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Abstract: By fusing the Lindley and Lomax distributions, we present a unique three-parameter con-
tinuous model titled the minimum Lindley Lomax distribution. The quantile function, ordinary and
incomplete moments, moment generating function, Lorenz and Bonferroni curves, order statistics,
Rényi entropy, stress strength model, and stochastic sequencing are all carefully examined as basic sta-
tistical aspects of the new distribution. The characterizations of the new model are investigated. The
proposed distribution’s parameters were evaluated using the maximum likelihood procedures. The
stability of the parameter estimations is explored using a Monte Carlo simulation. Two applications
are used to objectively assess the new model’s extensibility.

Keywords: compounding distributions; Lindley distribution; Lomax distribution; stochastic ordering;
stress strength model; characterization

1. Introduction

Appropriate data modeling is believed to provide greater insight into the data, di-
vulging its properties and allowing for tracking its characteristics. Consequently, there is
a potential for developing efficient methods for clearer grasp of real-world occurrences.
We developed a coherent model to help meet the aspirations of applied practitioners in
a wide range of scientific domains, inspired by the application of theoretical probability
models in applied research. Tahir and Nadarajah [1] provided a deep review of novel
approaches that can be adopted to develop new generalized classes (“G-classes” for short)
of distributions. In parallel to G-classes, Tahir and Cordiero [2] presented a review on
compounding univariate distributions, their expansions, and classes to detect anomaly
scenarios under series and parallel structures. In the current article, we adopted the ap-
proach extensively discussed in Section 7 of [2], by integrating two continuous cumulative
distribution functions (cdfs) together. Cordeiro et al. [3] initiated this idea and proposed
the Exponential-Weibull distribution. In the same vein, we proposed minimum Lindley
Lomax (minLLx) distribution by compounding the Lindley and Lomax distributions.

The Lindley (L) and Lomax (Lx) distributions are indispensable models for character-
izing data, notably in engineering, for the replacement and maintenance of various goods,
systems, and reliability processes. For the stated reason, researchers have found ample
evidence of studies that conformed to these distributions, namely, Ghitany et al. [4], Ramos
and Louzada [5], Singh et al. [6], Oguntunde et al. [7], Wei et al. [8], and Elgarhy et al. [9],
just to mention a few. It is an intriguing fact that both the Lindley and the Lomax distri-
butions emerged from an extension of the exponential model, which is commonly used
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to quantify the lifetime of a process or device. Assume that a system comprises of two
sub-systems that are operating in tandem at the same time, and that the system will collapse
if the first sub-system falters. Let us assume further that the failure times of subsystems
follow the Lindley and Lomax distributions with Y and Z independent variables having
cdfs, respectively, as follows

G(y) = 1−
(

1 + θ + θy
1 + θ

)
e−θy, y ≥ 0, θ > 0

H(z) = 1− (1 + λz)−β, z ≥ 0, λ, β > 0.

Then, the new arbitrary variable (av) X = min(Y, Z) will be called the min Lindley
Lomax (minLLx) to determine the system’s failure mechanism. The cdf of the minLLx av is
follows as

F(x) = 1− e−θx

(1 + λx)β

(
1 + θ + θx

1 + θ

)
, x ≥ 0, θ, λ, β > 0. (1)

The probability density function (pdf), survival function (sf), and hazard rate function
(hrf) in harmony with Equation (1) are given, respectively, by

f (x) =
e−θx

(1 + θ)(1 + λx)β+1

[
λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

]
, x > 0, θ, λ, β > 0 , (2)

S(x) =
e−θx

(1 + λx)β

(
1 + θ + θx

1 + θ

)
and

h(x) =
λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

(1 + λx)(1 + θ + θx)
, x > 0. (3)

From now on, an av X~minLLx (θ, λ, β) with a pdf is defined by Equation (2).
The purpose of this research is to present and explore the mathematical configurations

of a newly developed three-parameter distribution, the minimum Lindley Lomax model,
in the perspective of compounding. The rest of the article is composed of seven main
components. The minLLx model’s essential mathematical features are examined in Section 2.
Specific characterizations of the new distribution are pursued in Section 3. The minLLx
model’s maximum likelihood estimates and observed information matrix are established
in Section 4. In Section 5, a simulation study is carried out. Two applications are provided
in Section 6. Eventually, in Section 7, there are some closing remarks.

2. Structural Properties

The standard mathematical characteristics of the newly suggested minLLx distribution,
as stipulated by the cdf in Equation (1), are explored in this phase. In each subcategory, we
report a few explicit results.

2.1. Quantile Function

Let the pth quantile of the minLLx distribution, say xp, is demarcated by F(xp) = p,
such that 0 < p < 1. Then the root of

xp =
1
λ


[
(1 + θ)(1− p)eθxp

1 + θ + θxp

]−1/β

− 1

. (4)
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2.2. The Shape of the minLLx Distribution

Mathematically, the forms of the minLLx distribution’s density and hazard functions can
be defined. The acute points of the density function are the roots of the following equation:

−λ(1 + β)

1 + λx
+

{
θ[λβ + 2θ(1 + λx)]

λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

}
= 0.

Furthermore, the acute points of the hazard function are the roots of the following equation:{
θ[λβ + 2θ(1 + λx)]

λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

}
− λ

1 + λx
− θ

1 + θ + θx
= 0.

The density and hazard functions are visualized in Figures 1 and 2, respectively. The
density function has a reverse-J and right-skewed shape with different peeks, while hrf
can sometimes be a monotonic (increasing or decreasing), non-monotonic (bathtub), or
constant in shape. The standard L and Lx statistical distributions can only create two
shapes, whereas the minLLx model can produce a wide number of shapes based on the
power parameter beta.

Figure 1. Possible figures of the minLLx pdf for parameter values chosen at random.
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Figure 2. Possible figures of the minLLx hrf for parameter values chosen at random.

