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Abstract: The paper contributes majorly in the development of a flexible trigonometric extension
of the well-known modified Lindley distribution. More precisely, we use features from the sine
generalized family of distributions to create an original one-parameter survival distribution, called
the sine modified Lindley distribution. As the main motivational fact, it provides an attractive
alternative to the Lindley and modified Lindley distributions; it may be better able to model lifetime
phenomena presenting data of leptokurtic nature. In the first part of the paper, we introduce it
conceptually and discuss its key characteristics, such as functional, reliability, and moment analysis.
Then, an applied study is conducted. The usefulness, applicability, and agility of the sine modified
Lindley distribution are illustrated through a detailed study using simulation. Two real data sets
from the engineering and climate sectors are analyzed. As a result, the sine modified Lindley model
is proven to have a superior match to important models, such as the Lindley, modified Lindley, sine
exponential, and sine Lindley models, based on goodness-of-fit criteria of importance.

Keywords: goodness-of-fit; trigonometric distributions; modified Lindley distribution; engineering
data; climate data; statistical analysis

1. Introduction

The last few years in applied sciences have been marked by the need and volume
of data to be analyzed. To meet this need, new models have been proposed, and their
improvement is a hot topic. These require, among other things, the underlying devel-
opment of new (statistical or probabilistic) distributions. In this regard, one idea is to
modify existing distributions in order to make the corresponding models more flexible and
adaptable to several kinds of data. Hence, several modifications based on mathematical
techniques have been proposed, generating distributions classified under “families of
distributions”. The readers are referred to [1] for a bird’s-eye view. In recent times, the
families described by ”trigonometric transformations" have gained a lot of interest because
of their applicability and working capability in a variety of situations. Related to this topic,
Refs. [2–4] were among the first to study the sinusoidal transformation that leads to the
sine generated (S-G) family. For this family, the cumulative distribution function (cdf) and
probability density function (pdf) are given by

FS(x; η) = sin
[π

2
G(x; η)

]
, x ∈ R, (1)

and
fS(x; η) =

π

2
g(x; η) cos

[π

2
G(x; η)

]
, x ∈ R, (2)

respectively, where G(x; η) and g(x; η) represent the cdf and pdf of a certain continuous
distribution with a parameter vector denoted by η. Thus, the functions FS(x; η) and
fS(x; η) are linked to a baseline or parent distribution determined beforehand, relying on
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the purpose of study. It is worth noting that the baseline cdf has not been supplemented
with any additional parameters. The S-G family was developed as a viable substitute for
the parent distribution; we can see it from the following first-order stochastic ordering
(FOSO) property:

G(x; η) ≤ FS(x; η) (3)

for all x ∈ R, as well as the possibility of creating versatile statistical distributions that can
accept a wide range of data. To make the statement clearer, the exponential distribution
is used as a parent distribution by [2] to define the sine exponential distribution. The
inverse Weibull (IW) distribution proposed by [5] is used as the reference distribution
by [4], thus creating the sine IW (SIW) distribution. The sine power Lomax distribution
investigated by [6] is one of the most recent works highlighting the importance of the S-G
family. It enhances the parental power Lomax distribution on several functional aspects.
Among the trigonometric families of distributions, a few of them, including the C-S family
by [7], SKum-G family by [8], STL-G family by [9], and T-G family by [10], were influenced
by these efforts.

In this research, we contribute to the developments of the S-G family by linking it
to a particular one-parameter distribution introduced by [11]: the modified Lindley (ML)
distribution. The sine ML (S-ML) distribution is thus introduced. In order to comprehend
the outlined approach, a review of the ML distribution is essential. As a first comment,
the ML distribution presented by [11] is achieved by implementing the tuning exponential
function e−θx, with θ > 0, to the Lindley distribution, with the motive of modifying its
capabilities for new modeling perspectives. On the mathematical side, the cdf and pdf of
the ML distribution are defined by

GML(x; θ)=





1−
[

1 + e−θx θx
1 + θ

]
e−θx, if x > 0

0, if x ≤ 0
(4)

and

gML(x; θ)=





θ

1 + θ
e−2θx[(1 + θ)eθx + 2θx− 1

]
, if x > 0

0, if x ≤ 0
, (5)

respectively. Basically, the ML distribution satisfies the following FOSO property:

GL(x; θ) ≤ GML(x; θ) ≤ GE(x; θ) (6)

for all x ∈ R, where GL(x; θ) and GE(x; θ) represent the cdfs of the Lindley and exponential
distributions, respectively. In this sense, the ML distribution constitutes a real alternative
to these two classical distributions. The ML distribution is also identified as a linear
combination of the exponential distribution with parameter θ and the gamma distribution
with parameters (2, 2θ), and it has an “increasing-reverse bathtub-constant” hazard rate
function (hrf). The real benefit is quite noteworthy; the ML model is superior to the Lindley
and exponential models for the three data sets seen in [11]. A few inspired distributions
enhancing or generalising the ML distribution were proposed for the purpose of optimality.
These include the Poisson ML distribution by [12], wrapped ML distribution by [13], and
discrete ML distribution by [14].

