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Abstract: In this article, Burr III distribution is proposed with a significantly improved functional
form. This new modification has enhanced the flexibility of the classical distribution with the
ability to model all shapes of hazard rate function including increasing, decreasing, bathtub, upside-
down bathtub, and nearly constant. Some of its elementary properties, such as rth moments, sth
incomplete moments, moment generating function, skewness, kurtosis, mode, ith order statistics,
and stochastic ordering, are presented in a clear and concise manner. The well-established technique
of maximum likelihood is employed to estimate model parameters. Middle-censoring is considered
as a modern general scheme of censoring. The efficacy of the proposed model is asserted through
three applications consisting of complete and censored samples.
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1. Introduction

Burr devised a dynamic family of probability distributions based on the Pearson
differential equations. The Burr XII (BXII) and Burr III (BIII) distributions are widely used
models from the system of Burr distributions. On the contrary, according to [1], the Burr
X (BX) model has also gained much attention from applied statisticians along with the
BXII and BIII models. The prime reason is that these densities exists in simpler forms and
can yield a range of shapes to model a variety of scenarios in diverse scientific fields. The
authors in [2] are of the view that the most adaptable of these three is BIII, especially in
environmental, reliability, and survival sciences. The BIII distribution is also called the
Dagum distribution in studies of income, wage, and wealth distribution [3]. In the actuarial
literature, it is known as the inverse Burr distribution [4] and the kappa distribution in the
meteorological literature [5]. As per [4], it is a prime case of the four-parameter generalised
Beta-II distribution. In order to follow the ambit regarding the scope of this provision,
we now shift our attention to the BIII distribution. For a random variable X defined on
a positive real line, the cumulative distribution function (cdf) and probability density
function (pdf) of two-parameter BIII distribution, respectively, are given below:

F(x; c, k) =
(
1 + x−c)−k (1)
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and
f (x; c, k) = c k x−c−1(1 + x−c)−k−1 , (2)

where c, k > 0 are the shape parameters.
The shape parameter plays a significant role in yielding the hazard rate of BIII distri-

bution, which can be decreasing or unimodal. Thus, it cannot be used to model lifetime
data with a bathtub-shaped hazard function, such as human mortality and deterioration
modelling. For the last few decades, statisticians have been developing various exten-
sions and modifications in Weibull distribution due to its simple functional form. The
two-parameter flexible Weibull extension of [6] has a hazard function that can be increasing,
decreasing, or bathtub shaped. Zhang and Xie [7] studied the characteristics and applica-
tion of the truncated Weibull distribution, which has a bathtub-shaped hazard function. A
three-parameter model, called exponentiated Weibull distribution, was introduced by [8].
Another three-parameter model is referred to as the extended Weibull distribution by [9].
Xie et al. [10] proposed a three-parameter modified Weibull extension with a bathtub-
shaped hazard function. A new modified Weibull distribution by the authors in [11] has
been presented with increasing and a bathtub-shaped hazard function.

Various extensions of BIII distribution have been studied in the literature. In ref-
erence [12], the authors studied low-flow frequency analysis in hydrology with three-
parameter-modified BIII distribution with supreme interest in the lower tail of a distri-
bution. Çankaya et al. [13] extended the BIII model by adding a skew parameter with
an epsilon skew extension approach. Modi and Gill [14] introduced the unit BIII model.
Haq et al. [15] introduced the unit-modified BIII model. Ali et al. [16] re-parameterized BIII
distribution and proposed the modified BIII (MBIII) distribution with the following cdf:

F(x) =
(
1 + µx−c)−k

µ x > 0 , (3)

where c, k, and µ are the shape parameters. The authors claimed that the newly structured
model is a limiting case of generalized inverse Weibull, BIII, and log-logistic distribution.
Still, the density of the improved model can only model positively skewed data, which
greatly dented the proposition of the model in the first place. Other extensions are mostly
based on the generalized families of distributions that sare complex in nature. Some of
them are mentioned as: Beta Dagum by [17], Modified BIII by [18], Marshall Olkin BIII
by [19], Gamma BIII by [20], and Gamma BIII by [21]. However, we feel that a flexible
model with computationally simpler functional forms is still presently needed. Motivated
by a lack of availability of literature related to the modified BIII distribution, we present a
much more flexible new modification of BIII distribution. The cdf of the new, modified BIII
(NMBIII) distribution is defined as

F(x; c, k, λ) =
(

1 + x−ce−λx
)−k

x > 0 , (4)

where the e−λx is the additional factor, with λ as the rate parameter and c, k are power
parameters of the baseline model.