2.3. Moments and Moment Generating Function

Let X be an av with the minLLx distribution, then the ordinary moment, say µ′r, is
given by

µ′r = E(Xr) =
∞∫
−∞

xr f (x) dx

= λβ
1+θ

∫ ∞
0 xr(1 + θ + θx)(1 + λx)−β−1e−θxdx + θ2

1+θ

∫ ∞
0 xr(1 + x)(1 + λx)−βe−θxdx

=
∞
∑

j=0

(
−β− 1

j

)
λj+1β
1+θ

∫ ∞
0 xr+j(1 + θ + θx)e−θxdx +

∞
∑

j=0

(
−β

j

)
θ2λj

1+θ

∫ ∞
0 xr+j(1 + x)e−θxdx

=
∞
∑

j=0

(
−β− 1

j

)
λj+1β(r+θ+j+2)Γ(r+j+1)

(1+θ)θr+j+1 +
∞
∑

j=0

(
−β

j

)
λj(r+θ+j+1)Γ(r+j+1)

(1+θ)θr+j

=
∞
∑

j=0

λjΓ(r+j+1)
(1+θ)θr+j+1

{
λβ(r + θ + j + 2)

(
−β− 1

j

)
+ θ(r + θ + j + 1)

(
−β

j

)}
,

(5)

where Γ(n) =
∫ ∞

0 xn−1 e−x dx is the gamma function. Substituting r = 1, 2, 3, 4 into

(5), we obtain the mean = µ′1,variance = µ′2 − µ′21, skewness =
{

µ′3 − 3µ′2µ′1 + 2µ′ 3
1

}2

{
µ́2 − (µ′1)

2
}−3

and kurtosis =
{

µ′4 − 4µ′3µ′1 + 6 µ′2µ′ 2
1 − 3µ′ 4

1

} {
µ′2 − (µ′1)

2
}−2

.
Table 1 provides the mean, variance, standard deviation, skewness, and kurtosis of X
for different combinations of θ, λ, β as A1 : θ = 3.5, λ = 0.4 , β = 0.5;A2 : θ = 0.3,
λ = 1, β = 0.8 ;A3 : θ = 1.5, λ = 0.1, β = 1.5, and A4 : θ = 0.3, λ = 0.5, β = 0.3 .
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Table 1. Moments, variance, standard deviation, skewness and kurtosis of X for randomly selected
parameter values of minLLx(θ,λ,β).

µ′
r A1 A2 A3 A4

µ′1 1.126862 0.3661565 0.9344674 0.164529

µ′2 1.406321 0.2563243 1.76341 0.1045506

µ′3 1.896405 0.2028995 5.733562 0.07738473

µ′4 2.72086 0.172917 28.11525 0.06041124

Variance 0.1365036 0.1222537 0.890181 0.07748082

S.D 0.369464 0.349648 0.9434941 0.2783538

Skewness 1.137115 1.563494 2.448468 2.289103

Kurtosis 1.375744 1.731832 0.84139 1.526684

The empirical findings from Table 1 allow us to deduce that the skewness is greater
than zero, indicating a lack of symmetry of the tails, specifically an elongated right tail.
This signifies that the mean and median are pulled to the right. Moreover, kurtosis values
are less than three, demonstrating that the distribution is platykurtic.

The nth principal moment of the minLLx distribution, say µn, can be acquired from

µn =
n
∑

r=0

(
n
r

)
(−µ′1 )

n−r E(xr)

=
n
∑

r=0

∞
∑

j=0

(
n
r

)
(−µ′1 )

n−r
λjΓ(r+j+1)

(1+θ)θr+j+1

{
λβ(r + θ + j + 2)

(
−β− 1

j

)
+ θ(r + θ + j + 1)

(
−β

j

)}
.

(6)

The rth incomplete moment of the minLLx distribution, symbolized by ϕs(t), is

ϕs(t) =
t∫
−∞

xs f (x) dx

=
∞
∑

i=0

λi

(1+θ)θs+i+1


λβ[(1 + θ)γ(s + i + 1, t) + γ(s + i + 2, t)]

(
−β− 1

i

)
+θ[θγ(s + i + 1, t) + γ(s + i + 2, t)]

(
−β
ji

)
 ,

(7)

where γ(a, x) =
∫ x

0 ta−1 e−t dt is the lower incomplete gamma function.
The moment generating function, signified by Mx(t), of the minLLx distribution can

be acquired as

Mx(t) = E(etx) =
∞

∑
j=0

λjΓ(j + 1)
(1 + θ)θ j+2


λβ[θ(θ + j− t + 2)− t]

(
−β− 1

j

)
+θ2(θ + j− t + 1)

(
−β

j

)
. (8)

2.4. Probability Weighted Moments

Ordinary moments of order statistics are generalized by probability weighted moments
of a stochastic process, which naturally arise while dealing with ordinary moments. They
also play a significant role in several parametric estimate techniques. The formulation for the
probability weighted moments of a chance variable with the minLLx distribution is as follows.
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The (r + s)th probability weighted moments (PWMs) of a chance variable X with the
minLLx distribution, about Mr,s, follows

Mr,s = E
(
XrF(x)s) = ∞∫

−∞
xrF(x)s f (x)dx

=
∞∫
−∞

xr (1+λx)−β−1

1+θ

{
λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

}
e−θx

×
{

1− (1 + λx)−β
(

1+θ+θx
1+θ

)
e−θx

}s
dx

=
∞
∑

j=0

(−1)j

(1+θ)j+1

(
s
j

) ∞∫
−∞

xr(1 + λx)−β(j+1)−1(1 + θ + θx)je−θ(j+1)x

×
{

λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)
}

dx

=
∞
∑

j=0

(−1)jλβ

(1+θ)j+1

(
s
j

) ∞∫
−∞

xr(1 + λx)−β(j+1)−1(1 + θ + θx)j+1e−θ(j+1)xdx

︸ ︷︷ ︸
A

+
∞
∑

j=0

(−1)jθ2

(1+θ)j+1

(
s
j

) ∞∫
−∞

xr(1 + λx)−β(j+1)(1 + x)(1 + θ + θx)je−θ(j+1)xdx

︸ ︷︷ ︸
B

,

where

A =
∞

∑
i=0

j+1

∑
w=0

λiθw(1 + θ)j−w−1Γ(r + i + w + 1)