The immediate aim of the S-ML distribution is to use the S-G technique to enhance the
effectiveness of the ML distribution on diverse data sets. In particular, thanks to the FOSO
properties in Equations (3) and (6), it is a real and attractive alternative to the Lindley and
ML distributions. Further exploration in the following research will reveal deeper motives.
To summarise, the S-ML model’s utility and adaptability make it particularly appealing to
fit data from various fields. Remarkably, the characterized pdf shows a variety of curve
shapes, some of which have only one mode, are decreasing, and are asymmetrical to the
right. In comparison to the pdf of the ML distribution, when it is unimodal, the pdf of
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the S-ML distribution has a more rounded peak, meaning that it is better adapted to fit
a data histogram presenting a high kurtosis level. Furthermore, the S-ML distribution
exhibits a non-monotonic hrf which is “increasing-reverse bathtub-constant” shaped. The
hrf of the ML distribution has this feature as well. As with other competent models, the
accuracy of the fits is persistent in the case of the S-ML model due to their characteristics.
The claim is demonstrated by examining two published real-world data sets, primarily
from engineering and climate data, against twelve competent models.

We prepare the rest of the paper in the following manner. The concept, quality, and key
aspects of the S-ML distribution are covered in Section 2. A moment analysis is conducted
in Section 3. The maximum likelihood estimation of the parameter θ is explained in
Section 4. A simulation study is presented in Section 5. Section 6 assesses the proposed
model’s applicability to real-world data. Finally, in Section 7, the conclusions are provided.

2. The S-ML Distribution

The mathematical foundation for the S-ML distribution is first presented.

2.1. Functional Analysis

To begin, we perform a functional analysis of the S-ML distribution. By substituting
Equations (4) and (5) in Equations (1) and (2), respectively, we derive the major functions
of the S-ML distribution; the cdf and pdf are given as follows

FS−ML(x; θ)=





cos
[

π

2

(
1 + e−θx xθ

1 + θ

)
e−θx

]
, if x > 0

0, if x ≤ 0

and

fS−ML(x; θ)=





π
2

θ
1+θ e−2θx

[
(1 + θ)eθx + 2xθ − 1

]
sin
[

π
2

(
1 + e−θx xθ

1+θ

)
e−θx

]
, if x > 0

0, if x ≤ 0
, (7)

with θ > 0. As a primary result mentioned in the introduction section, the following
FOSO property holds: GML(x; θ) ≤ FS−ML(x; θ) for any x ∈ R, making an immediate
difference between the ML and S-ML modeling from the cdf viewpoint. Differences can
also be observed on the respective pdfs, as discussed below. Naturally, variant forms of
fS−ML(x; θ) can be obtained by changing the value of θ. Due to the relative complexity of
this function in the analytical sense, we propose a graphical study for shape analysis. The
more representative shapes of this pdf are shown in Figure 1.
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Figure 1. Plots of (a) unimodal shapes and (b) decreasing shapes for fS−ML(x; θ).

We can observe from Figure 1, that, for smaller values of θ, the plot of fS−ML(x; θ)
is unimodal, and for larger values of θ, the plot of fS−ML(x; θ) is decreasing. As a result,
the S-ML distribution is suitable for modeling a vast majority of lifetime phenomena.

Figure 1. Plots of (a) unimodal shapes and (b) decreasing shapes for fS−ML(x; θ).

We can observe from Figure 1, that, for smaller values of θ, the plot of fS−ML(x; θ)
is unimodal, and for larger values of θ, the plot of fS−ML(x; θ) is decreasing. As a result,
the S-ML distribution is suitable for modeling a vast majority of lifetime phenomena.
Compared to the parent ML distribution, the following observations are made: When it
is unimodal, we observe that the pdf of the S-ML distribution has a more rounded peak,
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meaning that it is better adapted to fit a data histogram presenting a high kurtosis level.
In other words, the S-ML model is more able to analyze data of a leptokurtic nature.

