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Abstract: Let G = (V(G), E(G)) be a connected graph with n vertices and m edges. A bijection f :
E(G)→ {1, 2, · · · , m} is an edge labeling of G. For any vertex x of G, we define ω(x) = ∑e∈E(x) f (e)
as the vertex label or weight of x, where E(x) is the set of edges incident to x, and f is called a local
antimagic labeling of G, if ω(u) 6= ω(v) for any two adjacent vertices u, v ∈ V(G). It is clear that
any local antimagic labelling of G induces a proper vertex coloring of G by assigning the vertex
label ω(x) to any vertex x of G. The local antimagic chromatic number of G, denoted by χla(G), is
the minimum number of different vertex labels taken over all colorings induced by local antimagic
labelings of G. In this paper, we present explicit local antimagic chromatic numbers of Fn ∨ K2 and
Fn − v, where Fn is the friendship graph with n triangles and v is any vertex of Fn. Moreover, we
explicitly construct an infinite class of connected graphs G such that χla(G) = χla(G∨K2), where
G∨K2 is the join graph of G and the complement graph of complete graph K2. This fact leads to
a counterexample to a theorem of Arumugam et al. in 2017, and our result also provides a partial
solution to Problem 3.19 in Lau et al. in 2021.

Keywords: local antimagic labeling; local antimagic chromatic number; join graph; friendship graph

1. Introduction

Throughout, we only consider undirected connected simple graphs. Let G = (V(G), E(G))
be a connected graph with n vertices and m edges. A bijection f : E(G) → {1, 2, · · · , m}
is an edge labeling of G. For any vertex x of G, we define ω(x) = ∑e∈E(x) f (e) as the
vertex label or weight of x, where E(x) is the set of edges incident to x, and f is called an
antimagic labeling of G, if ω(u) 6= ω(v) for any two distinct vertices u, v ∈ V(G). A graph
G is called antimagic if G has an antimagic labeling.

The antimagic labeling of a graph was initially introduced by Hartsfield and Ringel [1]
in 1990. They conjectured that every connected graph except K2 admits such an antimagic
labeling, which remains open till today.

Recently, based on the concept of antimagic labeling, Arumugam et al. [2] and
Bensmail et al. [3] independently introduced the notation local antimagic labeling of graphs
in 2017, which is weaker than antimagic labeling of graphs. Let G = (V(G), E(G)) be a
connected graph of order n and size m. A bijection f : E(G)→{1, 2, · · · , m} is called a local
antimagic labeling of G if any two adjacent vertices u and v in G satisfy ω(u) 6= ω(v). It is
clear that assigning ω(x) to x for each x ∈ V(G) naturally induced a proper vertex coloring
of G, which is called a local antimagic vertex coloring of G. A graph G is called local
antimagic if G has a local antimagic labeling. Haslegrave [4] showed that every connected
graph with at least three vertices is local antimagic. The local antimagic chromatic number
of G, denoted by χla(G), is the minimum number of different vertex labels taken over all
colorings of G induced by local antimagic labelings of G. If f is a local antimagic labeling
of G, the number of distinct induced vertex labels under f , denoted by c( f ), is called the
color number of f .
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A friendship graph, denoted by Fn, is a simple graph in which any two vertices have
exactly one common neighbour, which consists of n triangles with a common vertex. In [2],
Arumugam et al. gave the exact value of the local antimagic chromatic numbers of special
graphs, such as Pn, Cn, Fn, Km,n, K2,n, Wn, and L(n), where Pn and Cn are path and cycle
with n vertices, respectively, Km,n is the complete bipartite graph (m ≡ n (mod 2)), Wn is
the wheel graph (n 6≡ 0 (mod 4)), and L(n) is the graph obtained by inserting a vertex to
each edge of the star Sn. Ref. [5] was used in [2] to determine local antimagic chromatic
numbers of complete bipartite graphs. When the graph is the wheel graph for n ≡ 0
(mod 4) or the join graph G ∨ K2 for |V(G)| ≥ 4, where K2 is the complement graph of
complete graph K2, they also provided the lower and upper bounds of the local antimagic
chromatic numbers of these graphs.