( θ(j + 1))r+i+w+1

(
−β(j + 1)− 1

i

) (
j + 1

w

)
and

B =
∞

∑
i=0

j

∑
w=0

λiθw(1 + θ)j−w[θ(j + 1) + r + i + w + 1]Γ(r + i + w + 1)

(θ(j + 1))r+i+w+2

(
−β(j + 1)

i

)(
j
w

)
.

Consequently, we arrive at

Mr,s =
∞
∑

j,i=0

(−1)jλi

(1+θ)j+1θr+i(1+j)r+i

(
s
j

)

×


j+1
∑

w=0

λβ(1+θ)j−w−1Γ(r+i+w+1)
(1+j)w+1

(
−β(j + 1)− 1

i

)(
j + 1

w

)
+

j
∑

w=0

(1+θ)j−w [θ(j+1)+r+i+w+1]Γ(r+i+w+1)
(1+j)w+2

(
−β(j + 1)

i

)(
j
w

)
.

(9)

2.5. Order Statistics

The inclusion of sorted random variables, often known as order statistics, is crucial in
the modeling of various longevity systems with distinct component structures. David and
Nagaraja [10] laid the all-important foundation for this paradigm. The order statistics of
the minLLx distribution are linked to having conventional distributional modules; hence
their importance is an inarguable fact.

Consider the given scenario as X1: n ≤ X2:n, . . . ≤ Xn:n be the Xk:n th order statistics
corresponding to a sample of size n from the minLLx distribution. The pdf of Xk:n, the kth
order statistic, is given by

fXk:n(x) =
1

β(k, n− k + 1)

n−k

∑
w=0

(−1)w
(

n− k
w

)
f (x)F(x)k+w−1, (10)
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where β(., .) is the exact beta function. From (5) and (6), we have

f (x)F(x)k+w−1 =
∞
∑

j=0

(−1)j(1+λx)−β(j+1)−1e−θ(j+1)x

(1+θ)j+1

×
{

λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)
}( k + w− 1

j

)
.

(11)

Inserting Equation (11) into Equation (10), we have

fXk:n(x) =
n−k
∑

w=0

∞
∑

j=0

(−1)w+j(1+λx)−β(j+1)−1e−θ(j+1)x

β(k,n−k+1)(1+θ)j+1

×
{

λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)
}( n− k

w

)(
k + w− 1

j

)
.

(12)

Furthermore, the rth moment of kth order statistic for the minLLx distribution is given by

E
(

xr
k:n
)
=

n−k
∑

w=0

∞
∑

j,i=0

(−1)w+jλiΓ(r+i+1)
β(k,n−k+1)(1+θ)j+1(θ(1+j))r+i+1

(
n− k

w

)(
k + w− 1

j

)
×
{

λβ(r + θ + i + 2)
(
−β(j + 1)− 1

i

)
+ θ(1 + j)(θ(1 + j) + r + i + 1)

(
−β(j + 1)

i

)}
.

(13)

2.6. Rényi Entropy

Entropy is a mathematical concept that encapsulates the logical understanding of
quantifying various mechanisms. The entropy technique is adaptable in different fields,
including bioenergetics, queuing theory, thermodynamics, colligative properties of solu-
tions, and statistics. There are several mechanisms to quantify the entropy of the minLLx
distribution. Rényi entropy is established here by subjecting a feasible expression that may
be appraised using any analytical software. In the perspective of the minLLx distribution,
the following result incorporates a series expansion of this entropy system of measurement.

Rényi entropy is defined as

IR(X) = (1− µ)−1 log
∞∫
−∞

f (x)µ dx, µ > 0, µ 6= 0.

Using Equation (6) and after some manipulations, we have

IR(X) = (1− µ)−1 log


∞

∑
i,l,w=0

∞

∑
j=i

λµ+w−j βµ−jΓ(i+l+w+1)
θi+w−2j+1(1+θ)j+lµi+l+w+1(

µ
j

)(
j
i

)(
µ− j
l

)(
j− µ(β + 1)

w

)
 . (14)

2.7. Stochastic Dominance

Across many distinct fields of probability and statistics, stochastic ordering and in-
equalities are being employed more extensively to examine the comparative behavior.
Biometrics, robustness, econometrics, and actuarial sciences are all fields that have devel-
oped this presumption. According to Shaked and Shanthikumar [11], an av X1 is said
to be smaller than another av X2 in the likelihood ratio order (X1 ≤lr X2) if f1(x)/ f2(x)
decreases in x. The following theorem shows that the minLLx distribution is ordered in
likelihood ratio ordering if the appropriate assumptions exist.

Theorem 1: Let X1 ∼ minLLx(θ1, λ1, β1) and X2 ∼ minLLx(θ2, λ2, β2). If θ1 = θ2, λ1 =
λ2 and β1 ≥ β2 (or i f θ1 = θ2, β1 = β2 and λ1 ≥ λ2), then X1 ≤lr X2.
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Proof: We have

f1(x)
f2(x)

=
(1 + θ2)(1 + λ2x)1+β2 e−(θ1−θ2)x

(1 + θ1)(1 + λ1x)1+β1

{
λ1β1(1 + θ1 + θ1x) + θ2

1(1 + x)(1 + λ1x)
λ2β2(1 + θ2 + θ2x) + θ2

2(1 + x)(1 + λ2x)

}
.