2.2. Reliability Analysis

We complete the previous functional analysis by studying the complementary reliabil-
ity functions, such as the survival function (sf), hrf (for hazard rate function), reversed hrf
(rhrf), second rate of failure (srf), and the cumulative hrf (chrf) of the S-ML distribution.
In a broader sense, the sf measures the probability that the life of an item will survive
beyond any specified time. Mathematically, the sf of the S-ML distribution is given by

SS−ML(x; θ)= 1− FS−ML(x; θ) =





1− cos
[

π

2

(
1 + e−θx xθ

1 + θ

)
e−θx

]
, if x > 0

1, if x ≤ 0
.

The hrf measures the likelihood of an item deteriorating or expiring depending on its
lifetime. As a direct consequence, it is critical in the classification of survival distributions.
The hrf of the S-ML distribution is specified by

hS−ML(x; θ) =
fS−ML(x; θ)

SS−ML(x; θ)

=





π

2
θ

1 + θ
e−2θx

[
(1 + θ)eθx + 2xθ − 1

]
cot
[

π

4

(
1 + e−θx xθ

1 + θ

)
e−θx

]
, if x > 0

0, if x ≤ 0
.

Further, Figure 2 displays the shapes of this hrf for various values of θ.
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makes a solid difference between the Lindley and exponential distributions. It is also a
desirable property for modelling purposes.
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makes a solid difference between the Lindley and exponential distributions. It is also a
desirable property for modelling purposes.

The rhrf is the ratio between the pdf to its cdf and it plays a role in analyzing censored
data. Analytically, it corresponds to

rS−ML(x; θ)=





π
2

θ
1+θ e−2θx[(1 + θ)eθx + 2xθ − 1

]
tan
[

π
2

(
1 + e−θx xθ

1+θ

)
e−θx

]
, if x > 0

0, if x ≤ 0
.

The srf is the logarithmic ratio of the sf at time x and x + 1, and it is given by

r∗S−ML(x; θ)=





ln

(
1− cos

[
(π/2)

(
1 + e−θxxθ/(1 + θ)

)
e−θx]

1− cos
[
(π/2)

(
1 + e−θ(x+1)(x + 1)θ/(1 + θ)

)
e−θ(x+1)

]
)

, if x > 0

0, if x ≤ 0

.
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The chrf is the negative logarithm of sf and is given by

HS−ML(x; θ)=




− ln

(
1− cos

[
π

2

(
1 + e−θx xθ

1 + θ

)
e−θx

])
, if x > 0

0, if x ≤ 0
.

With these functions, we conclude different reliability analysis in regard with the
S-ML distribution.

3. Moment Analysis

For any lifetime distribution, a moment analysis is necessary to handle numerically its
modeling capacities, identifying the behavior of various central and dispersion moment
parameters, as well as moment skewness and kurtosis coefficients.

As a first notion, for any positive integer r ≥ 1, and a random variable X with the
S-ML distribution, the r-th moment of X exists. It can be expressed as

mom(r)= E(Xr) =
∫ +∞

0
xr fS−ML(x; θ)dx

=
π

2
θ

1 + θ

∫ +∞

0
xre−2θx

[
(1 + θ)eθx + 2xθ − 1

]
sin
[

π

2

(
1 + e−θx xθ

1 + θ

)
e−θx

]
dx.

(8)

Integral developments in the classical sense are limited. Computer software, on the other
hand, can be used to quantitatively evaluate it for a given θ.

We propose a series development of mom(r) in the next result, which can be used
for computational purposes in a less opaq method than a “ready to use but black box”
computer program.

Proposition 1. The r-th moment of X can be expanded as

mom(r)=
r
θr

+∞

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−`

(`+ r− 1)!

(`+ 2k)r+`
.

Proof. For the proof, we do not directly use the integral expression of mom(r) as described
in (8). An integration by part gives

mom(r)=
∫ +∞

0
xr fS−ML(x; θ)dx = r

∫ +∞

0
xr−1SS−ML(x; θ)dx.

Now, by utilizing the series expansion of the cosine function and the classical binomial
formula, we obtain

SS−ML(x; θ)= 1−
+∞

∑
k=0

(−1)k

(2k)!

(π

2

)2k
(

1 + e−θx xθ

1 + θ

)2k
e−2kθx

=
+∞

∑
k=1

(−1)k+1

(2k)!

(π

2

)2k
(

1 + e−θx xθ

1 + θ

)2k
e−2kθx

=
+∞

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(

θ

1 + θ

)`

x`e−(`+2k)θx.