In 2018, Lau et al. [6] gave counterexamples to the lower bound of χla(G ∨ K2) that
was obtained in [2]. Another counterexample was independently found by Shaebani [7].
A sharp lower bound of χla(G ∨ Kn) and sufficient conditions for the given lower bound
were obtained. Moreover, they gave affirmative solutions on Problem 3.3 of [2] and settled
Theorem 2.15 of [2]. They also completely determined the local antimagic chromatic
number of complete bipartite graphs.

In [8], Lau et al. provided several sufficient conditions for χla(H) ≤ χla(G), where H
is obtained from G with a certain number of edge-deleted or -added operations. They then
determined the exact values of the local antimagic chromatic numbers of many cycle-related
join graphs.

In 2019, Lau et al. [9] gave the sharp lower bound of the local antimagic chromatic
number of a graph with cut-vertices given by pendant edges and then solved Problem 3.3
in [2] affirmatively. In Section 2 of [9], Lau et al. gave sufficient conditions for the one-point
union of cycles with χla(G) = 2. In Section 3 of [9], they determined the exact values of
the local antimagic chromatic numbers of many families of graphs with pendant edges.
Finally, in Section 4, they obtained a few families of graphs with χla(G) = n. This partially
answered Problem 3.1 in [2].

Based on some known results, in this paper, we present the exact local antimagic
chromatic numbers of Fn ∨ K2 and Fn − v, where v is any vertex of Fn. Moreover, we explic-
itly construct an infinite class of connected graphs G such that χla(G) = χla(G∨K2) = 3,
where G∨K2 is the join graph of G and the complement graph of K2. This fact leads to
a counterexample to a theorem of [2], and our result also provides a partial solution to
Problem 3.19 in [8].

2. Main Results

In [2], the authors gave the local antimagic chromatic number of the friendship graph
as shown in the following lemma.

Lemma 1 ([2]). Let Fn be a friendship graph, then we have χla(Fn) = 3.

For two vertex disjoint graphs Fn and K2, let Fn ∨ K2 denote the join graph obtained
by joining every vertex of Fn with every vertex of K2. In the proof of the local antimagic

chromatic number of Fn ∨ K2, we write i ≡ t (mod s) (0 ≤ t < s) as i
s≡ t in the following

formula. The following theorem gives an exact value of the local antimagic chromatic
number of Fn ∨ K2.

Theorem 1. Let H be the join graph Fn ∨ K2, then we have χla(H) = 4.

Proof. Let {v, v1, v2, · · · , v2n} be the vertex set of the friendship graph Fn, where v is its
central vertex, and let x, y be the two vertices of K2. It is clear that there are 7n+ 2 edges in H,
namely, {vivi+1 : 1 ≤ i ≤ 2n and i ≡ 1 (mod 2)} ⋃ {vvi, xvi, yvi : 1 ≤ i ≤ 2n} ⋃ {xv, yv}.
Since K4 is an induced subgraph of H, we have χla(H) ≥ χ(H) ≥ 4. In order to prove
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χla(H) = 4, it suffices to provide a local antimagic labeling of H that induces a local
antimagic vertex coloring using exactly four colors.

We suppose that there is a local antimagic labeling f : E(H)→{1, 2, 3, · · · , 7n + 2},
such that c( f ) = 4. It means that ω(v1) = ω(v3) = · · · = ω(v2n−1), ω(v2) = ω(v4) =
· · · = ω(v2n), and ω(x) = ω(y), which are distinct with ω(v). In this regard, we first
assign f (xvi) = i or 4n + 1− i and f (yvi) = 4n + 1− i or i, for each i ∈ {1, 2, · · · , 2n},
then determine the exact value of remaining edges of H. Let us consider the following
four cases.

