most relevant aspects for our study; for a detailed description please see [48] and
visit the online documentation):

1. Accuracy [1–10]: This setting controls the amount of search effort performed by the
AutoML process to produce the most accurate pipeline possible, controlling the scope
of the EA and the manner in which ensemble models are constructed. In all of our
experiments, we set this to the highest value of 10;

2. Time [1–10]: This setting controls the duration of the search process and allows for
early stopping using heuristics when it is set to low values. In all of our experiments,
we set this to the highest value of 10;
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3. Interpretability [1–10]: Guaranteeing that learned models are interpretable is one of
the main open challenges in ML [75], which can be effected, for example, by model
size [76]. DAI works under the assumption that model interpretability can be im-
proved if the features used by the model are understandable to the domain expert,
and if the relative number of features is kept as low as possible. This setting controls
several factors, including the use of filtering features selection on the raw features,
and, more importantly for our study, the amount of Feature Engineering methods
used. In this work, we evaluate two extreme conditions for this setting, for each case
study we perform two experiments, using a value of 1 and 10. A value of 10 filters
out co-linear and uninformative feature, while also limiting the AutoML process to
only use the original raw features of the problem data. On the other hand, the lower
value uses all of the raw features and constructs a large set of new features using a
variety of Feature Engineering methods;

4. Scoring: Depending on the type of problem, regression or classification, DAI offers a
large variety of scoring functions that are to be optimized by the underlying search
performed by the AutoML system, such as Classification Accuracy or Log-Loss for
classification. In this work, we choose the Area Under the Receiver Operating Charac-
teristic Curve (AUC), where optimal performance is achieved with a value of 1, and 0
otherwise. Since all case studies are multi-class problems, this measure is computed
as a micro-average of the ROC curves for each class [77].

All of the other DAI settings are left to their default values, of which one in particular
merits further explanation. As mentioned before, one of the tasks that an AutoML algo-
rithm must determine is the ML model or algorithm to use for a given dataset. DAI offers
the following options: XGBoost, Generalized Linear Models, LightGBM, Follow the Regu-
larized Leader and RuleFIt Models. After initial exploratory experiments, we observed that
under all our experimental conditions, and for each case study, DAI always chose XGBoost
as the learning algorithm. Therefore, XGBoost is only considered in all the experiments
reported below. XGBoost is an implementation of gradient boosted decision trees, that is
highly efficient, particularly on GPU-enabled systems [78]. It is widely considered to be a
state-of-the-art algorithm, that consistently outperforms most other techniques on a wide
variety of domains. Finally, DAI does not only consider single models, but also attempts
to build ensembles of several models, an approach that often outperforms single model
approaches [79]. The ensemble of XGBoost models are linearly combined to produce the
final output.

5.1.2. Evaluation of AutoML Pipelines

Given the three case studies (Pitting, Crack and Broken Tooth), and the two experi-
mental configurations (Interpretability set to 1 and Interpretability set to 10), we have a
total of six sets of experimental results. DAI performs 3-fold cross validation to compute
the performance scores, and presents averages of performing this process 3 times. Table 2
summarizes the results for each experiment, focusing on the following performance met-
rics: Classification Accuracy, AUC, F1 Measure and Log-Loss, all of which are standard
measures in the ML literature. These measures are given as averages over all test folds in
the cross validation process, and the standard deviation is given in parentheses. The next
two columns present the details on model size, given by the number of features used and
the number of components in the final ensemble (In some cases the number of components
in the final ensemble was larger than what we report in Table 2, but some models had a
zero weight, so they were omitted from the final result). It is worthwhile to mention, once
again, that while size is not equivalent to complexity or interpretability, in practice it often
sufficiently commensurate to be used as a useful approximation [76]. The final column
specifies the amount of computation time required for each experiment (in hours).
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Table 2. Summary of experimental results for each problem (BT = Broken Tooth, Interpret = In-
terpretability and Acc = Accuracy). Testing performance is shown as averages and the standard
deviation in parentheses. Model Size is given for the final ML pipeline found.