It is worth mentioning that when we use the additional term to add flexibility in the
model, we specifically refer to the ability of the proposed model to fit a diverse range of
real life phenomena. Additionally, flexibility may also be associated with the instantaneous
failure rate or hazard rate, and is more commonly known as risk function. By selecting
precise values for the shape parameters, the hazard rate function of the NMBIII distribution
can take on a variety of appealing shapes. Generally speaking, the classical models deal
with normal extreme observations. A new modification of BIII distribution will also enable
us to observe the tail behaviour of the distribution, which is skewed in nature. Further,
the BIII distribution has a monotonic decreasing and unimodal hazard rate function, but
due to its modification, NMBIII has monotonic, decreasing, increasing, unimodal, bathtub,
and approximately constant hazard-rate shapes. Moreover, many standard distributions
are nested models or limiting cases of the Burr system of distributions, which include the
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Weibull, exponential, logistic, generalised logistic, Gompertz, normal, extreme value, and
uniform distributions. The NMBIII distribution outperforms most of these competitive
existing models. When λ = 0, NMBIII distribution reduces to BIII distribution. When
λ = 0 and k = 1, then NMBIII distribution gives us log-logistic distribution. When k = 1,
then NMBIII distribution gives us modified log-logistic distribution (new). When c = 0 and
k = 1, the NMBIII distribution reduces to logistic distribution. When c = 1, it reduces to
modified skew logistic distribution (new). When c = 0 and λ = 1, it reduces to generalized
logistic distribution type I or Burr type II, or this type has also been called the “skew-
logistic” distribution (see [22]). In a nutshell, with the proposed NMBIII, we seek and hope
to attract applied researchers from all scientific community to utilize it in the significant
modelling of real-life scenarios.

The article is structured as follows: In Section 2, we focus our attention on the idea
behind the new modification. {In Section 3, we acquaint the readers with some of the
structural properties including the linear expansion, moments, mode, moment-generating
functions, order statistics, and stochastic ordering of NMBIII distribution. In Section 4,
model parameters are estimated by maximum likelihood method, and the Fisher infor-
mation matrix is derived. Section 5 gives the simulation method based on complete and
incomplete samples (middle censored). In Section 6, three data sets on complete and middle-
censored data sets have been employed to established the authenticity of the proposed
model to the readers. Section 7 consists of the concluding remarks and discussions.

2. The New Modified BIII Model

The modified Weibull (MW) distribution (see [23] has the cumulative survival function
that is the product of the Weibull cumulative hazard function αxβ and eλx. Hence, the
distribution function was found to be

F(x) =
(

1− e−αxβ
eλx
)

,

which was later generalized to exponentiated form by [24] using Lehmann alternative-I.
In the same vein, Equation (4) has been modified. The pdf corresponding to (4) is

given as:

f (x; c, k, λ) =
k
(
λ + c

x
)

xc eλ x

(
1 + x−c e−λ x

)−k−1
. (5)

The corresponding survival and hazard functions of NMBIII are, respectively, given by:

S(x; c, k, λ) = 1−
(

1 + x−c e−λ x
)−k

(6)

and

h(x; c, k, λ) =
k
(
λ + c

x
)

xc eλ x

(
1 + x−c e−λ x)−k−1

1−
(
1 + x−c e−λ x

)−k . (7)

If a new random variable y is defined as y = 1
x in Equation (4), then we obtain

the following model, referred to as modified Burr XII distribution, with cdf and pdf,
respectively, as under

G(y) = 1−
(

1 +
yc

e
λ
y

)−k

(8)

and

g(y) =
k
(

c + 1
y

)
e

λ
y

yc−1

(
1 +

yc

e
λ
y

)−k−1

. (9)

As far as we can tell, Equations (4) and (8) are first modifications of BIII distribu-
tion and BXII distributions, respectively. Thus, the proposed distribution in (4) is more



Math. Comput. Appl. 2021, 26, 82 4 of 17

flexible and has tractable tail properties than its parent BIII distribution as well as MBIII
distributions. The shapes of pdf and hrf are presented in Figures 1 and 2, respectively.
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Figure 1. Density function of NMBIII distribution.
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Figure 2. Hazard function for NMBIII distribution.

Figure 1 represents the different shapes of the proposed model, i.e., bimodal, reversed-
J, right skewed, approximate left-skewed, and symmetrical shapes for different parameter
values. Figure 2 reflects the different shapes of hazard function, which are increasing, de-
creasing, bathtub, upside-down bathtub, and nearly constant for different parameter values.
The proposed distribution is more flexible and tractable than its parent BIII distribution, as
well as MBIII distributions (see in Table 1).

Table 1. Sub models of NMBIII distributions.

Model λ c k G(x) Reference

Burr III 0 - - (1 + x−c)−k Standard

Log-Logistic 0 - 1 xc

1+xc Standard

Modified Log-Logistic - - 1 xce−λ x

1+xce−λ x New

Logistic - 0 1 e−λ x

1+e−λ x Standard

Modified skew logistic - 1 - xe−λ x

1+xe−λ x New

Generalized logistic Type-I or Burr
II or skew logistic 1 0 - (1 + e−x)−k

Johnson et al. [22]
and Aljouiee et al.
[25]



Math. Comput. Appl. 2021, 26, 82 5 of 17

3. Some Properties of NMBIII

In this section, we will provide some significant properties of the NMBIII distribution
such as rth moment, sth incomplete moment, moment generating function, skewness,
kurtosis, mode, and order statistics.