(9)
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Hence, after some developments including the change of variable y = (`+ 2k)θx (so that
dx = [1/((`+ 2k)θ)]dy), and the calculus of gamma-type integral, we get

mom(r)= r
∫ +∞

0
xr−1

[
+∞

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(

θ

1 + θ

)`

x`e−(`+2k)θx

]
dx

= r
+∞

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(

θ

1 + θ

)` ∫ +∞

0
xr+`−1e−(`+2k)θxdx

=
r
θr

+∞

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−`

(`+ r− 1)!

(`+ 2k)r+`
.

Proposition 1 is proved. �

Then, based on Proposition 1, the following finite sum approximation remains
acceptable:

mom(r)≈ r
θr

U

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−`

(`+ r− 1)!

(`+ 2k)r+`
,

where U represents any large integer.
From the above moment formulas, we can easily derive the mean, variance, moment

skewness coefficient and moment kurtosis coefficient; the mean is given by mom(1), the
variance is obtained as V(X) = E

(
(X−mom(1))2

)
, the moment skewness coefficient can

be derived as MS = E
(
(X−mom(1))3

)
/V(X)3/2 and the moment kurtosis coefficient

can be derived as MK = E
(
(X−mom(1))4

)
/V(X)2.

Table 1 gives a glimpse of these values for different values of θ.

Table 1. Values of various moment measures of the S-ML distribution.

θ mom(1) V(X) MS MK

0.5 1.448465 1.210367 1.449555 6.374828
1.0 0.6803329 0.3003946 1.520729 6.633623
1.5 0.4363871 0.1322356 1.573212 6.842306
2.0 0.318833 0.07375445 1.611987 7.005059
2.5 0.2502845 0.04687065 1.64148 7.133455
3.0 0.2056052 0.03235949 1.664569 7.236649

From Table 1, we can observe that, as the value of the parameter θ of the S-ML
distribution increases, all the considered measures increase. Furthermore, since MS > 0,
it is clear that the S-ML distribution is mainly right-skewed, and since MK > 3, it is
mainly leptokurtic.

We can complete the previous moment results by investigating the incomplete mo-
ments. To begin, let r ≥ 1 be an integer, t ≥ 0, and X be a random variable with the S-ML
distribution. Based on this variable, we define its incomplete version by Y(t) = X if X ≤ t
and Y(t) = 0 if X > t. Then, the r-th incomplete moment of X given at t exists, and it is
defined by

mom(r, t)= E
(
Y(t)r) =

∫ t

0
xr fS−ML(x; θ)dx.

It is involved in developments of important probabilistic objects, such as mean deviations,
income curves, etc. More basically, it can be viewed as a truncated version of the standard
r-moment. We may refer to [15] in this regard.

In the next results, we present a series expansion of mom(r, t), which can be used for
approximation purposes.
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Proposition 2. The r-th incomplete moment of X given at t exists and can be expanded as

mom(r, t)= −tr
{

1− cos
[

π

2

(
1 + e−θt tθ

1 + θ

)
e−θt

]}

+
r
θr

+∞

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−`

1

(`+ 2k)r+`
γ(r + `, (`+ 2k)θt),

where γ(a, t) denotes the incomplete gamma function defined by γ(a, t) =
∫ t

0 xa−1e−xdx, where
a > 0 and t ≥ 0.

Proof. The proof follows the lines of the one of Proposition 1. An integration by part gives

mom(r, t)=
∫ t

0
xr fS−ML(x; θ)dx = −trSS−ML(t; θ) + r

∫ t

0
xr−1SS−ML(x; θ)dx.

It follows from the series expansion in Equation (9) and the change of variable
y = (`+ 2k)θx that

∫ t

0
xr−1SS−ML(x; θ)dx=

+∞

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(

θ

1 + θ

)` ∫ t

0
xr+`−1e−(`+2k)θxdx

=
1
θr

+∞

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−`

1

(`+ 2k)r+`
γ(r + `, (`+ 2k)θt).

Therefore

mom(r, t)= −tr
{

1− cos
[

π

2

(
1 + e−θt tθ

1 + θ

)
e−θt

]}

+
r
θr

+∞

∑
k=1

2k

∑
`=0

(
2k
`

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−`

1

(`+ 2k)r+`
γ(r + `, (`+ 2k)θt).

This concludes the proof of Proposition 2. �

In some sense, Proposition 2 generalizes Proposition 1; by taking t→ +∞ ,
Proposition 2 becomes Proposition 1.

The rest of the study is devoted to the applicability of the S-ML model, illustrated
with concrete examples of data analysis.

4. Inferential Analysis

The inference of the S-ML model is covered in this section. The parameter θ is
supposed to be unknown. In order to estimate it, the maximum likelihood estimation
method is employed. We adopt the methodology as described in a broader context, as seen
in [16].