Then

log f1(x)
f2(x) = −(θ1 − θ2)− (1 + β1) log(1 + λ1x) + (1 + β2) log(1 + λ2x) + log

(
1+θ2
1+θ1

)
+ log

[
λ1β1(1 + θ1 + θ1x) + θ2

1(1 + x)(1 + λ1x)
]

− log
[
λ2β2(1 + θ2 + θ2x) + θ2

2(1 + x)(1 + λ2x)
]
.

If θ1 = θ2, λ1 = λ2 and β1 ≥ β2 or if θ1 = θ2, β1 = β2 and λ1 ≥ λ2, then we have

d
dx log f1(x)

f2(x) =
−λ1(1+β1)

1+λ1x + λ2(1+β2)
1+λ2x + θ1{λ1β1+θ1[1+λ1(1+2x)]}

λ1β1(1+θ1+θ1x)+θ2
1(1+x)(1+λ1x)

− θ2{λ2β2+θ2[1+λ2(1+2x)]}
λ2β2(1+θ2+θ2x)+θ2

2(1+x)(1+λ2x)
< 0.

Resultantly, f1(x)/ f2(x) declines in x and hence X1 ≤lr X2. �

2.8. Stress Strength Model

Acquired resistance metrics are used in lifetime testing to ascertain a system’s durabil-
ity. The stress-strength parameter, for instance, is based on the likelihood that a framework
would work proficiently if the stress concentration will be less than its toughness. In the
perspective of the minLLx distribution, the following result exemplifies a primitive outline
for this parameter.

Let X1 and X2 be two independent chance variables with minLLx(θ1, λ1, β1) and
minLLx(θ2, λ2, β2) distributions. Then, the stress−strength model is given by

R = Pr(X2 < X1) =
∞∫
0

f1(θ1, λ1, β1)F2(θ2, λ2, β2) dx

= 1− λ1β1
(1+θ1)1+θ2)

∫ ∞

0
(1 + λ1x)−β1−1(1 + λ2x)−β2(1 + θ1 + θ2) (1 + θ1 + θ2x) e−(θ1+θ2)x dx︸ ︷︷ ︸

H

− θ2
1

(1+θ1)(1+θ2)

∫ ∞

0
(1 + λ1x)−β1(1 + λ2x)−β2(1 + x) (1 + θ2 + θ2x) e−(θ1+θ2)x dx︸ ︷︷ ︸

E

,

where

H =
∞

∑
j,i=0

λ
j
1λi

2 Γ(j + i + 1)

(θ1 + θ2)
j+i+3

{
(1 + θ1)(1 + θ2)(θ1 + θ2)

2 + (θ1 + θ2)(j + i + 1)
×[θ2(1 + θ1) + θ1(1 + θ2)] + θ1θ2(j + i + 1)(j + i + 2)

}(
−β1 − 1

j

)(
−β2

i

)
,

and

E =
∞

∑
j,i=0

λ
j
1λi

2 Γ(j + i + 1)

(θ1 + θ2)
j+i+3

{
(1 + θ2)(θ1 + θ2)

2 + (θ1 + θ2)(1 + 2θ2)(j + i + 1)
+θ2(j + i + 1)(j + i + 2)

}(
−β1

j

)(
−β2

i

)
.

Therefore, the stress−strength model for the minLLx distribution is
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R = 1−
∞
∑

j,i=0

λ
j
1λi

2 Γ(j+i+1)

(1+θ1)(1+θ2)(θ1+θ2)
j+i+3

(
−β2

i

)

×

 λ1β1

{
(1 + θ1)(1 + θ2)(θ1 + θ2)

2 + (θ1 + θ2)(j + i + 1)
×[θ2(1 + θ1) + θ1(1 + θ2)] + θ1θ2(j + i + 1)(j + i + 2)

}(
−β1 − 1

j

)
+θ2

1

{
(1 + θ2)(θ1 + θ2)

2 + (θ1 + θ2)(1 + 2θ2)(j + i + 1)
+θ2(j + i + 1)(j + i + 2)

}(
−β1

j

)
.

(15)

3. Characterization Results

This section outlines how to characterize the minLLx distribution in two ways: (i) on
the basis of ratio of two truncated moments and (ii) by using the conditional expectation
of certain functions of the av. It is worth emphasizing that for the characterization, (i)
the cdf need not have a closed form, but instead relies on the solution of a first order
differential equation, which serves as a link between the probability and differential equa-
tion. We would also like to highlight that due to the nature of minLLx density function,
our characterizations may be the only versions available. Further bear in mind that the
characterization (i) is stable in the sense of weak convergence (Glanzel [12]). We present
our characterizations (i)–(ii) in the following two subsections.

3.1. Characterizations on the Basis of Two Truncated Moments

This subsection deals with the characterizations of minLLx distribution based on
the ratio of two truncated moments. Our initial characterization employs a theorem of
Glanzel [13], see Theorem A1 of Appendix A. The result is robust even if interval H is not
closed, whereas the Theorem’s constraint is on the interior of interval H.

Proposition 1. Let X : Omega→ (0, ∞) be a continuous av and let q1 =[
λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

]−1eθx and q2(x) = q1(x) (1 + λx)−1 for x > 0. The
av X has pdf (2) iff the function ψ defined in Theorem 1 is of the expression

ψ(x) =
β(1 + β)−1

(1 + λx)
, x > 0.

Proof. Let us presume that the av X has pdf(2), then

(1− F(x)) E[ q1(X)|X ≥ x] =
(1 + θ)−1

λ β (1 + λx)β
, x > 0,

and

(1− F(x)) E[ q2(X)|X ≥ x] =
(1 + θ)−1

λ (β + 1) (1 + λx)(β+1)
, x > 0.

Furthermore,

ψ(x) q1(x)− q2(x) = − q1(x)
(β + 1)(1 + λx)

< 0 , for x > 0.