3.1. Useful Expansion

The generalized binomial theorem or power series is given by:

(1 + z)−b−1 =
∞

∑
i=0

(
b + i

i

)
(−1)i zi. (10)

Using series expansion in (10), Equation (4) becomes

f (x; c, k, λ) =
∞

∑
i=0

(
k + i

i

)
(−1)i k

(
λ + c

x
)

xc(i+1) eλ x(i+1)
. (11)

This expression can be used to obtain the following properties of the NMBIII distribution.

3.2. Moments

The rth moment of NMBIII distribution is given by:

m′r = E(Xr) =

∞∫
0

xr f (x) dx

=
∞

∑
i=0

(
k + i

i

)
(−1)i

∞∫
0

xr−c(i+1)
(

λ +
c
x

)
e−λ (i+1) x dx

= λ
∞

∑
i=0

ai

∞∫
0

xr−c(i+1) e−λ (i+1) x dx + c
∞

∑
i=0

ai

∞∫
0

xr−c(i+1)−1 e−λ (i+1) x dx

= λ
∞

∑
i=0

ai Γ(r− c(i + 1)− 1)
[

1
λ(i + 1)

]r−c(i+1)−1
(12)

+ c
∞

∑
i=0

ai Γ(r− c(i + 1))
(

1
λ(i + 1)

)r−c(i+1)

= λ
∞

∑
i=0

ai
Γ(r− c(i + 1)− 1)

(λ(i + 1))r−c(i+1)

(
1

i + 1
+ c(r− c(i + 1)− 1)

)
,

where ai =

(
k + i

i

)
(−1)i and Γ(a) ba =

∞∫
0

xa−1 e−b x dx is gamma function.

Remark 1. By submitting r = 1 in Equation (13), one can find mean of the NMBIII distribution.

The sth incomplete moment of NMBIII distribution is

T′s(x) = λ
∞

∑
i=0

ai γ

(
r− c(i + 1)− 1,

x
λ(i + 1)

)(
1

λ(i + 1)

)r−c(i+1)−1

+ c
∞

∑
i=0

ai γ

(
r− c(i + 1),

x
λ(i + 1)

)(
1

λ(i + 1)

)r−c(i+1)
. (13)

The application of incomplete moment refers to the mean deviations and Bonferroni
and Lorenz curves. These curves are useful in economics reliability, demography, insurance,
and medicine, to mention few.
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3.3. Moment-Generating Function

The moment-generating function of NMBIII distribution is given by:

M0(t) = E(et x) =

∞∫
i=0

et x f (x) dx

=
∞

∑
i=0

(
k + i

i

)
(−1)i

∞∫
i=0

x−c(i+1)
(

λ +
c
x

)
e(t−λ (i+1)) x dx

=
∞

∑
i=0

ai

∞∫
i=0

x−c(i+1)
(

λ +
c
x

)
e(t−λ (i+1)) x dx (14)

=
∞

∑
i=0

ai

λ

∞∫
0

x−c(i+1) e(t−λ (i+1)) x dx + c
∞∫

0

x−c(i+1)−1 e(t−λ (i+1)) x dx


=

∞

∑
i=0

ai

(
λ

Γ(1− c(i + 1))

(λ(i + 1)− t)1−c(i+1)
+ c

Γ(−c(i + 1))

(λ(i + 1)− t)−c(i+1)

)
.

The skewness and kurtosis of the NMBIII distribution can be obtained numerically by the
following expression.

α =
m′3 − 3 m′2 m′1 + 2 m′1{

m′2 − (m′2)
2
}3/2 (15)

and

β =
m′4 − 4 m′3m′1 + 6 m′2 (m

′
1)

2 − 3 (m′1)
4{

m′2 − (m′2)
2
}2 , (16)

where m′r is the rth moment can be obtained form Equation (13).

Remark 2. The mode of the NMBIII distribution can be obtained as follows: taking the log of
Equation (5), one obtains

log f (x) = log k + log
(

λ +
c
x

)
− c log x− λx− (k + 1) log

(
1 + x−c e−λ x

)
, (17)

Taking derivative with respect to x, we get

d
d x

log f (x) =
− 1

x2

λ + c
x
− c

x
− λ + (k + 1)

x−c e−λ x(λ + c
x
)

1 + x−c e−λ x , (18)

by setting the above expression equal to zero and solving for x, one can find the mode. The numerical
values of the first four moments are given in Table 2.