Thus, the next is a mathematical representation of this methodology in the setting of
the S-ML distribution. First, let n be a positive integer and x1, x2, . . . , xn be observations
drawn from a random variable X following the S-ML distribution. Then, the corresponding
likelihood function and log-likelihood function are as follows

L=
n

∏
i=1

fS−ML(xi; θ) =
(π

2

)n
(

θ

1 + θ

)n
e−2θ ∑n

i=1 xi
n

∏
i=1

[
(1 + θ)eθxi + 2xiθ − 1

]

×
n

∏
i=1

sin
[

π

2

(
1 + e−θxi

xiθ

1 + θ

)
e−θxi

]
,
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and

ln L= n ln π − n ln 2 + n ln θ − n ln(1 + θ)− 2θ
n

∑
i=1

xi

+
n

∑
i=1

ln
[
(1 + θ)eθxi + 2xiθ − 1

]
+

n

∑
i=1

ln
{

sin
[

π

2

(
1 + e−θxi

xiθ

1 + θ

)
e−θxi

]}
,

respectively. The maximum likelihood estimate (MLE) of θ can be defined via the following
argmax definition:

θ̂ = argmax lnθ>0 L. (10)

This estimate can be formalized through the solution of the non-linear equations expressed
as d ln L/dθ = 0, where

d
dθ

ln L=
n
θ
− n

1 + θ
− 2

n

∑
i=1

xi +
n

∑
i=1

[
eθxi (θxi + xi + 1) + 2xi

(1 + θ)eθxi + 2xiθ − 1

]
+

n

∑
i=1

[
π

2
e−θxi

(
− θx2

i e−θxi

θ + 1
+

xie−θxi

θ + 1
− θxie−θxi

(θ + 1)2

)
− π

2
xie−θxi

(
1 +

θxie−θxi

θ + 1

)]

× cot
[

π

2

(
1 + e−θxi

xiθ

1 + θ

)
e−θxi

]
.

There is no analytical solution for this equation, but θ̂ can be determined at least numerically
with any statistical software such as the R software (see [17]). Based on θ̂, the estimated
pdf (epdf) of the S-ML model is given by fS−ML

(
x; θ̂
)

and the estimated cdf (ecdf) of the
S-ML model is given by FS−ML

(
x; θ̂
)
.

Let I(θ) = −E
[
d2 ln[ fS−ML(X; θ)]/dθ2] be the expected Fisher information matrix.

Then, the estimated standard error (SE) of θ is achieved by considering the value of the
diagonal component of I

(
θ̂
)−1

raised to half.

5. Simulation Study

In the framework of the S-ML model, a simulation study is carried out to study the
performance of θ̂ given as Equation (10) in terms of their bias (bias) and mean squared
error (MSE). The simulated procedure can be described as follows:

We generate samples of sizes n = 20, 50, 100, 200, 500, 1000 from the S-ML distribution
with θ = (1.25, 1.50, 2.00, 2.50). For each sample, the MLE θ̂ is calculated. Here, 1000 such
repetitions are made to calculate the standard mean MLE (MMLE), bias and MSE of these
estimates using the formula:

MMLE
(
θ̂
)
=

1
1000

1000

∑
i=1

θ̂i, Biasθ

(
θ̂
)
=

1
1000

1000

∑
i=1

(
θ̂i − θ

)

and

MSEθ

(
θ̂
)
=

1
1000

1000

∑
i=1

(
θ̂i − θ

)2
,

respectively, where θ̂i is the estimate of θ for each iteration in the simulation study; i is from
1 to 1000. The results of the study are reported in Table 2.
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Table 2. Outcome of the simulation study.

θ n
^
θ

Bias MSE

1.25

20 0.040548 0.052057
50 0.017112 0.0194051

100 0.007862 0.009083
200 0.005018 0.0045803
500 0.002377 0.001814
1000 0.001318 0.000915

1.50

20 0.51523 0.072304
50 0.021153 0.028311

100 0.008343 0.0125480
200 0.005195 0.006043
500 0.0027303 0.002816
1000 0.001619 0.001239

2.00

20 0.060237 0.135020
50 0.029170 0.052147

100 0.012338 0.024522
200 0.009004 0.012285
500 0.001464 0.004796
1000 0.003824 0.002366

2.50

20 0.106934 0.246197
50 0.033415 0.083405

100 0.023273 0.044903
200 0.007408 0.019908
500 0.007856 0.008118
1000 0.001431 0.004158

From Table 2, it is observed that as sample size n increases,

1. Bias decreases, which shows the accuracy of θ̂;
2. MSE decreases, which indicates the consistency (or preciseness) of θ̂.