Conversely, if ξ is of the above form, then

s′(x) =
ψ′(x) q1(x)

ψ(x) q1(x)− q2(x)
=

λ β

(1 + λx)
, x > 0 ,

and consequently
s(x) = − log

{
(1 + λx)−β

}
, x > 0.

Now, according to Theorem 1, X has density (2). �
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Corollary 1. Let X : Ω→ (0, ∞) be a continuous av and let q1(x) be as in proposition 3.1. The
chance variable X has pdf (2) iff there exist functions q2 and ψ defined in theorem 1 fullfilling the
following differential equation

ψ′(x) q1(x)
ψ(x) q1(x)− q2(x)

=
λβ

(1 + λx)
, x > 0.

Corollary 2. The general solution of the differential equation in Corollary 1 is

ψ(x) = (1 + λx)β
[
−
∫

λβ(1 + λx)−1 (1 + λx)−1(q1(x))−(β+1)q2(x) dx + D
]

,

where D is a constant. It is worth emphasizing that one set of functions satisfying the above
differential equation is given in Proposition 1 with D = 0. Clearly, there are other triplets
(q1, q2, ψ) that satisfy constraints of Theorem 1.

3.2. Characterizations on the Basis of Conditional Expectation of Certain Functions of an
Arbitrary Variable

In this subsection, we employ a single function Ψ of X and characterize the distribution
of X in terms of the truncated moment of Ψ(X). The following proposition has already
appeared in Hamedani [14], so we will just state it here that it can be used to characterize
the minLLx distribution.

Proposition 2. Let X : Ω→ (e, f ) be a continuous av with cdf F. Let Ψ(x) be a differentiable
function on (e, f ) with limx→e+Ψ(x) = 1. Then for δ 6= 1,

E[Ψ(X)|X ≥ x] = δ Ψ(x), x ∈ (e, f )

iff

Ψ(x) = [1− F(x)]
1
δ−1 , x ∈ (e, f ).

Remark 1. For (e, f ) = (0, ∞), Ψ(x) = e−θx/β

(1+λx)

(
1+θ+θx

1+θ

)1/β
and δ = β

β+1 , Proposition 2.
provides a characterization of the minLLX.

4. Maximum Likelihood Estimation

The maximum likelihood estimates (MLEs) and the observed information matrix for
the model parameters of the minLLx distribution will be investigated in this section. Let
x1, x2, . . . , xn be a random sample from the minLLx distribution, then the corresponding
log-likelihood function is given by

l= −n log(1 + θ)− θ
n
∑

i=1
xi − (1 + β)

n
∑

i=1
log(1 + λxi)

+
n
∑

i=1
log
{

λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)
}

.
(16)

The modules of the score vector ∇l=
(

∂l
∂θ , ∂l

∂λ , ∂l
∂β

)
are:

∂l

∂θ
=
−n

1 + θ
−

n

∑
i=1

xi +
n

∑
i=1

{
(1 + xi)[λβ + 2θ(1 + λxi)]

λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)

}
, (17)

∂l

∂λ
= −(1 + β)

n

∑
i=1

(
xi

1 + λxi

)
+

n

∑
i=1

{
β(1 + θ + θxi) + θ2xi(1 + xi)

λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)

}
, (18)
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and
∂l

∂β
= −

n

∑
i=1

log(1 + λxi) +
n

∑
i=1

{
λ(1 + θ + θxi)

λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)

}
. (19)

The MLEs, say Θ̂ = (θ̂, λ̂, β̂), of Θ = (θ, λ, β)T , can be obtained by equating the system
of nonlinear Equations (17)–(19) to zero and solving them concurrently. The components
of the observed information matrix J(Θ) = {Jwv} (for w, v = θ, λ, β( of Θ = (θ, λ, β)T are
given in Appendix B.

5. Simulation Study

It is very difficult to compare the theoretical performances of the different estimators
for the minLLx distribution. Therefore, simulation is needed to compare the performances
of the different methods of estimation, mainly with respect to their biases, mean square
errors, and variances for different sample sizes. A numerical study is performed using
Mathematica (v9) software. A portion of the used codes are provided as Supplementary
Materials. Different sample sizes are considered through the experiments at size n =
50, 100, 200, 300, and 500. For the defined sample size n, the experimental bias and MSE
values are the aggregate of values from N = 2000 replicated samples of the different values
of parameters θ, λ and β, respectively. Traditionally, qf, which is the inverse of cdf, i.e.,
Q(u) = F−1(p) = min{x : F(x) ≥ p}, is employed. However, in this case, it is not possible
to obtain the qf of the minLLx distribution unequivocally. To obtain the minLLx variates,
instead, we can implement the Newton−Raphosn algorithm as follows:

I. Set the values for n, λ, θ, and β, as well as the starting value of x0.
II. Develop U ∼ Uni f orm (0, 1).
III. Update x0 each time via the Newton−Raphson’s methodology, as shown below.

x∗ = x0 − R( x0; λ, θ, β)

where R( x0; λ, θ, β) = F(x0;λ,θ, β)
f (x0;λ,θ, β)

, and F(x0; λ, θ, β) and f (x0; λ, θ, β) are cdf and pdf (in
Equations (1) and (2)) of minLLx distribution, respectively.

I. If |x0 − x∗| ≤ ε, where ε is very small tolerance limit, then store x0 = x∗ as a variate
from minLLX (λ, θ, β) distribution.

II. If |x0 − x∗| ≥ ε, fix x0 = x∗ and then proceed to step III.
III. In order to develop x1, x2, x3, . . . , xn, steps II-V are repeated n times.

The average estimates, biases, MSEs, coverage probabilities (CPs), and confidence
intervals (CIs), at 95% and 99%, on the basis of different parameter combinations, are
reported in Tables 2–5 respectively.