Table 2. The numerical values of the first four moments (m′r, r = 1, 2, 3, 4), skewness (α) and kurtosis
(β) of the NMBIII for some parameter values.

c, k, λ m′
1 m′

2 m′
3 m′

4 α β

(0.5, 0.5, 0.5) 0.6754 2.0695 10.4250 72.6365 3.3418 20.5484

(1.5, 0.5, 0.5) 0.6662 1.0760 3.1293 14.2983 3.1239 27.1548

(1.5, 1.5, 0.5) 1.2849 2.6939 8.7612 41.8399 2.4599 23.6830

(1.5, 1.5, 1.5) 0.8024 0.8745 1.2564 2.3394 1.6650 70.6890

(2.0, 0.5, 0.5) 0.6814 0.9031 2.0319 7.3171 2.8155 31.7670

(2.0, 2.0, 0.5) 1.3695 2.6073 7.0943 27.8595 2.4280 39.1836

(2.0, 2.0, 2.0) 0.8041 0.7682 0.8775 1.2098 1.5101 226.2743
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3.4. Order Statistics

The density function fi:n(x) of the i-th order statistic, for i = 1, . . . , n, from i.i.d.
random variables X1, . . . , X2 following MBIII distribution is simply given by:

Fi:n(x) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j

j + i
F(x)j+i. (19)

The corresponding pdf is

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j f (x) F(x)j+i−1. (20)

Using the pdf and cdf of NMBIII in Equations (4) and (5), we obtain

Fi:n(x) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j

j + i

[
1 + x−c e−λ x

]−k(j+i)
. (21)

Using series expansion in (10), we obtain

Fi:n(x) =
n−i

∑
j=0

bj

∞

∑
l=0

(
k(j + i) + l

l

)
(−1)l x−c l e−λ l x, (22)

where bj =
n!

(i−1)!(n−i)!

(
n− i

j

)
(−1)j

j+i . Similarly, following the above algebra, we have

fi:n(x) =
n−i

∑
j=0

aj

∞

∑
l=0

(
j + i + l

l

)
(−1)l x−c (l+1)

(
λ +

c
x

)
e−λ (l+1) x, (23)

where aj = k n!
(i−1)!(n−i)!

(
n− i

j

)
(−1)j.

3.5. Stochastic Ordering

The concept of stochastic ordering is frequently used to show the ordering mechanism
in life-time distributions. For more details about stochastic ordering, see [26]. A random
variable is said to be stochastically greater (X ≤st Y) than Y if FX(x) ≤ FY(x) for all x. In
the similar way, X is said to be stochastically lower (X ≤st Y) than Y in the

1. Stochastic order (X ≤st Y) if FX(x) ≥ FY(x) for all x.
2. Hazard rate order (X ≤hr Y) if hX(x) ≥ hY(x) for all x.
3. Mean residual order (X ≤mrl Y) if mX(x) ≥ mY(x) for all x.
4. Likelihood ratio order (X ≤hr Y) if fX(x) ≥ fY(x) for all x.

5. Reversed hazard rate order (X ≤rhr Y) if FX(x)
FY(x) is decreasing for all x.

The stochastic orders defined above are related to each other, as the following implications.

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤mrl Y. (24)

Let X1 ∼ NMBII I(c1, k1, λ1) and X2 ∼ NMBII I(c2, k2, λ2). Then, according to the defini-
tion of likelihood ratio ordering

[
f (x)
g(x)

]
,
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f (x) =
k1
(
λ1 +

c1
x
)

xc1 eλ1 x

(
1 + x−c1 e−λ1 x

)−k1−1
, (25)

g(x) =
k2
(
λ2 +

c2
x
)

xc2 eλ2 x

(
1 + x−c2e−λ2 x

)−k2−1
, (26)

and
f (x)
g(x)

=
k1

k2

(
λ1 +

c1
x
)(

λ2 +
c2
x
) xc1 eλ1 x

xc1 eλ1 x

(
1 + x−c1 e−λ1 x)−k1−1(
1 + x−c2 e−λ2 x

)−k2−1 . (27)

Taking log on both sides and taking the derivative with respect to x, we obtain

d
d x

(
f (x)
g(x)

)
=

c1

x2
i
(
λ1 +

c1
x
) − c2

x2
i
(
λ2 +

c2
x
) + c2 − c1

xi
+ (λ2 − λ1)

+ (k2 + 1)
x−c2 eλ2 x (λ2 +

c2
x
)

1 + x−c2 eλ2 x − (k1 + 1)
x−c1 eλ1 x (λ1 +

c1
x
)

1 + x−c1 eλ1 x , (28)

if c1 = c2 = c and λ1 = λ2 = λ, then d
d x

f (x)
g(x) < 0 if (k2 < k1) and then X <lr Y.

