Mathematical
and Computational
Applications

Article

The Local Antimagic Chromatic Numbers of Some Join Graphs

Xue Yang 1, Hong Bian *(0, Haizheng Yu ? and Dandan Liu !

check for

updates
Citation: Yang, X,; Bian, H.; Yu, H.;
Liu, D. The Local Antimagic
Chromatic Numbers of Some Join
Graphs. Math. Comput. Appl. 2021, 26,
80. https://doi.org/10.3390/
mca26040080

Received: 25 August 2021
Accepted: 14 September 2021
Published: 22 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Mathematical Sciences, Xinjiang Normal University, Urumgqi 830054, China;
yx11092021@163.com (X.Y.); 633_ldd@sina.com (D.L.)

College of Mathematics and System Sciences, Xinjiang University, Urumgi 830046, China;
yuhaizheng@xju.edu.cn

*  Correspondence: bh1218@163.com

Abstract: Let G = (V(G), E(G)) be a connected graph with n vertices and m edges. A bijection f :
E(G) = {1,2,--- ,m} is an edge labeling of G. For any vertex x of G, we define w(x) = ¥ cg(x) f(€)
as the vertex label or weight of x, where E(x) is the set of edges incident to x, and f is called a local
antimagic labeling of G, if w(u) # w(v) for any two adjacent vertices u,v € V(G). It is clear that
any local antimagic labelling of G induces a proper vertex coloring of G by assigning the vertex
label w(x) to any vertex x of G. The local antimagic chromatic number of G, denoted by x;,(G), is
the minimum number of different vertex labels taken over all colorings induced by local antimagic
labelings of G. In this paper, we present explicit local antimagic chromatic numbers of F, V K; and
Fy — v, where F, is the friendship graph with n triangles and v is any vertex of F,,. Moreover, we
explicitly construct an infinite class of connected graphs G such that x;,(G) = x;,(GVKy), where
GVK; is the join graph of G and the complement graph of complete graph K;. This fact leads to
a counterexample to a theorem of Arumugam et al. in 2017, and our result also provides a partial
solution to Problem 3.19 in Lau et al. in 2021.
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1. Introduction

Throughout, we only consider undirected connected simple graphs. Let G = (V(G), E(G))
be a connected graph with n vertices and m edges. A bijection f : E(G) — {1,2,--- ,m}
is an edge labeling of G. For any vertex x of G, we define w(x) = Ycg(y) f(e) as the
vertex label or weight of x, where E(x) is the set of edges incident to x, and f is called an
antimagic labeling of G, if w(u) # w(v) for any two distinct vertices u,v € V(G). A graph
G is called antimagic if G has an antimagic labeling.

The antimagic labeling of a graph was initially introduced by Hartsfield and Ringel [1]
in 1990. They conjectured that every connected graph except K; admits such an antimagic
labeling, which remains open till today.

Recently, based on the concept of antimagic labeling, Arumugam et al. [2] and
Bensmail et al. [3] independently introduced the notation local antimagic labeling of graphs
in 2017, which is weaker than antimagic labeling of graphs. Let G = (V(G), E(G)) be a
connected graph of order n and size m. A bijection f : E(G)—{1,2,---,m} is called a local
antimagic labeling of G if any two adjacent vertices u and v in G satisfy w(u) # w(v). Itis
clear that assigning w(x) to x for each x € V(G) naturally induced a proper vertex coloring
of G, which is called a local antimagic vertex coloring of G. A graph G is called local
antimagic if G has a local antimagic labeling. Haslegrave [4] showed that every connected
graph with at least three vertices is local antimagic. The local antimagic chromatic number
of G, denoted by x;,(G), is the minimum number of different vertex labels taken over all
colorings of G induced by local antimagic labelings of G. If f is a local antimagic labeling
of G, the number of distinct induced vertex labels under f, denoted by c(f), is called the
color number of f.
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A friendship graph, denoted by F,, is a simple graph in which any two vertices have
exactly one common neighbour, which consists of # triangles with a common vertex. In [2],
Arumugam et al. gave the exact value of the local antimagic chromatic numbers of special
graphs, such as P, Cy, Fy, Ky, Koy, Wy, and L(n), where P, and C, are path and cycle
with n vertices, respectively, K, , is the complete bipartite graph (m = n (mod 2)), W, is
the wheel graph (n # 0 (mod 4)), and L(n) is the graph obtained by inserting a vertex to
each edge of the star 5,;,. Ref. [5] was used in [2] to determine local antimagic chromatic
numbers of complete bipartite graphs. When the graph is the wheel graph for n = 0
(mod 4) or the join graph G V K; for |V(G)| > 4, where K; is the complement graph of
complete graph Ky, they also provided the lower and upper bounds of the local antimagic
chromatic numbers of these graphs.