6. Applications of the S-ML Model

We use the S-ML model on two data sets based on the maximum likelihood method
as introduced previously. The data differ in size, traits, and background, but they are all of
current interest in their areas.

6.1. Method

We proceed as follows for each data set:

1. The data are presented briefly, accompanied with their reference;
2. A table that encapsulates the basic statistical measures of the data is provided;
3. The goodness-of-fit measures of the models under consideration are evaluated and

arranged in order of model performance in a table;
4. The MLE(s) of the model parameters is(are) shown, as well as the relevant SEs, as

supplementary work;
5. It is concluded with a visual concept by presenting the histogram of the data and the

epdf, as well as the empirical cdf plots and ecdf for the S-ML model exclusively in
another graph.

The adequacy measures that are used for model fitting are provided here. Suppose
x1, x2, . . . , xn represent the data and x(1), x(2), . . . , x(n) be their ordered values. As an initial
step, we consider the Cramér von-Mises, Anderson Darling, and Kolmogorov–Smirnov
statistics defined by
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A∗ = −n−
n
∑

i=1

2i−1
n

[
ln
(

FS−ML

(
x(i); θ̂

))
+ ln

(
SS−ML

(
x(n+1−i); θ̂

))]
,

W∗ = 1
12n +

n
∑

i=1

(
FS−ML

(
x(i); θ̂

)
− 2i−1

2n

)2

and
Dn = max

i=1,2,...,n

(
FS−ML

(
x(i); θ̂

)
− i−1

n , i
n − FS−ML

(
x(i); θ̂

))
,

respectively. The p-value of the Kolmogorov–Smirnov test linked to Dn is also examined.
Of course, the above definitions can be adapted to any other model than the S-ML model.
The measures of adequacy are extensively employed to determine which model is best in
terms of fitting the data set under study. The model having the least value for the W∗ or
A∗, and the highest p-value, is considered to give the best fit that is in correspondence with
the data.

Furthermore, we consider the following goodness-of-fit measures: Akaike information
criterion (AIC) and Bayesian information criterion (BIC), given as follows

AIC = 2k− 2LL, BIC = −2LL + k ln(n),

respectively, where LL is the value of the log-likelihood function taken at θ̂ and k, being
the number of parameters of the model, here k = 1 for the S-ML model. As it is widely
understood, the model with the lowest value for AIC or BIC is selected as the greatest
player of models that fits the data set compared to the other models. For more information
on the usage and the underlying meaning of the measures W∗, A∗, Dn, AIC and BIC, we
refer to [18].

In order to study the best fit of the S-ML model, we aim to compare it with some
useful and competent models, which include the ML, Lindley, sine exponential and sine
Lindley models listed in Table 3. It is worth noting that models with three parameters are
also considered. The aim is to prove that our model can be efficient enough to outperform
more complex models in the literature.

Table 3. Competent models with the S-ML model.

Models Abbreviations Cdfs References

Lindley Lindley 1−
[

1 +
xθ

1 + θ

]
e−xθ [19]

sine exponential S-Expo cos
(π

2
e−θx

)
[2]

sine Lindley S-Lindley cos
[

π

2

(
1 +

θx
1 + θ

)
e−θx

]
[20]

modified Lindley ML 1−
[

1 + e−θx θx
1 + θ

]
e−θx [11]

inverted modified Lindley I-ML
[

1 +
θ

1 + θ

1
x

e−θ/x
]

e−θ/x [21]

inverted Lindley IL
[

1 +
θ

1 + θ

1
x

]
e−θ/x [22]

transmuted exponentiated inverse Rayleigh TEIR e−θα/x2
[
1 + λ− λe−θα/x2

]
[23]

transmuted inverse Rayleigh TIR e−θ/x2
[
1 + λ− λe−θ/x2

]
[24]

inverse Rayleigh IR e−α/x2
[25]

Lomax Lomax 1−
[
1 + x

λ

]−α [26]

log normal LNormal φ

[
ln x− µ

σ

]
[27]

generalized beta type II GB2 |α|
βαθ B(θ, δ)

∫ x
0

yαθ−1

(
1 + (y/β)α)θ+δ

dy [28]
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6.2. Precipitation Data Set

The data set has thirty consecutive values of precipitation (in inches) in the month of
March in Minneapolis, as provided by [29] and recently used by [30]. The data are: (0.77,
1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81,
2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05). The descriptive statistical measures of
these data are presented in Table 4.