Configuration Testing Performance Model Size

Problem Interpret. Acc. AUC F1 Log-Loss Features Ensemble Time

Pitting 1 0.99(0.0025) 0.99(0.0002) 0.97(0.0116) 0.09(0.0185) 177 4 19
Pitting 10 0.99(0.0021) 0.99(0.0005) 0.96(0.0009) 0.12(0.0253) 27 1 8.5
Crack 1 0.99(0.0023) 0.99(0.0001) 0.98(0.0106) 0.08(0.0176) 131 4 18.5
Crack 10 0.99(0.0015) 0.99(0.0002) 0.98(0.0007) 0.08(0.0197) 25 2 14.8

BT 1 0.98(0.0027) 0.99(0.0003) 0.95(0.0124) 0.17(0.0161) 1019 3 19.5
BT 10 0.98(0.0040) 0.99(0.0002) 0.94(0.0180) 0.17(0.0556) 15 2 14.7

There are some notable results in Table 2. First, in terms of generalization performance,
all of the ML pipelines produce very strong results. Second, the Interpretability setting
does not seem to have a significant effect on performance, with almost identical results for
both settings. Third, this setting does affect the number of features used and the running
time of the experiments. It is clear that using an Interpretability setting of 1 does increase
the number of features, in some cases quite drastically (Broken Tooth in particular), but it
does not generate a similar performance increase. This phenomenon is well studied in the
EA literature, and it is known as bloat [76]. While widely studied, and a variety of methods
used to control it, it is obviously not addressed in this state-of-the-art AutoML system.

5.1.3. Analysis of Feature Importance

While feature engineering did not lead to substantial improvements in classification
accuracy, however, the AutoML feature importance estimation and feature selection process
are also evaluated. Table 3 presents a summary of the feature importance scores assigned
by DAI to each of the features used in this study, which are given in the range of [0, 1], when
setting Interpretability = 10. Features that are assigned a value below 0.003 are not used
by the ML pipeline found in a particular problem, and those features with such a value in
all three pipelines are omitted from the table. Notice that the number of features that meet
these criteria for each problem is well below the total number of available features: 26 for
pitting, 15 for Broken Tooth and 24 for crack.

Moreover, features that were used in the pipeline of all three problems (feature im-
portance values greater than 0.003 in all pipelines) are highlighted in gray (nine features),
these are: x1, x6, x7, x8 ,x27, x35 x41, x54, and x61. Features that are only used in at least two
of the pipelines are in light gray (12 features), and features that are used once are in white
(12 features). The final column of Table 3 presents the average Feature Importance score
assigned by DAI to each feature, considering the score from the pipeline obtained from
each problem. These results show that there is substantial agreement in which features are
informative in this domain, irrespective of the specific type of fault.

Taking into consideration the results in Table 2, there are several observations that
can be made regarding feature importance and the DAI results that did employ Feature
Engineering (Interpretability = 1). These results show that feature engineering produces
a larger set of informative features, compared to the original set of features. For instance,
we can focus on the top 50 features determined by DAI, and analyze them based on their
feature importance value to characterize their statistical distribution, as summarized in
Table 4 (Note that for the experiments with Interpretability = 10 some features (in some
cases most) did not achieve a feature importance value greater than 0.003, and were thus
omitted from the analysis in Table 3. However, since DAI does not provide the feature
importance value for these features, it was considered to be equal to 0.003 for this analysis).
These results clearly show that the feature engineering process did produce a larger set
of informative features, compared to the original set of raw features. We can also analyze
the type of features used by DAI when setting Interpretability = 1, as summarized in
Table 5, again focusing on the top 50 features for each problem. The table summarizes the
percentage of features generated by different Feature Engineering heuristics; these are:
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• Original: The original features in the dataset;
• Cluster Distance (CD): Uses a subset of features to cluster the samples, and uses the

distance to a specific cluster as a new feature;
• Cluster Target Encoding (CTE): Also cluster the data, but computes the average value

of the target feature of each cluster as a new feature;
• Interaction: Uses feature interactions as new features, based on simple arithmetic

operations, namely addition, subtraction, division, and multiplication;
• Truncated SVD (TSVD): This heuristic trains a truncated SVD model on a subset of the

original features, and uses the components of the SVD matrix as new features for the
problem.