4. Maximum Likelihood Estimation

In this section, we will use the maximum-likelihood method to estimate the unknown
parameters of the proposed model from complete samples only. Let x1, x2, . . . , xn be a
random sample of size n from the NMBIII family given in Equation (4) distribution. The
log-likelihood function for the vector of parameter Θ = (c, k, λ)T can be expressed as

l(Θ) = n log k− c
n

∑
i=1

log xi − λ
n

∑
i=1

xi +
n

∑
i=1

log
(

λ +
c
x

)
− (k + 1)

n

∑
i=1

log
[
1 + x−c e−λ x

]
Taking the derivative with respect to λ, c, k, respectively, we get

Uk =
∂ l(Θ)

∂k
=

n
k
−

n

∑
i=1

log
(

1 + x−c e−λ x
)

Uλ =
∂ l(Θ)

∂λ
= −

n

∑
i=1

xi +
n

∑
i=1

(
λ +

c
x

)−1
+ (k + 1)

n

∑
i=1

(
x−c e−λ x xi

1 + x−c e−λ x

)

Uc =
∂ l(Θ)

∂c
= −

n

∑
i=1

log xi +
n

∑
i=1

(
1

xi
(
λ + c

x
))+ (k + 1)

n

∑
i=1

(
x−c e−λ x log xi

1 + x−c e−λ x

)
Setting Uk, Uλ, and Uk equal zero and solving these equations simultaneously yields the
maximum likelihood estimates.

The observed information matrix for the parameter vector is given by Uk k UK λ Uk c
− Uλ λ Uλ c
− − Uc c


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whose elements are given below

Uk k = − n
k2

Uk λ =
n

∑
i=1

(
x−c−1

i eλ xi

1 + x−c e−λ xi

)

Uk c = −
n

∑
i=1

(
x−c

i eλ xi log xi

1 + x−c e−λ xi

)

Uλ c = −
n

∑
i=1

1

xi

(
λ + c

xi

)2 + (k + 1)
n

∑
i=1

(
x1−2c e−2 λ xi log xi(

1 + x−c e−λ xi
)2 +

e−λ xi x1−c
i log xi

1 + x−c e−λ xi

)

Uλ λ = −
n

∑
i=1

1(
λ + c

xi

)2 − (k + 1)
n

∑
i=1

(
x2−2c e−2 ˘ xi(

1 + x−c e−λ xi
)2 +

e−λ xi x2−c
i

1 + x−c e−λ xi

)

Uc c = −
n

∑
i=1

1

x2
i

(
λ + c

xi

)2 + (k + 1)
n

∑
i=1

(
x−2c e−2 λ xi (log xi)

2(
1 + x−c e−λ xi

)2 +
e−λ xi x−c

i log xi

1 + x−c e−λ xi

)

5. Middle-Censoring

The middle-censoring scheme is a non-parametric general censoring mechanism
proposed by [27], where other censoring schemes can be obtained as special cases of this
middle-censoring scheme (see [28]).

For n identical lifetimes T1, . . . , Tn with a random censoring interval (Li ≤ Ri) at the
ith item with some unknown bivariate distribution. Then, the exact value of Ti is observable
only if Ti /∈ [Li ≤ Ri]; otherwise, the interval (Li ≤ Ri) is observed.

Middle-censoring had previously been applied to exponential and Burr XII lifetime
distributions (see [28,29]). Furthermore, it was extended to parametric models with covari-
ates [30], and its robustness was investigated by [31].

In this section, we analyse the NMBIII lifetime data when they are middle-censored.
Assume that T1, . . . , Tn are i.i.d. NMBIII (c, λ, k) random variable and let Zi = Ri − Li, i =
1, . . . , n be another random variable that defines the length of the censoring interval with
exponential distribution with mean γ−1, where the left-censoring point for each individual
Li is assumed to also be an exponential random variable with mean θ−1. Moreover, the
T
′
i s, L

′
is, and Z

′
i s are all independent of each other and the observed data, and X

′
i s are

given by Xi =

{
Ti i f Ti /∈ (Li ≤ Ri),

(Li ≤ Ri) otherwise.

5.1. Estimation

For n randomly selected units from the NMBIII (c, λ, k) population, where c, λ, and
k are unknown, were tested under middle-censoring scheme. In this setting, there are
n1 > 0 uncensored observations and n2 > 0 censored observations. Then, by re-ordering
the observed data into the uncensored and censored observations, we therefore have the
following data

{T1, . . . , Tn1 , (Ln1+1, Rn1+1), . . . , (Ln1+n2 , Rn1+n2)},

where n1 + n2 = n.
The likelihood function of the observed data is given by:

L(c, λ, k|x ) = ω(k)n1
n1

∏
i=1

(λ +
c
xi
)

n1

∏
i=1

(x−c
i e−λxi )

n1

∏
i=1

(1 + x−c
i e−λxi )−k−1

×
n1+n1

∏
i=n1+1

[(1 + r−c
i e−λri )−k − (1 + l−c

i e−λli )−k],
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where ω is a normalizing constant depending on γ and θ, and the estimation of them is not
of interest and this is left as a constant. The log-likelihood function is given by

l(c, λ, k|x ) = log ω + n1 log k +
n1

∑
i=1

log(λ +
c
xi
) + n

n1

∑
i=1

log(x−c
i e−λxi )− (k + 1)

n1

∑
i=1

log(1 + x−c
i e−λxi )

+
n1+n1

∑
i=n1+1

log[(1 + r−c
i e−λri )−k − (1 + l−c

i e−λli )−k].