In 2018, Lau et al. [6] gave counterexamples to the lower bound of x;,(G V K;) that
was obtained in [2]. Another counterexample was independently found by Shaebani [7].
A sharp lower bound of x;,(G V K;) and sufficient conditions for the given lower bound
were obtained. Moreover, they gave affirmative solutions on Problem 3.3 of [2] and settled
Theorem 2.15 of [2]. They also completely determined the local antimagic chromatic
number of complete bipartite graphs.

In [8], Lau et al. provided several sufficient conditions for x;,(H) < x1,(G), where H
is obtained from G with a certain number of edge-deleted or -added operations. They then
determined the exact values of the local antimagic chromatic numbers of many cycle-related
join graphs.

In 2019, Lau et al. [9] gave the sharp lower bound of the local antimagic chromatic
number of a graph with cut-vertices given by pendant edges and then solved Problem 3.3
in [2] affirmatively. In Section 2 of [9], Lau et al. gave sufficient conditions for the one-point
union of cycles with x;,(G) = 2. In Section 3 of [9], they determined the exact values of
the local antimagic chromatic numbers of many families of graphs with pendant edges.
Finally, in Section 4, they obtained a few families of graphs with x;,(G) = n. This partially
answered Problem 3.1 in [2].

Based on some known results, in this paper, we present the exact local antimagic
chromatic numbers of F,, V K, and F, — v, where v is any vertex of F,. Moreover, we explic-
itly construct an infinite class of connected graphs G such that x;,(G) = x1,(GVKy) = 3,
where GVKj; is the join graph of G and the complement graph of K,. This fact leads to
a counterexample to a theorem of [2], and our result also provides a partial solution to
Problem 3.19 in [8].

2. Main Results

In [2], the authors gave the local antimagic chromatic number of the friendship graph
as shown in the following lemma.

Lemma 1 ([2]). Let F, be a friendship graph, then we have x;,(F,) = 3.

For two vertex disjoint graphs F, and Ky, let F, VV K denote the join graph obtained
by joining every vertex of F, with every vertex of K;. In the proof of the local antimagic
chromatic number of F,, V Ky, we write i = ¢ (mod s) (0 <t < s) as i=tin the following
formula. The following theorem gives an exact value of the local antimagic chromatic
number of F, V K».

Theorem 1. Let H be the join graph F, V Ky, then we have x;,(H) = 4.

Proof. Let {v,v1,vy,- -+, 02, } be the vertex set of the friendship graph F,, where v is its
central vertex, and let x, y be the two vertices of K». It is clear that there are 7n +2 edges in H,
namely, {v;0;,1:1<i<2nandi=1 (mod 2)} U {vv;, xv;,yv; : 1 <i<2n} U {xov,yv}.
Since K4 is an induced subgraph of H, we have x;,(H) > x(H) > 4. In order to prove
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X1a(H) = 4, it suffices to provide a local antimagic labeling of H that induces a local
antimagic vertex coloring using exactly four colors.
We suppose that there is a local antimagic labeling f : E(H)—{1,2,3,--- ,7n + 2},
such that ¢(f) = 4. It means that w(v1) = w(v3) = -+ = wW(v2y-1), W(v2) = w(vg) =
- = w(vy,), and w(x) = w(y), which are distinct with w(v). In this regard, we first
assign f(xv;) =iord4n+1—iand f(yv;) =4n+1—iori foreachi € {1,2,---,2n},
then determine the exact value of remaining edges of H. Let us consider the following
four cases.

Casel. n =1 (mod 4)

For n = 1, the graph H = F; V K; admits a local antimagic labeling f with ¢(f) = 4 as
shown in Figure 1, which shows that x;,(H) < 4, and so x;,(H) = 4.

X y
12 12

| ' 5
\%
29

Figure 1. F; V K;.

For n = 5, we give the exact value of every edge label for the graph H = F5 VV K; as
shown in Figure 2.

Figure 2. F5 V K.
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It is obvious that

w(x) = w(y) =134,

w(v1) = w(v3) = w(vs) = w(vy) = w(vg) =73,
w(v2) = w(v3) = w(ve) = w(vs) = w(v10) =79,
w(v) = 378.

From the above labeling, f is a local antimagic labeling of H that induces a local
antimagic vertex coloring using exactly four colors. It means that x;,(H) < 4, and so

Xia(H) = 4.
Forn > 9, define f : E(H)—{1,2,---,7n + 2} in the following way:

Let f(xv) = 6n+2, f(yv) = 5n + 1, and determine the values of f(xv;) and f(yv;)
foreachi € {1,2,3,4,5,2n — 4,2n — 3,2n — 2,2n — 1,2n} as follows.