Table 4. Descriptive statistical measures for the precipitation data set.

Mean Median Variance Skewness Kurtosis Min Max

1.68 1.47 1 1.086682 4.206884 0.32 4.75

Based on the information in Table 4, the data are right-skewed and leptokurtic. The
MLE, SE, and goodness-of-fit measures of the S-ML model and those of the other models
for precipitation data set are given in Tables 5 and 6.

Table 5. MLEs, SEs, and goodness-of-fit measures for the precipitation data set with one parameter models.

Model MLE (SE) AIC BIC A* W* Dn p-Value

S-ML θ̂ = 0.44 (0.0551) 82.9109 84.3121 0.6796 0.0972 0.1273 0.7153
ML θ̂ = 0.6644 (0.0974) 85.8898 87.291 1.1278 0.1723 0.1566 0.4532

Lindley θ̂ = 0.9096 (0.1247) 88.2874 89.6886 1.5908 0.2618 0.1882 0.2383
S-Expo θ̂ = 0.3396 (0.0576) 90.7932 92.1944 2.1771 0.3873 0.2202 0.1088

S-Lindley θ̂ = 0.6091 (0.0729) 85.6414 87.0426 1.1566 0.1817 0.1637 0.3966
I-ML θ̂ = 1.247 (0.1906) 89.7366 91.1378 1.3909 0.2170 0.1975 0.1925

IL θ̂ = 1.5833 (0.2268) 92.4423 1.8266 0.3040 0.1904 0.2279 0.0887
IR α̂ = 0.8588 (0.1568) 92.292 92.674 2.1822 0.43077 0.2396 0.06369

Table 6. MLEs, SEs, and goodness-of-fit measures for the precipitation data set with models having more than one parameter.

Model MLE (SE) AIC BIC A* W* Dn p-Value

TEIR α̂ = 1.1878 (5.739) 90.2022 94.4058 1.1359553 0.2117553 0.1817501 0.2749038
λ̂ = −0.67006 (0.266)

θ̂ = 0.6362 (4.778)
TIR λ̂ = 0.0001 (0.40171) 91.073 94.759 1.136 0.21177 0.1817 0.2748

θ̂ = 0.8588 (0.2136)
Lomax α̂ = 58619.76 (52.96) 94.9 97.8 2.5139 0.4539 0.2352 0.0724

λ̂ = 98190 (96.69)
LNormal µ̂ = 0.33737 (0.11368) 81 83.8 0.19855 0.0311 0.0913 0.9640

σ̂ = 0.62263 (0.08038)
GB2 α̂ = 580.4141 (1593.1699) 84.1 89.7 7.43 1.58 0.445 0.0000138

β̂ = 0.8125 (0.6469)
θ̂ = 4.3731 (6.6885)

δ̂ = 520.2863 (584.0752)

We can observe from Table 5 that the S-ML model has the lowest statistics with
the highest p-value, implying that it delivers a better fit than the other models studied.
Comparing the models in Table 6, we can see that the lognormal model gives a better fit,
while the S-ML model takes the second place, but with less modeling complexity in terms
of the number of parameters. Figure 3 depicts the epdf and ecdf plots of the S-ML model
for the precipitation data set.
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Figure 3. Plots of the (a) epdf and (b) ecdf of the S-ML model for the precipitation data set.

From Figure 3, it is obvious that the S-ML model captures the histogram’s overall
pattern and illustrates the comparison of the cdf with the empirical cdf of the S-ML model.
The suitable behaviour of the S-ML model is further confirmed by these graphs. Apart
from the lognormal model, the S-ML model clearly fits better than the Lindley, ML, S-Expo
and S-Lindley, and other models.

6.3. Time between Failure Data Set

This data set refers to the time between failures for repairable items. It was obtained
from [31]. The data are: (1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36,
0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17).
The descriptive statistical measures of these data are presented in Table 7.

Table 7. Descriptive statistical measures for the failure time data set.

Mean Median Variance Skewness Kurtosis Min Max

1.542667 1.235000 1.127167 1.295462 4.319170 0.110000 4.730000

Figure 3. Plots of the (a) epdf and (b) ecdf of the S-ML model for the precipitation data set.

From Figure 3, it is obvious that the S-ML model captures the histogram’s overall
pattern and illustrates the comparison of the cdf with the empirical cdf of the S-ML model.
The suitable behaviour of the S-ML model is further confirmed by these graphs. Apart
from the lognormal model, the S-ML model clearly fits better than the Lindley, ML, S-Expo
and S-Lindley, and other models.