The maximum-likelihood estimation (MLE) of c, λ, and k, denoted by
_
c M,

_
λ M, and

_
k M, can be derived by solving the following equations:

∂l(c, λ, k|x )
∂c

=
n1

∑
i=1

(λxi + c)−1 −
n1

∑
i=1

log xi + (k + 1)
n1

∑
i=1

(x−c
i e−λxi ) log xi

1 + x−c
i e−λxi

+
n1+n1

∑
i=n1+1

k(1 + r−c
i e−λri )−k−1(r−c

i e−λri ) log(ri)− k(1 + l−c
i e−λli )−k−1(l−c

i e−λli ) log(li)
[(1 + r−c

i e−λri )−k − (1 + l−c
i e−λli )−k]

,

∂l(c, λ, k|x )
∂λ

=
n1

∑
i=1

1
λ + c

xi

−
n1

∑
i=1

xi − (k + 1)
n1

∑
i=1

x−c+1
i e−λxi

1 + x−c
i e−λxi

−
n1+n1

∑
i=n1+1

k(1 + r−c
i e−λri )−k−1(r−c+1

i e−λri )− k(1 + l−c
i e−λli )−k−1(l−c+1

i e−λli )

[(1 + r−c
i e−λri )−k − (1 + l−c

i e−λli )−k]

and

∂l(c, λ, k|x )
∂k

= −
n1+n1

∑
i=n1+1

(1 + r−c
i e−λri )−k log(1 + r−c

i e−λri )− k(1 + l−c
i e−λli )−k log(1 + l−c

i e−λli )

[(1 + r−c
i e−λri )−k − (1 + l−c

i e−λli )−k]

+
n1

k
−

n1

∑
i=1

log(1 + x−c
i e−λxi ).

It is obvious that the MLE of c, λ, and k cannot be solved explicitly. Therefore, the
solutions can be obtained using Newton–Raphson method or numerically using the solve
systems of nonlinear equations “nleqslv” package in R.

Since the MLE is asymptotically normal, the approximate confidence intervals for

the parameters c, λ and k can be computed as follows: ĉM ± z α
2

√
σ̂2

c , λ̂M ± z α
2

√
σ̂2

λ and

k̂M ± z α
2

√
σ̂2

k , where σ̂2
(.) are the variances of the respective parameters c, k, and λ, and z α

2

is the value of the standard normal curve and α is the level of significance.

5.2. Simulation Results

We conducted Monte Carlo simulation studies to assess the finite sample behaviour
of the MLEs of the parameters c, k and λ based on two settings; the first is the random
variable generated from the NMBIII distribution, while the other considers the case where
the NMBIII lifetime data were middle-censored.

The random samples for both settings were generated from distribution NMBIII(c, k, λ)
based on accept-reject approach. Without loss of generality, random samples were used
with five different sizes viz n = 10, 30, 50, 70, and 100 from NMBIII(c, k, λ) distribution
with parameters c = 1, k = 2, and λ = 0.5.

The middle censoring settings considered three combinations of the censoring schemes
(γ−1, θ−1) = (0.25, 0.25), (1, 0.75), and (1.25, 0.5).

The results were obtained from 1000 Monte Carlo replications from simulations carried
out using the software R, and the average estimates and the mean squared error (MSE) are
obtained and reported in Table 3.
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Results in Table 3 show that the ML estimates for both settings behave similarly. In
general, there is a decreasing function between the sample size and the mean squared error,
which verifies the consistency property of the derived estimators. The average estimates
are insignificantly effected by the censoring status.

Table 3. Average MLE estimates and the corresponding MSE (within brackets).

Distribution n Un-Censored
Middle-Censored

(0.25, 0.25) (1, 0.75) (1.25, 0.5)

(c, k, λ) c k λ c k λ c k λ c k λ

(1, 2, 0.5)

10 1.114 2.079 0.397 1.123 2.233 0.447 1.087 2.130 0.524 1.196 2.088 0.561
(0.130) (0.102) (0.122) (0.141) (0.163) (0.096) (0.111) (0.159) (0.108) (0.121) (0.099) (0.125)

30 1.039 2.036 0.464 1.082 2.170 0.452 1.072 2.080 0.519 1.127 2.080 0.547
(0.034) (0.039) (0.080) (0.096) (0.072) (0.043) (0.036) (0.082) (0.046) (0.052) (0.093) (0.037)

50 1.036 2.032 0.484 1.071 2.096 0.536 1.066 2.071 0.508 1.103 2.022 0.529
(0.03) (0.031) (0.029) (0.033) (0.031) (0.032) (0.028) (0.032) (0.028) (0.022) (0.025) (0.027)