Case 1. n ≡ 1 (mod 4)

For n = 1, the graph H = F1 ∨ K2 admits a local antimagic labeling f with c( f ) = 4 as
shown in Figure 1, which shows that χla(H) ≤ 4, and so χla(H) = 4.

v

v1 v2

x y

1

2

3

4

5

6

7 8

9

29

18 19

1212

Figure 1. F1 ∨ K2.

For n = 5, we give the exact value of every edge label for the graph H = F5 ∨ K2 as
shown in Figure 2.

v1 v2 v3 v4 v5

v

v6 v7 v8 v9 v10

x y

1 2

3 4 5
6

7

8 9

10

11

12
13

14

15
1617

18

19
20

21 22 23 24 25

378

2728
293031

32

35
34

3637

79

26

73 73 73 73 7379 79 79 79

134134

Figure 2. F5 ∨ K2.
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It is obvious that

ω(x) = ω(y) = 134,

ω(v1) = ω(v3) = ω(v5) = ω(v7) = ω(v9) = 73,

ω(v2) = ω(v4) = ω(v6) = ω(v8) = ω(v10) = 79,

ω(v) = 378.

From the above labeling, f is a local antimagic labeling of H that induces a local
antimagic vertex coloring using exactly four colors. It means that χla(H) ≤ 4, and so
χla(H) = 4.

For n ≥ 9, define f : E(H)→{1, 2, · · · , 7n + 2} in the following way:

Let f (xv) = 6n + 2, f (yv) = 5n + 1, and determine the values of f (xvi) and f (yvi)
for each i ∈ {1, 2, 3, 4, 5, 2n− 4, 2n− 3, 2n− 2, 2n− 1, 2n} as follows.

f (xvi) =

{
i, if i ∈ {1, 2, 2n− 4, 2n− 2, 2n− 1},
4n + 1− i, if i ∈ {3, 4, 5, 2n− 3, 2n}.

f (yvi) =

{
4n + 1− i, if i ∈ {1, 2, 2n− 4, 2n− 2, 2n− 1},
i, if i ∈ {3, 4, 5, 2n− 3, 2n}.

Then label the edges xvi and yvi for 6 ≤ i ≤ 2n− 5, respectively.

f (xvi) =

 i, if i
8≡ 6, i

8≡ 0, i
8≡ 1 or i

8≡ 2,

4n + 1− i, if i
8≡ 7, i

8≡ 3, i
8≡ 4 or i

8≡ 5.

f (yvi) =

 4n + 1− i, if i
8≡ 6, i

8≡ 0, i
8≡ 1 or i

8≡ 2,

i, if i
8≡ 7, i

8≡ 3, i
8≡ 4 or i

8≡ 5.

Finally, we give the exact value of the remaining edges as follows.

f (vivi+1) = 4n + i+1
2 , i

2≡ 1 and 1 ≤ i ≤ 2n,

f (vvi) = 6n + 2− i+1
2 , i

2≡ 1,

f (vvi) = 7n + 3− i
2 , i

2≡ 0.

Since n ≡ 1 (mod 4) and n ≥ 9, we have 2n ≡ 2 (mod 8), and so the number of
vertices in {vi|6 ≤ i ≤ 2n− 5} is divisible by 8.

If {i, i + 1, i + 2, · · · , i + 7} ⊆ {6, 7, · · · , 2n− 5} and i ≡ 6 (mod 8), then

i+7

∑
j=i

f (xvj) = 16n− 6,
i+7

∑
j=i

f (yvj) = 16n + 14.

Accordingly, we have

2n−5

∑
i=6

f (xvi) = 4n2 − 43n
2

+
15
2

,

2n−5

∑
i=6

f (yvi) = 4n2 − 33n
2
− 35

2
.

Since
5

∑
i=1

f (xvi) = 12n− 6,
2n

∑
i=2n−4

f (xvi) = 10n− 2,
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5

∑
i=1

f (yvi) = 8n + 11,
2n

∑
i=2n−4

f (xvi) = 10n + 7.