Table 2. The MLEs, Bias, MSE, and CPs for the model parameters of the minLLx distribution based
on some initial (Init) values.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

50

θ 1.5 2.554 1.054 1.250 0.99 2.451 2.657 1.00 2.448 2.793

β 0.85 1.763 0.913 0.857 0.96 1.746 1.797 0.99 1.719 1.808

λ 0.72 1.334 0.614 0.889 0.92 1.309 1.395 0.97 1.288 1.443

100

θ 1.5 2.527 1.027 1.137 0.94 2.471 2.583 0.97 2.454 2.601

β 0.85 1.667 0.817 0.698 0.97 1.656 1.781 0.98 1.637 1.798

λ 0.72 1.227 0.507 0.733 0.95 1.215 1.266 0.96 1.202 1.291
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Table 2. Cont.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

200

θ 1.5 2.495 0.995 1.024 0. 90 2.469 2.521 0.98 2.520 2.599

β 0.85 1.601 0.751 0.583 0.97 1.586 1.625 0.95 1.547 1.643

λ 0.72 1.111 0.391 0.526 0.95 1.084 1.159 0.94 1.005 1.187

300

θ 1.5 1.738 0.238 0.556 0.94 1.721 1.755 1.00 1.727 1.779

β 0.85 1.229 0.379 0.273 0.96 1.189 1.242 0.97 1.147 1.267

λ 0.72 0.997 0.277 0.377 0.95 0.979 1.015 0.97 0.958 1.093

500

θ 1.5 1.712 0.212 0.484 0.96 1.701 1.723 0.98 1.694 1.754

β 0.85 1.003 0.153 0.097 0.94 0.985 1.036 0.98 0.970 1.088

λ 0.72 0.837 0.117 0.114 0.96 0.826 0.877 0.99 0.811 0.893

Table 3. The MLEs, Bias, MSE, CPs for the model parameters of the minLLx distribution based on
some initial (Init) values.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

50

θ 2.4 3.807 1.407 2.230 0.90 3.648 3.966 0.97 3.466 3.886

β 0.5 1.128 0.628 0.604 0.98 0.932 1.324 0.94 0.87 1.386

λ 0.5 0.981 0.481 0.481 0.96 0.785 1.177 0.96 0.723 1.239

100

θ 2.4 3.595 1.195 1.678 0.97 3.719 3.870 0.98 3.454 3.627

β 0.5 0.967 0.467 0.398 0.94 0.575 1.359 0.99 0.451 1.483

λ 0.5 0.864 0.364 0.382 0.97 0.472 1.256 0.98 0.348 1.38

200

θ 2.4 2.753 0.353 1.888 0.94 2.721 2.786 0.99 2.503 2.597

β 0.5 0.881 0.381 0.395 0.96 0.691 1.071 0.96 0.631 1.131

λ 0.5 0.722 0.222 0.199 0.97 0.532 0.912 0.97 0.472 0.972

300

θ 2.4 2.532 0.132 0.833 0.95 2.705 2.762 1.00 2.499 2.569

β 0.5 0.646 0.146 0.271 0.96 0.42452 0.867 0.98 0.354 0.938

λ 0.5 0.637 0.137 0.269 0.97 0.415 0.858 0.99 0.345 0.929

500

θ 2.4 2.518 0.118 0.270 0.96 2.506 2.531 1.00 2.537 2.577

β 0.5 0.557 0.057 0.253 0.95 0.5276 0.586 0.99 0.518 0.596

λ 0.5 0.597 0.097 0.259 0.96 0.5676 0.626 1.00 0.558 0.636

From Tables 2 and 3, we deduced that when the postulated model differs significantly
from the genuine model, as anticipated, the MSE of the estimators rises. The MSE drops
as the sample size is increased and the homogeneity disintegrates. In general, when the
kurtosis increases the MSE declines. Likewise, if the asymmetry widens, so does the bias,
and vice versa. The bias lessens as the kurtosis increases. Therefore, it is evident that as
sample size n gets larger, the MSEs and biases reduce. Similarly, the CPs of the confidence
interval seems to be quite near to the conventional levels of certainty (95% and 99%), which
endorses the already established empirical findings. In a nutshell, we may infer that MLEs
perform impressively in estimating the parameters of the minLLx distribution.
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Table 4. The MLEs, Bias, MSE, and CPs for the model parameters of the minLLx distribution based
on some initial (Init) values.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

50

θ 2.4 3.551 1.151 1.575 0.90 3.648 3.966 1.00 3.466 3.886

β 0.15 0.667 0.517 0.477 0.99 0.471 0.863 0.94 0.409 0.925

λ 1.5 2.778 1.278 1.883 0.92 2.582 2.974 0.97 2.52 3.036

100

θ 2.4 3.295 0.895 1.051 0.98 3.719 3.870 0.96 3.454 3.627

β 0.15 0.546 0.396 0.337 0.97 0.154 0.938 0.98 0.03 1.062

λ 1.5 2.337 0.837 0.951 0.94 1.945 2.729 0.99 1.821 2.853

200

θ 2.4 3.016 0.616 0.629 0.96 2.721 2.786 0.95 2.503 2.597

β 0.15 0.881 0.731 0.784 0.96 0.691 1.071 0.97 0.631 1.131

λ 1.5 1.836 0.336 0.263 0.95 1.646 2.026 0.97 1.586 2.086

300

θ 2.4 2.842 0.442 0.345 0.97 2.705 2.762 0.98 2.499 2.569

β 0.15 0.646 0.496 0.496 0.96 0.425 0.867 0.99 0.354 0.938

λ 1.5 1.772 0.272 0.324 0.95 1.551 1.993 0.97 1.480 2.064

500

θ 2.4 2.537 0.137 0.27 0.95 2.506 2.531 0.98 2.537 2.577

β 0.15 0.557 0.407 0.416 0.96 0.5276 0.5864 0.99 0.5183 0.5957

λ 1.5 1.606 0.106 0.261 0.95 1.5766 1.6354 0.98 1.5673 1.6447

Table 5. The MLEs, Bias, MSE, and CPs for the model parameters of the minLLx distribution based
on some initial (Init) values.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