[, if i € {1,2,2n —4,2n —2,2n — 1},
f(’“’l)_{ dn+1—i,

ifi € {3,4,5,2n — 3,2n}.
Flyo)) = dn+1—i, ifie{l,2,2n—4,2n—2,2n—1},
Yo =4, ifi € {3,4,5,2n —3,2n}.
Then label the edges xv; and yv; for 6 < i < 2n — 5, respectively.

i ifite i20,iZ1loriz2,
f(xvi): ... 8 8 8 8
dn+1—1i, ifi=7, i=3,i=4o0ri=>b.

dn+1—i, ifise6 i20 i2loriz2,
flyvi) = ) .8 _ .8 _ .8 .8
i ifi=7,i=3,i=4o0ri=>5.

Finally, we give the exact value of the remaining edges as follows.

vv41) =4n+ 21, iZ1land1<i<2n,
+ 2
0o)) = 6n+2— 1, 21,
2
floo) =7n+3-4, iZ0.
Since n = 1 (mod 4) and n > 9, we have 2n = 2 (mod 8), and so the number of

vertices in {v;|6 < i < 2n — 5} is divisible by 8.
If{i,i+1,i+2,---,i+7} C{6,7,---,2n—5}and i = 6 (mod 8), then
i+7 i+7
Y flxvj) =16n—6, Y f(yv;) = 16n+ 14.
j=i j=i

Accordingly, we have

N =4p? - 20 4

l=26 f(xvl) 2 + 2 4
2n—>5

33n 35

N =42 2 2

1:26 f(yvl) 2 2

Since
5 2n



Math. Comput. Appl. 2021, 26, 80

50f13

)]

2n

flyo)) =8n+11, ) f(xv;)) =10n+7.
i—1 i=2n—4

It is clear that f is a local antimagic labeling of H and

42 1 13 3
x) w(y)—4n2—i—Tn—|—§,
w(v;))=14n+3, i=1,

(

( 2
w(v;) =15n+4, i=0,
w(v) = 12n% 4 151 + 3.

w

Hence, x;,(H) < 4. The local antimagic labeling of the graph Fy V K; is shown in
Figure 3.

Figure 3. Fy V K.
Case 2. n =3 (mod 4)

For n = 3 as shown in Figure 4, we obtain a local antimagic labeling of F; V K, with

o(f) = 4.

Figure 4. F; V K>.
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Forn > 7, define f : E(H)—{1,2,-- - ,7n + 2} by the following
f(xv) =6n+2, f(yv) =5n+1.
Firstly, we set the following assignments of xv; and yv; for some special 7, respectively.

NS ifi € {1,2},
f(xvi) = { dn+1—i, ific {3,4,52n}.

N An41—i, ifie {1,2},
flyor) = { i, ifi € {3,4,5,2n}.

Secondly, considering the following assignments of the edges xv; and yv; for 6 <i <
2n—1,

8 8 8
i ifi=e6, i i=lori=2,

f(xv;) = 3
dn+1—i, ifi=7,

8
dn+1—1, ifi=e,
8
i, ifi=7,

~

.8 .8
i=4o0ri=>.

W O
N

N.N
IEIIES

.8 .8
i=lori=2,

-~

~

flyoi) =

.8 .8
i=4o0ri=>5.

[lleo [l]o
w o

~.

Finally, label the remaining edges as follows

flowin) =4n+ 51, iZland1<i<2n,
: 2
flov;) =6n+2—-4L, i=1,

vY; :7n+3—i, iéo.
f( z) 2

Because n = 3 (mod 4) and n > 7, we have 2n = 6 (mod 8), and so the number of
vertices in {v;|6 < i < 2n — 1} is divisible by 8.
If{i,i+1,i+2,---,i+7} C{6,7,---,2n—1}and i = 6 (mod 8), then
i+7 i+7
Zf(xvj) =16n—6, Zf(yvj) = 16n + 14.
j=i j=i

We can obtain that
21 271 9

i:Zé f(xv;) = 4n® — - Ty

2n—1
17n 21

Since 5
flxvj))=12n—6, Y f(yv;)) =8n+11,

i=1

f(xvp,) =2n+1, f(yv;) =2n.

o

Il
—

For the vertex weights we have

wx)=wy) = 4n22+ BT" + %,
w(v)=14n+3, i=1,
w(v;) =151 +4, i=0,
w(v) = 12n? + 151 + 3.