It is clear that f is a local antimagic labeling of H and

ω(x) = ω(y) = 4n2 + 13n
2 + 3

2 ,

ω(vi) = 14n + 3, i
2≡ 1,

ω(vi) = 15n + 4, i
2≡ 0,

ω(v) = 12n2 + 15n + 3.

Hence, χla(H) ≤ 4. The local antimagic labeling of the graph F9 ∨ K2 is shown in
Figure 3.

v11
v2 v3

v4

v15
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v16v8 v9
v10

x y

1 2

3 4 5

6

7

8910 1112
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23
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29

30

31

32

35

33

36
37

139

26129

384

v14v5 v6 v7

v17
v18

v12

v13
v1

34

38 39 40 41 42 43 44 45

46

474849505152535455

56

575859606162636465

129
129129

129
129

129
129129139 139

139
139 139 139139 139

384

1110

Figure 3. F9 ∨ K2.

Case 2. n ≡ 3 (mod 4)

For n = 3 as shown in Figure 4, we obtain a local antimagic labeling of F3 ∨ K2 with
c( f ) = 4.

v1 v2 v3

v

v4 v5 v6

x y

1 2 3 4 5
6

7

8910
11

12

13 14 15

16

171819

20

212223

156

45 45 4549 49 49

5757

Figure 4. F3 ∨ K2.
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For n ≥ 7, define f : E(H)→{1, 2, · · · , 7n + 2} by the following

f (xv) = 6n + 2, f (yv) = 5n + 1.

Firstly, we set the following assignments of xvi and yvi for some special i, respectively.

f (xvi) =

{
i, if i ∈ {1, 2},
4n + 1− i, if i ∈ {3, 4, 5, 2n}.

f (yvi) =

{
4n + 1− i, if i ∈ {1, 2},
i, if i ∈ {3, 4, 5, 2n}.

Secondly, considering the following assignments of the edges xvi and yvi for 6 ≤ i ≤
2n− 1,

f (xvi) =

 i, if i
8≡ 6, i

8≡ 0, i
8≡ 1 or i

8≡ 2,

4n + 1− i, if i
8≡ 7, i

8≡ 3, i
8≡ 4 or i

8≡ 5.

f (yvi) =

 4n + 1− i, if i
8≡ 6, i

8≡ 0, i
8≡ 1 or i

8≡ 2,

i, if i
8≡ 7, i

8≡ 3, i
8≡ 4 or i

8≡ 5.

Finally, label the remaining edges as follows

f (vivi+1) = 4n + i+1
2 , i

2≡ 1 and 1 ≤ i ≤ 2n,

f (vvi) = 6n + 2− i+1
2 , i

2≡ 1,

f (vvi) = 7n + 3− i
2 , i

2≡ 0.

Because n ≡ 3 (mod 4) and n ≥ 7, we have 2n ≡ 6 (mod 8), and so the number of
vertices in {vi|6 ≤ i ≤ 2n− 1} is divisible by 8.

If {i, i + 1, i + 2, · · · , i + 7} ⊆ {6, 7, · · · , 2n− 1} and i ≡ 6 (mod 8), then

i+7

∑
j=i

f (xvj) = 16n− 6,
i+7

∑
j=i

f (yvj) = 16n + 14.

We can obtain that
2n−1

∑
i=6

f (xvi) = 4n2 − 27n
2

+
9
2

,

2n−1

∑
i=6

f (yvi) = 4n2 − 17n
2
− 21

2
.

Since
5

∑
i=1

f (xvi) = 12n− 6,
5

∑
i=1

f (yvi) = 8n + 11,

f (xv2n) = 2n + 1, f (yvi) = 2n.

For the vertex weights we have

ω(x) = ω(y) = 4n2 + 13n
2 + 3

2 ,

ω(vi) = 14n + 3, i
2≡ 1,

ω(vi) = 15n + 4, i
2≡ 0,

ω(v) = 12n2 + 15n + 3.

Hence, we can obtain that χla(H) = 4. For n = 7, the exact values of each edge label
of the graph F7 ∨ K2 are given in Figure 5.
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v11 v12 v13
v14v5

v

v6 v7 v8 v9 v10

x y
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34
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243

Figure 5. F7 ∨ K2.