50

θ 2.4 3.851 1.451 2.355 0.99 3.648 3.966 1.00 3.466 3.886

β 0.15 0.767 0.617 0.631 0.93 0.571 0.963 0.94 0.509 1.025

λ 3.5 4.708 1.208 1.709 0.98 4.512 4.904 0.92 4.45 4.966

100

θ 2.4 3.529 1.129 1.525 0.98 3.719 3.870 0.98 3.454 3.627

β 0.15 0.665 0.515 0.515 0.97 0.273 1.057 0.95 0.149 1.181

λ 3.5 4.553 1.053 1.359 0.96 4.161 4.945 0.93 4.037 5.069

200

θ 2.4 3.119 0.719 0.767 0.98 2.721 2.786 0.94 2.503 2.597

β 0.15 0.498 0.348 0.371 0.97 0.308 0.688 0.98 0.248 0.748

λ 3.5 4.078 0.578 0.584 0.96 3.888 4.268 0.99 3.828 4.328

300

θ 2.4 2.728 0.328 0.358 0.96 2.705 2.762 0.98 2.499 2.569

β 0.15 0.367 0.217 0.297 0.97 0.146 0.588 0.99 0.075 0.659

λ 3.5 3.876 0.376 0.391 0.94 3.655 4.097 0.98 3.584 4.168

500

θ 2.4 2.643 0.243 0.209 0.96 2.506 2.531 0.99 2.537 2.577

β 0.15 0.268 0.118 0.164 0.95 0.2386 0.2974 0.98 0.2293 0.3067

λ 3.5 3.711 0.211 0.195 0.95 3.6816 3.7404 1.00 3.6723 3.7497
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6. Applications

In this portion, we consider two actual cases of the minLLx distribution to showcase its
effectiveness. When the pressure is at % anxiety levels, the first data set reflects the failure
times of the Kevlar 49/epoxy strands. This data are leptokurtic, unimodal, and substantially
right skewed, with a likely outlier (skewness = 3.05 and kurtosis = 14.47). This data set is
taken from Andrews and Herzberg [15] and the original source is Barlow et al. [16].The
data are: 0.01, 0.01,0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10,
0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42,
0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80,
0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29,
1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80,
1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, and 7.89. These data are also
used by Cooray and Ananda [17] and Al-Aqtash et al. [18].

The second data set signifies the failure time of 20 components from Murthy et al. [19].
The data are: 0.072, 4.763, 8.663, 12.089, 0.477, 5.284, 9.511, 13.036, 1.592, 7.709, 10.636,
13.949, 2.475, 7.867, 10.729, 16.169, 3.597, 8.661, 11.501, and 19.809.

We obtained the MLEs for the unknown parameters of all competitive models and then
compared the results via goodness-of-fit statistics: Anderson-Darling (A∗), Cramér-von
Mises (W∗), AIC (Akaike information criterion), and BIC (Bayesian information criterion).
The better model corresponds to the smaller of these criteria. The values for the Kolmogorov
Smirnov (KS) statistic and its p-value are also presented.

We compared the minLLx distribution with those of Weibull Lindley (WL) (As-
gharzadeh et al. [20]), Lomax (Lx), Lindley (L), quasi Lindley (QL) (Shanker and Mishra [21]),
and power Lomax (PLx) (Rady et al. [22]). The MLEs, their standard errors (SEs), and
some goodness of fit statistics of the models for the respective data sets are introduced in
Tables 6–9. The estimated pdf and cdf plots of all competitive distributions for the two data
sets are displayed in Figures 3 and 4, respectively.

Table 6. The MLEs alongside their accompanying SEs (in parenthesis) for the first data set.

Distribution
ML Estimates with SEs

^
λ

^
β

^
θ

^
α

^
a

^
b

minLLx 29.1543
(24.5461)

1.1967
(0.1353)

0.0565
(0.0444) - - -

WL - - - 54.8909
(46.5022)

0.1262
(0.0029)

1.3776
(0.1066)

Lx - 0.0649
(0.0730) - 16.0324

(11.8945) - -

L - — - 1.3848
(0.1068) - -

QL - 16.2215
(18.4297) - 1.0312

(0.1876) - -

PLx - - 49.8009
(55.9286) - 0.9381

(0.0842)
48.6282

(64.3737)

Table 7. Some goodness of fit statistics for the fitted models to the first data set.

Distribution
Goodness-of-Fit Statistics

−LL A* W* KS p-Value AIC BIC

minLLx 101.7467 0.73166 0.1174 0.0751 0.6188 209.4934 217.3388

WL 103.7773 0.8412 0.1372 0.1069 0.1985 213.5547 221.4001



Math. Comput. Appl. 2022, 27, 16 15 of 19

Table 7. Cont.

Distribution
Goodness-of-Fit Statistics

−LL A* W* KS p-Value AIC BIC

Lx 103.2335 1.1543 0.2082 0.0836 0.4803 210.4669 215.6972

L 104.6558 0.8349 0.1377 0.1062 0.2046 211.3115 213.9267

QL 103.5036 1.0226 0.1796 0.0892 0.3968 211.0071 216.2374

PLx 102.9973 1.1376 0.2044 0.0912 0.3694 211.9947 219.8400

Table 8. The MLEs alongside their accompanying SEs (in parenthesis) for the second data set.

Distribution
ML Estimates with SEs

^
λ

^
β

^
θ

^
α

^
a

^
b

minLLx 23.2537
(6.2332)

0.2000
(0.0357)

0.0176
(0.0242) - - -

WL - - - 0.5063
(0.2646)

0.0022
(0.0049)

0.1936
(0.0376)

Lx - 0.0063
(0.0050) - 19.2257

(15.1770) - -

L - - - 0.2161
(0.0344) - -

QL - 12.7561
(8.1217) - 0.1276

(0.0188) - -

PLx - - 5.1542
(4.2880) — 1.2999

(0.2549)
77.2599

(64.2934)

Table 9. Some goodness of fit statistics for the models fitted to the second data set.