70 1.015 1.984 0.511 1.035 2.018 0.510 1.042 2.053 0.496 1.042 1.985 0.476
(0.016) (0.015) (0.019) (0.017) (0.021) (0.022) (0.015) (0.021) (0.020) (0.021) (0.016) (0.017)

100 1.001 1.991 0.502 1.019 1.998 0.495 0.980 2.020 0.498 0.981 1.907 0.491
(0.012) (0.013) (0.011) (0.013) (0.015) (0.014) (0.015) (0.016) (0.017) (0.016) (0.013) (0.013)

(0.5, 2, 0.5)

10 0.621 2.074 0.427 0.582 2.325 0.522 0.534 2.135 0.524 1.196 2.098 0.530
(0.052) (0.040) (0.151) (0.127) (0.086) (0.063) (0.056) (0.084) (0.088) (0.080) (0.105) (0.096)

30 0.613 2.057 0.464 0.531 2.264 0.513 0.529 2.104 0.516 1.127 2.087 0.521
(0.034) (0.036) (0.032) (0.038) (0.039) (0.040) (0.034) (0.033) (0.037) (0.030) (0.033) (0.037)

50 0.538 2.010 0.484 0.519 2.125 0.489 0.518 2.014 0.505 1.103 2.054 0.518
(0.026) (0.012) (0.044) (0.094) (0.067) (0.032) (0.019) (0.064) (0.037) (0.031) (0.016) (0.031)

70 0.5017 1.928 0.511 0.491 2.020 0.490 0.506 1.982 0.501 1.042 2.010 0.509
(0.012) (0.009) (0.041) (0.057) (0.037) (0.021) (0.012) (0.035) (0.013) (0.017) (0.012) (0.014)

100 0.492 2.003 0.502 0.504 2.003 0.507 0.492 2.004 0.499 0.981 1.923 0.495
(0.002) (0.001) (0.027) (0.046) (0.027) (0.007) (0.006) (0.026) (0.005) (0.011) (0.010) (0.012)

(2, 2, 2)

10 2.212 2.452 2.517 2.298 2.571 2.322 2.331 2.280 2.371 2.102 2.493 2.256
(0.063) (0.127) (0.096) (0.105) (0.056) (0.151) (0.040) (0.088) (0.052) (0.086) (0.084) (0.080)

30 2.176 2.420 2.161 2.179 2.552 2.291 2.238 2.222 2.328 2.045 2.258 2.173
(0.043) (0.096) (0.037) (0.093) (0.036) (0.080) (0.039) (0.046) (0.034) (0.072) (0.082) (0.052)

50 1.962 2.013 2.008 2.057 2.150 2.171 2.061 2.064 2.091 1.959 2.041 1.901
(0.032) (0.094) (0.031) (0.016) (0.019) (0.044) (0.012) (0.037) (0.026) (0.067) (0.064) (0.031)

70 1.953 1.875 1.949 1.809 1.823 1.956 1.864 2.054 1.903 1.953 2.004 1.825
(0.021) (0.057) (0.014) (0.012) (0.012) (0.041) (0.009) (0.013) (0.012) (0.037) (0.035) (0.017)

100 2.045 2.113 2.160 2.070 2.503 2.207 2.183 2.145 2.143 2.026 2.125 2.144
(0.007) (0.046) (0.012) (0.010) (0.006) (0.027) (0.001) (0.005) (0.002) (0.027) (0.026) (0.011)

6. Applications

This section provides three applications for complete data sets to show how the NM-
BIII distribution can be applied in practice. We compare NMBIII distribution to MBIII, BIII,
Weibull (W), Gamma (Ga), Lognormal (LN), Generalized Weibull (EW), and Generalised Ex-
treme value type-II (GEV-II) distributions. In these applications, the model parameters are
estimated by the method of maximum likelihood. The Akaike information criterion (AIC),
Bayesian information criterion (BIC), A*(Anderson Darling), and W*(Cramer–von Mises)
are computed to compare the fitted models. In general, the smaller the values of these
statistics, the better the fit to the data. Additionally, the asymptotic variance-covariance
matrices of the NMBIII parameters are also provided. The plots of the fitted PDFs, CDFs,
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Probability–Probabibility (PP), and Quantile–Quantile (QQ) of NMBIII are displayed for
visual comparison. The required computations are carried out in the R software.

The first data set consists of 119 observations on fracture toughness of Alumina (Al2O3)
(in the units of MPa m1/2. These data were studied by [32]. The second data set refers to
the material thickness of hole (12 mm) and sheet (3.15 mm), comprising 50 observations, as
reported by authors in [33]. The third data set was first analysed by [34] and represents the
survival times, in weeks, of 33 patients suffering from Acute Myelogenous Leukaemia.