Table 3. Feature importance computed by DAI on each problem, for each of the features used in this
study. Features not on this list had a zero value in all three problems. Dark gray rows indicate that a
feature was used in all three problems, light gray in two, and white in at least one.

Feature Pitting Crack Broken Tooth Average

x1 1 1 1 1
x5 0.07 0 0 0.02
x6 0.92 0.63 0.93 0.88
x7 0.52 0.77 0.20 0.49
x8 0.50 0.71 0.90 0.70
x9 0 0.14 0.57 0.23
x10 0.06 0 0 0.02
x11 0 0.64 0 0.02
x12 0.05 0.18 0 0.07
x13 0.51 0 0.61 0.37
x15 0.17 0.65 0 0.27
x16 0.14 0 0 0.04
x17 0.09 0 0 0.03
x19 0.51 0.38 0 0.29
x20 0.52 0.18 0 0.23
x21 0.11 0.30 0 0.13
x22 0.05 0 0.97 0.34
x24 0.25 0 0 0.08
x26 0 0.44 0 0.14
x27 0.63 0.70 0.52 0.61
x28 0.06 0.72 0 0.26
x30 0 0 0.49 0.16
x33 0 0 0.20 0.06
x35 0.27 0.16 0.65 0.36
x39 0.05 0.19 0 0.08
x41 0.52 0.65 0.94 0.70
x42 0.27 0.19 0 0.09
x45 0 0.62 0 0.20
x54 0.24 0.56 0.19 0.33
x58 0.05 0 0.55 0.20
x61 0.39 0.68 0.22 0.43
x62 0 0.18 0 0.06
x63 0 0.15 0 0.05
x64 0.05 0.77 0 0.27

It appears that the original features and the CD and Interaction heuristics produce most
of the informative features used by the DAI models. However, as shown in Table 2, these
features did not lead to increased performance in the studied problem instances. Suggesting,
once again, that these transformations are, in fact, reducing model interpretability without
notably improving model accuracy.
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Table 4. Feature importance values for the top 50 features found for each problem by DAI.

Configuration Feature Importance

Problem Interpret. Min Max Median Mean Std

Pitting 1 0.149 1 0.212 0.259 0.152
Pitting 10 0.114 1 0.183 0.233 0.147
Crack 1 0.281 1 0.414 0.462 0.180
Crack 10 0.003 1 0.052 0.166 0.248

BT 1 0.003 1 0.003 0.182 0.319
BT 10 0.003 1 0.062 0.237 0.301

Table 5. Percentage of types of features used by DAI on each problem, based on the 50 features with
the highest feature importance scores.

Problem Original CD CTE Interaction TSVD

Pitting 48% 32% 0% 18% 2%
Broken Tooth 32% 30% 0% 36% 2%

Crack 8% 52% 4% 36% 0%

5.1.4. Feature Importance and Classification Performance

To better understand how classification performance depends on the number of
features used, two experiments were carried out. In both, an XGBoost classifier was
evaluated on each problem using an increasing number of features, starting with the
feature with the highest Feature Importance value and progressively adding the next
highest and so on. In the first experiment, independent feature importance lists were used,
as given by the DAI pipeline for each problem. For the second experiment, a common
feature importance list was implemented, using the average importance value for each
feature among the three problems. The values are presented in the Average column in
Table 3.

This analysis allows us to characterize how the least important features impact classifi-
cation accuracy. In these experiments, an 80%/20% training/testing split was carried out.
Training was carried out using a Grid Search over hyperparameter space and 10-fold cross
validation. Hyperparameter optimization considered the following hyperparameters and
search ranges:

• Number of estimators (nest): The number of weak-learners used by the XGBoost
classifier. The search range is {50, 100, 150, 200};

• Learning rate (lr): Size of each bootstrapping step, and it is critical to prevent overfit-
ting. The search range is {0.01, 0.1, 0.2, 0.3};

• Max Depth (dmax): Maximum depth of each weak-learner, which is represented as a
decision tree. The search range is [3, 10];

• Feature Subsampling (SS): Represents the fraction of features that are subsampled by
a particular learner. The search range is [0.1, 0.2];

• Gamma (γ): A regularization term that controls when a leaf is split in a weak-learner
decision tree. The search range is {0, 0.1, 0.2}.
For the first experiment, the feature importance values for each problem are listed in