Case 3. n ≡ 2 (mod 4)

In this case, we consider n ≡ 2 (mod 8) and n ≡ 6 (mod 8), respectively.

Subcase 3.1. n ≡ 2 (mod 8)

For n = 2, there is a local antimagic labeling of the graph H = F2 ∨ K2 in Figure 6.
Hence, we have χla(H) = 4.

v1 v2 v3

v

v4

x y

1 23 4

5

67
8

9

10

11 12
13

14

15 16

76

34 3435 35

2929

Figure 6. F2 ∨ K2.

For n ≥ 10, define the edge labeling f : E(H)→{1, 2, · · · , 7n + 2} as follows:

f (xv) =
11n

2
+ 2, f (yv) = 4n + 1.

Assume that n = 8k + 2, k = 1, 2, · · · , then we give the following exact values of
f (xvi) and f (yvi) for 1 ≤ i ≤ 2n.
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f (xvi) =


4n + 1− i, if 1 ≤ i ≤ 2k and i

2≡ 1,

i, if 1 ≤ i ≤ 2k and i
2≡ 0,

i, if 2k + 1 ≤ i ≤ 2n and i
2≡ 1,

4n + 1− i, if 2k + 1 ≤ i ≤ 2n and i
2≡ 0.

f (yvi) =


i, if 1 ≤ i ≤ 2k and i

2≡ 1,

4n + 1− i, if 1 ≤ i ≤ 2k and i
2≡ 0,

4n + 1− i, if 2k + 1 ≤ i ≤ 2n and i
2≡ 1,

i, if 2k + 1 ≤ i ≤ 2n and i
2≡ 0.

Then label the remaining edges as follows:

f (vivi+1) =

 4n + 1 + i+1
2 , if 1 ≤ i ≤ n and i

2≡ 1,

5n + 2 + i+1
2 , if n + 1 ≤ i ≤ 2n and i

2≡ 1.

f (vvi) =



13n+4
2 − i−1

2 , if 1 ≤ i ≤ n and i
2≡ 1,

7n + 3− i
2 , if 1 ≤ i ≤ n and i

2≡ 0,
11n+2

2 − i−1
2 , if n + 1 ≤ i ≤ 2n and i

2≡ 1,

6n + 2− i
2 , if n + 1 ≤ i ≤ 2n and i

2≡ 0.

It is clear that f is a local antimagic labeling of H, and we have

ω(x) = ω(y) = 4n2 + 23n
4 + 3

2 ,

ω(vi) =
29n

2 + 5, i
2≡ 1,

ω(vi) = 15n + 5, i
2≡ 0,

ω(v) = 23n2

2 + 27n
2 + 3.

So, we have χla(Fn ∨ K2) = 4 for n
8≡ 2. The local antimagic labeling of the graph

F10 ∨ K2 is shown in Figure 7.
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41
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47
484950
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6364656667
6869707172

459

150 150150 150150 150150 150150155 155155 155 155155 155155 155

Figure 7. F10 ∨ K2.

Subcase 3.2. n ≡ 6 (mod 8)

For n ≥ 6, label the edges of H by the labeling f : E(H)→{1, 2, · · · , 7n + 2} such that

f (xv) =
11n

2
+ 2, f (yv) = 4n + 1.
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Assume n = 8k− 2, k = 1, 2, · · · , then we label f (xvi) and f (yvi) for each i such that
1 ≤ i ≤ 2n− 1.

f (xvi) =


4n + 1− i, if 1 ≤ i ≤ 2k and i

2≡ 1,

i, if 1 ≤ i ≤ 2k and i
2≡ 0,

i, if 2k + 1 ≤ i ≤ 2n− 1 and i
2≡ 1,

4n + 1− i, if 2k + 1 ≤ i ≤ 2n− 1 and i
2≡ 0.

f (yvi) =


i, if 1 ≤ i ≤ 2k and i

2≡ 1,

4n + 1− i, if 1 ≤ i ≤ 2k and i
2≡ 0,

4n + 1− i, if 2k + 1 ≤ i ≤ 2n− 1 and i
2≡ 1,

i, if 2k + 1 ≤ i ≤ 2n− 1 and i
2≡ 0.