Hence, we can obtain that x;,(H) = 4. For n = 7, the exact values of each edge label
of the graph F; \V K; are given in Figure 5.
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Figure 5. F; V Kj.
Case 3. n =2 (mod 4)
In this case, we consider n =2 (mod 8) and n = 6 (mod 8), respectively.

Subcase 3.1. n =2 (mod 8)

For n = 2, there is a local antimagic labeling of the graph H = F, V K; in Figure 6.
Hence, we have x;,(H) = 4.

Figure 6. F, V K;.
For n > 10, define the edge labeling f : E(H)—{1,2,--- ,7n + 2} as follows:

f(xv) = 11771-1-2, fyv) =4n+1.

Assume thatn = 8k +2, k = 1,2, - -, then we give the following exact values of
f(xv;) and f(yv;) for 1 <i < 2n.
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2

dn+1—1i, if1<i<2k and i=1,
2
] if1<i< | =
Flxv;) = i if1 <i<2k and i=0, ,
i f2k+1<i<2n and i=1,
dn+1—i, if2k+1<i<2n and i=0.
. . . .2
i, if1<i<2k and i=1,
4n+1—i, if1<i<2kand i=0,
f(]/vi): L ) 2
dn+1—1i, if2k+1<i<2n and i=1,
i i 2k+1<i<2n and i =0.

Then label the remaining edges as follows:

. 2
dn+1+521 if1<i<nand i=1,

. 2
5n+2+ 51 ifn+1<i<2nand i=1

f(vjviyr) = {

; . .2
13?4—%, ifl<i<n and i=1,

; . .2
m+3—5, ifl<i<nand i=0,

; . L2
Hnt2 Dl ifn+1<i<2nand i=1,

6n+2—1i ifn+1<i<2n and i=0.

f(vo;) =

It is clear that f is a local antimagic labeling of H, and we have

x) = wly) = 4n® + H + 3,
) =215, i21,
v;) =150 +5, i =0,
v) = B2 L 43

Q?

So, we have x;,(F, V K;) = 4 forn £ 5. The local antimagic labeling of the graph
Fio V K3 is shown in Figure 7.

Figure 7. Fjo V K;.

Subcase 3.2. n =6 (mod 8)
For n > 6, label the edges of H by the labeling f : E(H)—{1,2,---,7n + 2} such that

f(xv) = HTH—FZ, fyv) =4n+1.
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Assumen =8k —2, k=1,2,---, then we label f(xv;) and f(yv;) for each i such that

1<i<2n—1.
An+1—i, if1<i<?2k and iZ1,
i if1<i<2kand i20,
f(xvi): 2
1, if2k+1<i<2n—1and i=1,
2
dn+1—i, if2k+1<i<2n—1 and i=0.
. . . L2
i if1<i<2k and i=1,
dn+1—i, if1<i<?2k and i=0,
f(yvi): o ) 2
dn+1—1i, if2k+1<i<2n-—1and i=1,
i i#2k+1<i<2n—1and i=0.

For the last vertex vy,
f(x'(]zn) = 21’1/ f(]/vzn) =2n + 1.

Now, determine the exact value of f(vv;) for each i such that 1 < i < 2n.

i . . .2
Brid 51 if1<i<nand i=1,

2
m-+3— 1% ifl1<i<n and i=0,
f(vo;) = 2 -7
1

2
. . .2
11'5—*2—71, fn+1<i<2n and i=1,

6n+2—1%, ifn+1<i<2n and iZ0.
When i is odd for 1 < i < 2n, we can label f(v;v;,1) as follows.

i 2
4n—0—1+#, ifl<i<nand i=1,

i 2
Sn+2+ 3, ifn+1<i<2nand i=1.

f(oivi1) = {

For the vertex weights under the labeling f, we have
w(x) = w(y) = 4n? + % + %,

(0) =28 +5, i21,
(
(

g

v;) =151 +5, i=0,

w\0;
2
v) = —232” + —2;” + 3.

g

This implies that x;,(H) = 4. For n = 6, we obtain the local antimagic labeling of the
graph Fg V K; under f as shown in Figure 8.

498
v

Figure 8. F; \V K;.
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Case4. n =0 (mod 4)

We define f : E(H)—{1,2,---,7n+ 2} as follows:
f(xv) =4n+3, f(yv)=4n+1.
The following labeling has the desired properties:

4 4
dn+1—1i, ifi=lori=0, andi # 2n,
f(xm)—{ ”

. .4 .4 .
i ifi=3o0ri=2, ori = 2n.

i ifiéloriéO,andi;éZn,
flyvi) = ... 4 .4 .
dn+1—1i, ifi=3o0ri=2, ori=2n.