Table 3. The results on the training and test set, for each number of features, are summarized
in the first column of Figure 8, which shows the classification accuracy for each problem.
What it is clear is that the highest accuracy is reached by all methods with 10 to 16 features,
which is significant since it is less than the number of features used by the DAI pipelines
from the Pitting and Crack problems. This suggest that further feature selection, at least
in these two cases, can be beneficial. It is also important to note that this experiment is
using a single XGBoost classifier, instead of the ensembles suggested by the DAI pipeline,
but performance is nonetheless comparable. The second column of Figure 8 shows the
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optimal hyperparameter values found on each problem for each number of total features
used, each one normalized to the range [0, 1].
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Figure 8. Plots show the impact of total features used by XGBoost classifier for each problem using
individual feature lists. The left column (a,c,e) shows the impact on classification accuracy and the
right column (b,d,f) shows the impact on hyperparameter optimization with Grid Search.

In the second experiment, as stated above, features were added using a common list
of features based on the average feature importance values. Results are summarized in
Figure 9 and several observations are pertinent when compared with the results in Figure 8.
First, it is clear that performance does not decrease when using a common set of features,
suggesting that the same set of features can be used to solve all three classification tasks.
Second, hyperparameter optimization behaves very similar, across all problems and in
both experimental setups. When using a few features, a large learning rate and deep trees
are preferable, while more estimators, shallower trees and a smaller learning rate is better
when using more features.
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Figure 9. Plots show the impact of total features used by XGBoost classifier for each problem using a
common feature list based on average feature importance. The left column (a,c,e) shows the impact on
classification accuracy and the right column (b,d,f) shows the impact on hyperparameter optimization
with Grid Search.

5.2. AutoML with TPOT

TPOT incorporates several similar basic elements as H2O does, which are feature
transformation, feature engineering, feature selection, parameter optimization and model-
ing. However, it takes a different approach to do so, using a form of evolutionary search
called Genetic Programming [47], and building on top of the well-known ML library Scikit-
learn [56]. TPOT basically uses four types of pipeline elements, namely preprocessors,
decomposition operators, feature selection and modeling. Preprocessors include various
types of scaling techniques for input data, as well as basic feature engineering methods
based on polynomial expansions of the input features. Decomposition operators include
different forms of PCA, while feature selection techniques include recursive feature elimina-
tion (RFE) or filtering techniques such as SelectFwe, which is based on the family wise error
of each feature [56]. For classification problems, modeling techniques include KNN, linear
SVM, logistic regression, Gradient Boosting, Extra Tree classifiers and XGBoost, to name
a few.
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TPOT is configured to maximize classification accuracy as well as to minimize model
complexity (given by the size of the pipeline). Since these two objectives can be potentially
in conflict, TPOT employs a multi objective criteria to guide the search for the best ML
pipeline for a given problem.

While TPOT does not include such a rich set of explicit feature engineering methods,
it achieves the same type of results by employing stacking of models. In summary, stacking
allows TOT to concatenate the output of several models in such a way that all the outputs
from a particular model can be used as additional features to train another model which is
further downstream in the pipeline. For instance, a Gradient Boosting model will produce
m probabilistic outputs for each sample, where m is the number of classes; that is, the
probability that a particular sample belongs to each class. This output vector can be
concatenated with the original input features to form an extended feature set for another
ML model.

5.2.1. TPOT Configuration and Results

The same datasets and cross validation procedure was used with TPOT as was done
with H2O. However, the configuration of the system is notably different, with the underly-
ing Genetic Programming algorithm requiring a set of specific hyperparameters to perform
the run. For the presented experiments, we used the same configuration suggested in [47].
The average cross validation testing performance (accuracy) on each problem was: 0.99
for pitting, 0.98 for crack and 0.96 for Broken Tooth. Comparing these results with those
presented in Table 2 shows that overall, the performance of the ML pipelines produced by
both AutoML systems are quite similar. However, given the different approaches towards
ML pipeline generation, the pipelines generated by TPOT are more heterogeneous than
those produced by H2O.