Distribution
Goodness-of-Fit Statistics

−LL A* W* KS p-Value AIC BIC

minLLx 60.4860 0.4993 0.0891 0.2013 0.3319 126.1758 129.0630

WL 60.8537 0.5622 0.0992 0.2051 0.3237 127.7075 128.2906

Lx 62.9558 0.9314 0.1602 0.2484 0.1422 129.9117 131.9032

L 61.3791 0.6909 0.1203 0.2022 0.3298 126.9583 129.7541

QL 62.6023 0.8804 0.1514 0.2493 0.1396 129.2046 131.1960

PLx 62.5202 0.9067 0.1561 0.2315 2000 131.0405 134.0277

The values in Tables 7 and 9 clearly show that the minLLx distribution has the smallest
values for A*, W*, AIC, BIC, and KS, and the largest p-values among all competitive models,
compelling it to be chosen as the best model. It is clear from Figures 3 and 4, that the new
minLLx distribution provides the best fits for the two data sets.
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Figure 3. Estimated pdf and cdf plots of the minLLx distribution for the first data set.

Figure 4. Estimated pdf and cdf plots of the minLLx distribution for the second data set.

7. Conclusions

By unifying the Lindley and Lomax distributions, we establish a three-parameter
distribution called the minimum Lindley Lomax (minLLx). The quantile function, ordinary
and incomplete moments, moment generating function, Lorenz and Bonferroni curves,
order statistics, Rényi entropy, stress−strength model, and stochastic ordering are all con-
sidered as defining attributes of the new model. The envisaged model’s characterizations
are evaluated. The model parameters are determined using the optimum likelihood cri-
terion, and these projections are assessed using numerical simulations. Two real-world
applications exemplify the utility of the new model.
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Appendix A

Theorem A1. Let (Ω , F, P) be a given probability space and let H = [a, b] be an interval for
some d < b (a = −∞, b = ∞ might as well be allowed). Let X : Ω→ H be a continuous av
with the distribution function F and let q1 and q2 be two real functions defined on H, such that

E[ q2(X)|X ≥ x] = E[ q1(X)|X ≥ x]ψ(x), x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C−1(H), ψ ∈ C2(H) and F is a twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation ψ q1 = q2 has no real solution in the interior of H. Then F is uniquely determined by the
functions q1, q2, and ψ, particularly

F(x) =
∫ x

a
C
∣∣∣∣ ψ′(u)
ψ(u) q1(u)− q2(u)

∣∣∣∣ exp(−s(u)) du ,

where function s is a solution of the differential equation s′ = ψ′ q1
ψ q1−q2

and C is the normalization
constant, such that

∫
H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence (see Glanzel [12]), in particular, let
us assume that there is a sequence {Xn} of avs with a distribution function {Fn}, such
that the functions q1n, q2n, and ψn (n ∈ N) satisfy the conditions of Theorem 1, and
let q1n → q1, q2n → q2 for some continuously differentiable real functions q1 and q2. Fi-
nally, let X be a chance variable with distribution F. Under the condition that q1n(X) and
q2n(X) are uniformly integrable and the family {Fn} is relatively compact, the sequence Xn
converges to X in distribution if and only if ψn converges to ψ, where

ψ(x) =
E[ q2(X)|X ≥ x]
E[ q1(X)|X ≥ x]

.

This stabilization theorem ensures that the precision of the distribution function is
duplicated in the subsequent convergence of functions q1, q2, and ψn. It ensures, e.g.,
that the characterization on the Wald distribution coincides with that on the Levy-Smirnov
distribution if α→ ∞ . The application of this theorem over certain challenges in analytical
techniques, such as the estimation of the parameters of discrete distributions, is yet another
corollary of Theorem 1′s stability condition. The functions q1, q2, and in particular, ψ
should be as straightforward and feasible for this reason. Although the function quartet
is not distinctive, it is frequently possible to choose ψ as a linear combination. As a
direct consequence, it is worth considering a few specific instances in order to develop
innovative characterizations that capture the link between individual continuous univariate
distributions and are relevant in other disciplines of science.

Appendix B

The components of the observed information matrix are the following

∂2l

∂θ2 =
−n

(1 + θ)2 +
n

∑
i=1


2(1 + xi)(1 + λxi)

[
λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)

]
−[λβ(1 + xi) + 2θ(1 + xi)(1 + λxi)]

2

[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]
2

,
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∂2l

∂θ ∂λ
=

n

∑
i=1


(1 + xi)

{
(β + 2θxi)

[
λβ(1 + θ + θxi) + θ2(1 + xi)(1 + λxi)

]
−[λβ + 2θ(1 + λxi)]

[
β(1 + θ + θxi) + θ2xi(1 + xi)

] }
[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]

2

,

∂2l

∂θ ∂β
= λ

n

∑
i=1


(1 + xi)

[
λβ(1 + θ + θxi) + θ2(1 + xi)(1 + λxi)

]
−(1 + θ + θxi)[λβ(1 + xi) + 2θ(1 + xi)(1 + λxi)]

[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]
2

,

∂2l

∂λ2 = −
n

∑
i=1

{ [
β(1 + θ + θxi) + θ2xi(1 + xi)

]2
[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]

2

}
,

∂2l

∂λ ∂β
=

n

∑
i=1

(
xi

1 + λxi

)
+

n

∑
i=1

{
θ2(1 + xi)(1 + θ + θxi)

[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]
2

}
,

∂2l

∂β2 = −λ2
n

∑
i=1

{
(1 + θ + θxi)

2

[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]
2

}
.
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