For the last vertex v2n,

f (xv2n) = 2n, f (yv2n) = 2n + 1.

Now, determine the exact value of f (vvi) for each i such that 1 ≤ i ≤ 2n.

f (vvi) =



13n+4
2 − i−1

2 , if 1 ≤ i ≤ n and i
2≡ 1,

7n + 3− i
2 , if 1 ≤ i ≤ n and i

2≡ 0,
11n+2

2 − i−1
2 , if n + 1 ≤ i ≤ 2n and i

2≡ 1,

6n + 2− i
2 , if n + 1 ≤ i ≤ 2n and i

2≡ 0.

When i is odd for 1 ≤ i ≤ 2n, we can label f (vivi+1) as follows.

f (vivi+1) =

 4n + 1 + i+1
2 , if 1 ≤ i ≤ n and i

2≡ 1,

5n + 2 + i+1
2 , if n + 1 ≤ i ≤ 2n and i

2≡ 1.

For the vertex weights under the labeling f , we have

ω(x) = ω(y) = 4n2 + 23n
4 + 3

2 ,

ω(vi) =
29n

2 + 5, i
2≡ 1,

ω(vi) = 15n + 5, i
2≡ 0,

ω(v) = 23n2

2 + 27n
2 + 3.

This implies that χla(H) = 4. For n = 6, we obtain the local antimagic labeling of the
graph F6 ∨ K2 under f as shown in Figure 8.
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Figure 8. F6 ∨ K2.
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Case 4. n ≡ 0 (mod 4)

We define f : E(H)→{1, 2, · · · , 7n + 2} as follows:

f (xv) = 4n + 3, f (yv) = 4n + 1.

The following labeling has the desired properties:

f (xvi) =

 4n + 1− i, if i
4≡ 1 or i

4≡ 0, and i 6= 2n,

i, if i
4≡ 3 or i

4≡ 2, or i = 2n.

f (yvi) =

 i, if i
4≡ 1 or i

4≡ 0, and i 6= 2n,

4n + 1− i, if i
4≡ 3 or i

4≡ 2, or i = 2n.

f (vivi+1) =

 5n + 2 + i, if 1 ≤ i ≤ n + 1 and i
2≡ 1,

7n + 3− i, if n + 3 ≤ i ≤ 2n and i
2≡ 1.

f (vvi) =


5n + 3− i, if 1 ≤ i ≤ n + 2 and i

2≡ 1,

7n + 4− i, if 1 ≤ i ≤ n + 2 and i
2≡ 0,

3n + 2 + i, if n + 3 ≤ i ≤ 2n and i
2≡ 1,

5n + 1 + i, if n + 3 ≤ i ≤ 2n and i
2≡ 0.

For the vertex weights under the labeling f , we have

ω(x) = ω(y) = 4n2 + 5n + 2,

ω(vi) = 14n + 6, i
2≡ 1,

ω(vi) = 16n + 6, i
2≡ 0.

ω(v) = 11n2 + 13n + 2.

The above arguments indicate that f is a local antimagic labeling of H with four colors,
and so χla(H) = 4. The exact values of each edge label of the graph F4 ∨ K2 are given in
Figure 9. The proof is completed.
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7 8

910111213
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16 17
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19

20 2122

23 242725

2628 2930
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Figure 9. F4 ∨ K2.
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Let H = Fn − v be a graph obtained from the friendship graph Fn(n ≥ 2) by deleting
any vertex v of Fn. If the deleted vertex is its central vertex, then H does not have a local
antimagic labeling. Thus, we only consider that the deleted vertex is a vertex with degree 2.