2
5n+2+4i, ifl<i<n+landi=1,
Tn+3—i, ifn+3<i<2nandi=1.

f(vivigr) = {

5n+3—i, ifl<i<n+2andi=1,
Tn+4—i, f1<i<n+2 andi=0,
Bn+24i, ifn+3<i<2nandi=1,
Sn+14i, ifn+3<i<2n andi=0.

f(ov;) =

For the vertex weights under the labeling f, we have

w(x) =w(y) =4n?> +5n+2,
w(v;) = 14n+6, i=1,
2
w(v;) =16n+6, i=0.
w(v) = 11n% +13n + 2.

The above arguments indicate that f is a local antimagic labeling of H with four colors,
and so x;,(H) = 4. The exact values of each edge label of the graph F; V K; are given in
Figure 9. The proof is completed. [

230
\

Figure 9. F, V K;.
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Let H = F, — v be a graph obtained from the friendship graph F,(n > 2) by deleting
any vertex v of F,. If the deleted vertex is its central vertex, then H does not have a local
antimagic labeling. Thus, we only consider that the deleted vertex is a vertex with degree 2.

Theorem 2. Let H be the graph F,, — v, where v is any vertex of F,(n > 2) with degree 2, then we
have x;,(H) = 3.

Proof. Let V(F,) = {u; : 1 <i<n} U {v;:1<i<n} U {x}and E(F,) = {ujv; : 1 <
i<n} U {xu;:1<i<n} U {xv;:1<i<mn}. Without loss of generality, we assume
that the deleted vertex is v, € V(F,), then define h : E(H)—{1,2,--- ,3n — 2} by

h(uivl-) :i, 1 Sign—l,
h(xu;)) =3n—-2—1i, 1<i<n-—1,
h(xv))=2n—-1—i, 1<i<n-1,
h(xu,) = 3n — 2.

Clearly,  is a local antimagic labeling of H and we have

w(v))=2n—1, where1 <i<n-1,
w(uj) =3n—2, where1 <i<mn,
w(x) = 4n* —4n +1.

Thus, x;,(H) < 3. Since x;,(H) > x(H) = 3; it follows that x;,(H) = 3. O

Theorem 2.16 of [2] asserts that if a graph G has at least four vertices, then x;,(G) +1 =
X1a(GVKy), when G is of even order n. In this section, we explicitly construct an infinite
class of connected graphs G such that x;,(G) = 3 and x;,(GVK3) = 3. Our procedure is to
consider path P, that satisfies x;,(P,) = 3 for each positive integer n > 3. We show that if
n is even, then x;,(P,VK;) = 3. Our result provides partial solution to Problem 3.19 in [8].

Theorem 3. If P, is a path of order n, then we have x;,(P,VKy) = 3 for even n.

Proof. The lower bound of the local antimagic chromatic number of the join graph P, VK,
even for 7 is clearly obtained. We have x;,(P,VKy) > x(P,VK;) = 3 since Kj is a induced
subgraph of P,VK;. We show that the upper bound of the chromatic number x;, (P, VK>)
is attainable.

Let {u; : 1 <i < mn}and {x,y} be the vertex set of the path P, and the complement
graph of Kj, respectively. Then E(P, V Kp) = {xu;,yu; : 1 < i <n}U{uuq:1<i<
n—1},and |E(P, VKy)| =3n —1.

Label the edges u;u;,1 as follows:

_ﬂ e oe .
OTES a

50 if i is even.

Then, label the edges xu; as follows:

n+ 5L, ifiisodd,
flxu;) = 3n— 12, ifiiseven,i #n,
3n—1, i=n.

Finally, label the edges yu; as follows:

Flyy) :{ %—i if i is odd,
2

37” + 5%, ifiiseven.

We can conclude that
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References

w(u;) =% -2, if i is odd;
w(u;) = “T” -2, if i is even;
w(x) = w(y) =2n* — 5.

Therefore, f is a local antimagic labeling of P,VK; that induces a local antimagic
vertex coloring using exactly three colors. The local antimagic labeling of the graph P V Ky
as an example is shown in Figure 10. O

25 31 25 31 25 31

Figure 10. Ps V K.

3. Conclusions and Scope

In this paper, we obtain the exact values of the local antimagic chromatic number
of the join graphs F, VV K, P, V K; and the graph F, — v. Hence, the following problem
arises naturally.

Problem 1. Find the local antimagic chromatic number of the cartesian product of simple graphs
Gand H.

Problem 2. Find the local antimagic chromatic number of other operations of graphs.
Problem 3. Characterize the class of a graph G for which x;,(G V Kz) = x14(G).
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