Tables 4–6 list the MLEs, standard errors, AIC, BIC, A*, and W* of the model for the
data sets 1–3. The results in Tables 4–6 indicate that the NMBIII model provides the best fit
as compared to all the other models. Figures 3–5 also support the results of Tables 4–6.

Table 4. Data set 1.

Model Parameters MLE Standard Error AIC BIC A* W*

NMBII c 2.543 0.507 362.159 370.497 1.888 0.296
k 25.243 5.185
λ 1.703 0.179

MBIII c 1111.230 461.820 379.380 387.718 3.515 0.583
k 4.943 0.281
µ 770.050 398.963

BIII c 3.058 0.180 423.535 429.094 7.658 1.365
k 51.879 11.180

W α 0.002 0.0002 394.821 405.379 1.955 0.422
β 3.984 0.0773

Ga α 15.521 1.991 385.737 374.295 2.745 0.457
β 3.588 0.468

LN µ 1.432 0.025 428.845 434.403 3.374 0.568
σ 0.269 0.0174

EW α 0.0114 0.006 374.644 386.981 1.945 0.315
β 3.2126 0.278
θ 2.0077 0.388

GEV-II α 48.447 10.816 425.796 431.354 7.875 1.408
β 3.022 0.185

The variance–covariance matrix of the MLEs of the NMBIII distribution for data set 1 is 0.25674663 0.2275027 −0.08608337
0.22750269 26.8853417 0.18880701
−0.08608337 0.1888070 0.03215706


Table 5. Data set 2.

Model Parameters MLE Standard Error AIC BIC A* W*

NMBII c 2.802 1.620 −106.358 −100.622 0.524 0.090
k 0.317 0.219
λ 17.274 5.605

MBIII c 0.0020 0.0002 −99.778 −94.042 0.988 0.159
k 3.466 0.205
µ 0.0039 0.0007

BIII c 7.788 26.572 −26.027 −22.202 1.056 0.177
k 0.065 0.221

W α 36.141 14.390 −101.784 −93.960 0.644 0.105
β 2.118 0.246

Ga α 3.029 0.576 −102.743 −98.919 1.636 0.279
β 18.561 3.836

LN µ 1.987 0.095 105.700 109.524 1.922 0.331
σ 0.670 0.067

EW α 819.305 2409.321 −106.069 −100.333 0.535 0.093
β 4.982 2.636
θ 0.297 0.200

GEV-II α 0.054 0.020 −70.449 −66.625 3.567 0.634
β 1.236 0.118
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The variance–covariance matrix of the MLEs of the NMBIII distribution for data set 2 is 2.6257440 0.34637888 8.616552
0.3463789 0.04803978 −1.104049
8.6165520 −1.10404897 31.417567


Table 6. Data set 3.

Model Parameters MLE Standard Error AIC BIC A* W*

NMBII c 0.521 0.121 303.703 308.101 0.440 0.064
k 4.734 1.065
λ 0.012 0.005

MBIII c 153.592 319.615 309.465 313.863 0.672 0.098
k 1.494 0.464
µ 0.201 796.017

BIII c 0.755 0.092 309.714 312.645 0.919 0.151
k 5.705 1.228

W α 0.057 0.028 304.302 307.234 0.552 0.079
β 0.792 0.112

Ga α 0.706 0.150 304.357 309.288 0.459 0.085
β 0.017 0.005

LN µ 2.884 0.266 320.9177 323.8491 0.648 0.102
σ 1.504 0.188

EW α 0.0431 0.186 306.296 310.693 0.554 0.079
β 0.844 0.794
θ 0.901 1.352

GEV-II α 4.259 0.933 310.463 313.395 0.983 0.160
β 0.685 0.091

The variance–covariance matrix of the MLEs of the NMBIII distribution for data set 3 is 0.014574568 0.075708071 −0.0003995590
0.075708071 1.134424017 −0.001232737
−0.000399559 −0.001232737 0.00002838794


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Figure 3. Estimated density (top left), cdf (top right), QQ-plot (bottom left), and PP-plot (bottom
right) for data set 1.
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right) for data set 2.
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Figure 5. Estimated density (top left), cdf (top right), QQ-plot (bottom left), and PP-plot (bottom
right) for data set 3.

7. Conclusions

A good theory should seek out the most concise explanation for the facts. With this
in mind, a new modified form of BIII distribution has been introduced that can model
well-specified forms of hazard rate shapes, including increasing, decreasing, bathtub,
upside-down bathtub, and nearly constant. Some of its statistical properties, such as, rth
moment, sth incomplete moment, moment generating function, skewness, kurtosis, mode,
ith order statistics, and stochastic ordering have been derived. The maximum likelihood
estimation is employed to estimate the model parameters. The usefulness of this model
is demonstrated by applications on complete and censored samples. Simulation study is
also performed. A future effort would include the contributions of new regression models,
Bayesian parameter estimations, and research into diversified fields of data sets.
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