TPOT Pitting Pipeline

For this problem, TPOT produced the most complex pipeline, which consisted of:

• First, an RFE feature selection step that reduced the feature space to hold the number
of original features;

• A filtering of the features using SelectFwe, which left a total of 27 original features. It
is of note that the number of features used in this pipeline is the same as those used
by H2O on the same problem (see Table 2 for Pitting with Interpretability set to 10);

• Feature transformation by PCA, followed by a robust scaling;
• Finally, modeling was carried out by the Extra Tree classifier with 100 base learners.

TPOT Crack Pipeline

For this problem, TPOT produced the following pipeline:

• The pipeline stacked two models in this pipeline. The first model is a Multilayer
Perceptron (MLP) with a learning rate of 1 and 100 hidden neurons;

• The outputs from the MLP were concatenated with the original feature set and used
to train the second model, a Gradient Boosting classifier with learning rate 0.5, max
depth of 7, minimum sample split of 19 and 100 base learners.

TPOT Broken Tooth Pipeline

For this problem, TPOT produced the following pipeline:

• The pipeline stacked two models in this pipeline. The first model is a Gradient
Boosting classifier with learning rate 0.5, max depth of 4, minimum sample split of 10
and 100 base learners;

• The second model is a linear SVM classifier, with a squared hinge loss function, and L1
regularization.
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It is noticeable that, unlike H2O, TPOT does not converge to XGBoost models, but does
use a decision tree-based model in all three pipelines. Moreover, TPOT reduces the feature
space on pitting, but increases the feature space with stacking on the other two problems.

5.2.2. Analysis of Feature Selection and Feature Importance

Unlike H2O, TPOT does not generate an explicit feature ranking or feature importance
score, a notable and useful feature of the former method. However, it is possible to analyze
the pipelines produced in each problem, and determine the relative feature importance
assigned by the TPOT pipelines. In the following analysis, we will compare the feature
selection and feature importance values produced by the TPOT pipelines relative to the
results obtained by the H2O pipelines when using Interpretability = 10. In particular,
we focus on the set of common features, those chosen in all three problems by the H2O
pipelines; these are the following nine features from Table 3: x1, x6, x7, x8 ,x27, x35 x41, x54,
and x61.

For the Pitting problem, there are two feature selection operators applied to the original
data. After this filtering process, a total of 27 features were used to perform the classification.
Relative to the common set of features found by H2O, seven of the nine features (77%) are
also used by the TPOT pipeline in this problem, with the only exceptions being x8 and x27 .

For the Crack problem, we can obtain a feature importance score from the Gradient
Boosting classifier. It is important to remember that the Gradient Boosting classifier used
a combination of synthetic features generated by the MLP and the original raw features.
Based on this, we can rank the top 25 features used by the Gradient Boosting classifier,
the same number of features used by the H2O pipeline. This ranking shows that all the
top-ranked features are from the original feature set, without any of the synthetic features
generated by the MLP. Moreover, among the top 25 features, the 9 common features from
H2O are included (77%), with the only exceptions being x35 and x61.

Finally, we can perform the same analysis for the BT problem, considering the top 15
features (based once again on the H2O results). In this case, we use the relative feature
importance produced by both stacked models on the original feature set, namely the
Gradient Boosting and linear SVC. In this case, the overlap with the common features
produced by H2O is 8 out of 9 (88%), with the only exception x27.

These results show that, overall, both AutoML pipelines converge to a very similar
set of features for all problems, clearly indicating which features are more relevant in
this domain.

6. Discussion

The previous section shows the proper performance of the original time-domain
condition indicators for fault severity classification with the model obtained by the AutoML
systems. The results are compared to alternative ones obtained by the authors when
the best set of features and classification model is obtained by manually adjusting the
classification parameters and taking the individual ranking provided by the feature ranking
algorithm [80,81].

In [80], the same dataset of the pitting damage was analyzed for vibration signals and
a subset of 24 time-domain condition indicators. Feature selection was conducted by using
Chi-square-based ranking and a KNN classifier. Results show that 6 features can provide
over 95% of accuracy and 12 features offer over 96%.

The method proposed in [81] was adopted to perform feature selection by using relief-
based feature ranking and tested on a RF classifier, with the same dataset used in this work.
Results are show in Table 6 and Figure 10.
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Table 6. Accuracy by using RF-based classifier and feature ranking with RelieF.