Theorem 2. Let H be the graph Fn − v, where v is any vertex of Fn(n ≥ 2) with degree 2, then we
have χla(H) = 3.

Proof. Let V(Fn) = {ui : 1 ≤ i ≤ n} ⋃ {vi : 1 ≤ i ≤ n} ⋃ {x} and E(Fn) = {uivi : 1 ≤
i ≤ n} ⋃ {xui : 1 ≤ i ≤ n} ⋃ {xvi : 1 ≤ i ≤ n}. Without loss of generality, we assume
that the deleted vertex is vn ∈ V(Fn), then define h : E(H)→{1, 2, · · · , 3n− 2} by

h(uivi) = i, 1 ≤ i ≤ n− 1,
h(xui) = 3n− 2− i, 1 ≤ i ≤ n− 1,
h(xvi) = 2n− 1− i, 1 ≤ i ≤ n− 1,
h(xun) = 3n− 2.

Clearly, h is a local antimagic labeling of H and we have

ω(vi) = 2n− 1, where 1 ≤ i ≤ n− 1,

ω(ui) = 3n− 2, where 1 ≤ i ≤ n,

ω(x) = 4n2 − 4n + 1.

Thus, χla(H) ≤ 3. Since χla(H) ≥ χ(H) = 3; it follows that χla(H) = 3.

Theorem 2.16 of [2] asserts that if a graph G has at least four vertices, then χla(G)+ 1 =
χla(G∨K2), when G is of even order n. In this section, we explicitly construct an infinite
class of connected graphs G such that χla(G) = 3 and χla(G∨K2) = 3. Our procedure is to
consider path Pn that satisfies χla(Pn) = 3 for each positive integer n ≥ 3. We show that if
n is even, then χla(Pn∨K2) = 3. Our result provides partial solution to Problem 3.19 in [8].

Theorem 3. If Pn is a path of order n, then we have χla(Pn∨K2) = 3 for even n.

Proof. The lower bound of the local antimagic chromatic number of the join graph Pn∨K2
even for n is clearly obtained. We have χla(Pn∨K2) ≥ χ(Pn∨K2) = 3 since K3 is a induced
subgraph of Pn∨K2. We show that the upper bound of the chromatic number χla(Pn∨K2)
is attainable.

Let {ui : 1 ≤ i ≤ n} and {x, y} be the vertex set of the path Pn and the complement
graph of K2, respectively. Then E(Pn ∨ K2) = {xui, yui : 1 ≤ i ≤ n} ∪ {uiui+1 : 1 ≤ i ≤
n− 1}, and |E(Pn ∨ K2)| = 3n− 1.

Label the edges uiui+1 as follows:

f (uiui+1) =

{
n− i+1

2 , if i is odd,
i
2 , if i is even.

Then, label the edges xui as follows:

f (xui) =


n + i−1

2 , if i is odd,
3n− i+2

2 , if i is even,i 6= n,
3n− 1, i = n.

Finally, label the edges yui as follows:

f (yui) =

{ 5n
2 −

i+1
2 , if i is odd,

3n
2 + i−2

2 , if i is even.

We can conclude that
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ω(ui) =
9n
2 − 2, if i is odd;

ω(ui) =
11n

2 − 2, if i is even;
ω(x) = ω(y) = 2n2 − n

2 .

Therefore, f is a local antimagic labeling of Pn∨K2 that induces a local antimagic
vertex coloring using exactly three colors. The local antimagic labeling of the graph P6 ∨ K2
as an example is shown in Figure 10.
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16
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69
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Figure 10. P6 ∨ K2.

3. Conclusions and Scope

In this paper, we obtain the exact values of the local antimagic chromatic number
of the join graphs Fn ∨ K2, Pn ∨ K2 and the graph Fn − v. Hence, the following problem
arises naturally.

Problem 1. Find the local antimagic chromatic number of the cartesian product of simple graphs
G and H.

Problem 2. Find the local antimagic chromatic number of other operations of graphs.

Problem 3. Characterize the class of a graph G for which χla(G ∨ K2) = χla(G).
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