6.3. Time between Failure Data Set

This data set refers to the time between failures for repairable items. It was obtained
from [31]. The data are: (1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36,
0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17).
The descriptive statistical measures of these data are presented in Table 7.

Table 7. Descriptive statistical measures for the failure time data set.

Mean Median Variance Skewness Kurtosis Min Max

1.542667 1.235000 1.127167 1.295462 4.319170 0.110000 4.730000

From Table 7, we can observe that the failure time data set is right-skewed and
leptokurtic.

The MLE, SE, and goodness-of-fit measures of the S-ML model and those of the other
models for the failure time data set are given in Tables 8 and 9.

Table 8. MLEs, SEs, and goodness-of-fit measures for the failure time data set with one parameter models.

Model MLE (SE) AIC BIC A* W* Dn p-Value

S-ML θ̂ = 0.47420 (0.06039) 82.3276 83.7288 0.22656158 0.02897235 0.07805138 0.99313719
ML θ̂ = 0.7297 (0.1082) 83.5051 84.9063 0.4401 0.0650 0.1112 0.8514

Lindley θ̂ = 0.9762 (0.1345) 85.0946 86.4958 0.7265 0.1138 0.1406 0.5929
S-Expo θ̂ = 0.3662 (0.0625) 86.5547 87.9559 1.0582 0.17981 0.16722 0.3711

S-Lindley θ̂ = 0.64690 (0.0783) 83.7386 85.1398 0.4599 0.0654 0.1139 0.8310
I-ML θ̂ = 0.9222 (0.1361) 92.6416 94.0426 0.9582 0.1430 0.1394 0.6043

IL θ̂ = 1.1603 (0.1619) 95.8658 97.2670 1.261 0.1904 0.1411 0.5879
IR α̂ = 0.237 (0.043) 135.289 136.690 1.423 2.410 0.442 0.00001
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Table 9. MLEs, SEs, and goodness-of-fit measures for the failure time data set with models having more than one parameter.

Model MLE (SE) AIC BIC A* W* Dn p-Value

TEIR α̂ = 0.022 (0.065) 122.99 127.19 8.373 1.47 0.37 0.000410
λ̂ = −0.880 (0.114)
θ̂ = 8.211 (23.735)

TIR λ̂ = −0.880 (0.114) 120.990 123.792 8.369 1.471 0.3761 0.0004
θ̂ = 0.185 (0.035)

Lomax α̂ = 19793.12 (81.02) 90 92.8 1.33 0.232 0.184 0.259
λ̂= 305 (51.04))

LNormal µ̂ = 0.1597 (0.1464) 85.5 88.3 0.2577 0.0369 0.0987 0.9322
σ̂ = 0.801 (0.1035)

GB2 α̂ = 655.80 (2342.40) 87.2 92.8 7.53 1.64 0.042 0.00003
β̂ = 0.907 (0.77)
θ̂ = 2.351 (3.56)

δ̂ = 582.259 (519.98)

Tables 8 and 9 show that, for the failure time data set, the S-ML model has the lowest
statistics and the highest p-value, meaning that it provides a better match than the other
models investigated.

Figure 4 depicts the epdf and ecdf plots of the S-ML model for the failure time data set.
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Tables 8 and 9 show that, for the failure time data set, the S-ML model has the lowest
statistics and the highest p-value, meaning that it provides a better match than the other
models investigated.

Figure 4 depicts the epdf and ecdf plots of the S-ML model for the failure time data
set.
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Figure 4. Plots of the (a) epdf and (b) ecdf of the S-ML model for the failure time data set.Figure 4. Plots of the (a) epdf and (b) ecdf of the S-ML model for the failure time data set.

From Figure 4, it is obvious that the S-ML model captures the histogram’s overall
pattern and illustrates the comparison of the cdf with the empirical cdf of the S-ML model.
The suitable behaviour of the S-ML model is further confirmed by these graphs.

7. Conclusions

The article’s major contribution is a flexible trigonometric extension of the well-known
modified Lindley model that proposes a novel efficient statistical modelling technique.
We employ the features of the sine generalized family of distributions in this regard,
and develop the sine modified Lindley distribution. We have displayed a few of its more
noteworthy attributes, with a focus on the shape properties of the corresponding probability
density and hazard rate functions, as well as discussing moments. Simulation studies and
applications demonstrate the utility of the model under consideration. In particular, we
compared it to the primary current models derived from the Lindley, exponential and
other models with one or more parameters, using two real-world data sets. As a result, the
obtained findings are really satisfactory, demonstrating that the novel distribution has a
wide range of applications that could be the subject of additional research in a variety of
scientific fields.
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