Number of Features Pitting Broken Tooth Crack

1 0.32 0.29 0.32
2 0.56 0.52 0.55
3 0.80 0.80 0.82
4 0.88 0.89 0.93
5 0.92 0.91 0.94
6 0.92 0.93 0.95
7 0.93 0.93 0.96
8 0.92 0.94 0.97
9 0.94 0.95 0.97
10 0.93 0.96 0.96
11 0.94 0.97 0.97
12 0.95 0.97 0.97
13 0.96 0.97 0.97
14 0.96 0.97 0.97
15 0.96 0.96 0.97
16 0.96 0.96 0.97
17 0.97 0.96 0.97
18 0.96 0.97 0.97
19 0.97 0.97 0.97
20 0.97 0.97 0.96

Figure 10. Accuracy trend by using RF based classifier and feature ranking with RelieF.

Results in Table 6 show that, for all the three failures modes, the accuracy remains
above 97% with more than 13 features. By comparing to Figure 8, this trend is similar,
and the accuracy is around 96% for pitting, 98% for crack, and 95% for Broken Tooth,
when test examples are used. By comparing to Figure 9, when common features are used,
the average accuracy over 98% is attained for pitting, 96% for crack and 97% for Broken
tooth, by using over 13 features and test examples.

These results are similar for feature selection and classification using AutoML. The ag-
gregate value of using AutoML is that the search is guided by an optimization problem,
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simplifying the underlying design process of the ML pipeline. However, at least on the
tested problems, the overall performance of the resulting pipeline is not substantially differ-
ent from those achieved by the standard pipeline design approach. On the other hand, given
the simplified approach to ML development, this work was able to show that the same
set of features can be used to solve three different fault diagnosis problems in gearboxes,
which was previously unknown and not reported by other works in our knowledge.

7. Summary and Conclusions

This paper presents the application of two AutoML systems, H2O DAI and TPOT,
for obtaining fault severity ML pipelines for spur gears under three different failures modes
at different severity levels. The case study in this work is for fault severity assessment
in gearboxes, treated as classification problems for three failure modes: pitting, crack
and broken tooth. Fault severity assessment in gearboxes is not a trivial problem, as the
gearboxes are mechanical systems with high non-linear and chaotic behaviors that usually
work under changes in load and speed.

The use of AutoML to solve fault detection in gearboxes has not been previously
reported in the literature, making this work the first to show the power of this approach to
generate optimized ML models for this problem. Both AutoML systems are easy to use
and provide both optimization modules and feature engineering modules (H2O explicitly,
while TPOT mainly does this implicitly), which simplifies the design process of specialized
ML pipelines.

The results and main conclusions in this paper are summarized in two ways. Regard-
ing the general results of using AutoML in this domain:

• The setting of H2O DAI in the process of feature engineering is more explicit for the
user. This is particularly useful when testing the creation of new features;

• Results of the evaluation and comparison between H2O DAI and TPOT show that
both platforms select common features, regardless of the selected model by each
platform. The size of the feature space used by each system varies, and neither of
them is consistently more or less efficient in this regard;

• Classification accuracy when using all the features, without feature selection, remains
very close for both systems, over 96%;

• The accuracy achieved by AutoML can be increased relative to a hand-tuned classifi-
cation model, particularly by adjusting the feature selection technique.

Regarding the feature analysis of the generated AutoML pipelines, we can state the
following:

• Time-domain statistical features are highly informative. This is verified by the fact that
the feature engineering methods provided by the AutoML platforms do not substan-
tially increase the classification accuracy of the ML pipelines. This particularity was
identified because of the use of AutoML, and this discovery reduces the requirements
of computing other complex features beyond the informative ones;

• Classification accuracy over 90% is obtained with 10 features, and over 95% with more
than 13 features, for each failure mode, when problem-specific features are selected
based on the relative feature importance. The use of AutoML permitted to set the
proper number of features, and this directly improves the generalization capability of
the ML model for fault diagnosis;

• Common features for all three failures modes can be selected based on average values
of feature importance across all problems. These common features are highly informa-
tive as they achieve a classification accuracy over 96%. Moreover, the common set of
features are ranked as highly informative for all problems by both AutoML systems.
The analysis and use of the same set of features for all three failure modes has not
been previously reported in the literature;

• The accuracy of the classifiers obtained by AutoML are highly competitive with the
state-of-the-art in this domain, reaching 96% of accuracy and even 99% in some failure
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modes. For comparison, accuracy by manual design of ML pipelines has been reported
of up to 97% on the same datasets. This result verifies the power of the pipelines
created from AutoML.

Future works can be focused on testing other AutoML platforms, like Neural Archi-
tecture Search (NAS) developed by Google DeepMind Team, to evaluate neural network
architectures or a Bayesian approach, such as Auto-Sklearn [82], for the case study pre-
sented in this work.
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74. Listewnik, K.; Grzeczka, G.; Kłaczyński, M.; Cioch, W. An on-line diagnostics application for evaluation of machine vibration
based on standard ISO 10816-1. J. Vibroeng. 2015, 17, 4248–4258.

75. Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics
2019, 8, 832. [CrossRef]

http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1162/artl.2009.15.2.15202
http://www.ncbi.nlm.nih.gov/pubmed/19199382
http://dx.doi.org/10.1007/978-3-662-44874-8
http://dx.doi.org/10.1016/j.ymssp.2017.05.024
http://dx.doi.org/10.1007/s11012-020-01159-5
http://dx.doi.org/10.1007/s10033-017-0196-z
http://dx.doi.org/10.1115/1.4043367
http://dx.doi.org/10.32604/sdhm.2019.00287
http://dx.doi.org/10.3233/JIFS-169349
http://dx.doi.org/10.1177/1748006X18822447
http://dx.doi.org/10.1109/TITS.2020.2987614
http://dx.doi.org/10.1016/j.jbiosc.2021.04.002
http://dx.doi.org/10.1016/j.jprocont.2020.08.002
http://dx.doi.org/10.1016/j.measurement.2019.107417
http://dx.doi.org/10.3390/electronics8080832


Math. Comput. Appl. 2022, 27, 6 25 of 25

76. Juárez-Smith, P.; Trujillo, L.; García-Valdez, M.; Fernández de Vega, F.; Chávez, F. Local search in speciation-based bloat control
for genetic programming. Genet. Program. Evolvable Mach. 2019, 20, 351–384. [CrossRef]

77. Hand, D.J.; Till, R.J. A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Mach.
Learn. 2001, 45, 171–186. [CrossRef]

78. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA, 13–17 August 2016; Association for
Computing Machinery: New York, NY, USA, 2016; pp. 785–794.

79. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
80. Sánchez, R.V.; Lucero, P.; Vásquez, R.E.; Cerrada, M.; Cabrera, D. A comparative feature analysis for gear pitting level classification

by using acoustic emission, vibration and current signals. IFAC-PapersOnLine 2018, 51, 346–352. [CrossRef]
81. Sánchez, R.V.; Lucero, P.; Vásquez, R.E.; Cerrada, M.; Macancela, J.C.; Cabrera, D. Feature ranking for multi-fault diagnosis of

rotating machinery by using random forest and KNN. J. Intell. Fuzzy Syst. 2018, 34, 3463–3473. [CrossRef]
82. Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. arXiv

2021, arXiv:2007.04074.

http://dx.doi.org/10.1007/s10710-019-09351-7
http://dx.doi.org/10.1023/A:1010920819831
http://dx.doi.org/10.1002/widm.1249
http://dx.doi.org/10.1016/j.ifacol.2018.09.600
http://dx.doi.org/10.3233/JIFS-169526

	Introduction
	Background
	Overview of AutoML
	Faults in Gearboxes

	Previous Work
	Case Study
	Experimental System and Data Acquisition
	Dataset

	Experiments and Results
	AutoML with H2O Driverless AI
	System Configuration
	Evaluation of AutoML Pipelines
	Analysis of Feature Importance
	Feature Importance and Classification Performance

	AutoML with TPOT
	TPOT Configuration and Results
	Analysis of Feature Selection and Feature Importance


	Discussion
	Summary and Conclusions
	References

