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Abstract: Forest fires have been a major threat to the environment throughout history. In order to
mitigate its consequences, we present, in a first of a series of works, a mathematical model with
the purpose of predicting fire spreading in a given land portion divided into patches, considering
the area and the rate of spread of each patch as inputs. The rate of spread can be estimated from
previous knowledge on fuel availability, weather and terrain conditions. We compute the time
duration of the spreading process in a land patch in order to construct and parametrize a landscape
network, using cellular automata simulations. We use the multilayer network model to propose a
network of networks at the landscape scale, where the nodes are the local patches, each with their
own spreading dynamics. We compute some respective network measures and aim, in further work,
for the establishment of a fire-break structure according to increasing accuracy simulation results.

Keywords: complex networks; multilayer networks; fire spreading; cellular automata; forest fires

1. Introduction

Forest fires are currently the main menace to the sustainability of forest ecosystems
and its biodiversity, in particular, and for the environment in general. This is especially
true in the Mediterranean climate regions in the context of climate change scenario. The
sustainability of rural landscapes is also endangered due to the effects of fire in all land-
scape mosaics (forest, silvo-pastoral, agro-silvo-pastoral, orchards, crops, etc.), with the
consequent economic losses, and, when the urban mosaic is affected, with human and
patrimonial losses [1–4]. Traditionally, research on wildfires focused on two main objectives:
the prediction of the fire spreading rate and the estimation of the released heat from the
flame front [5]. Attempts to model fire behaviour mathematically go back to 1946, with
Fons [6].

Fire behaves according to three interacting physical factors: fuel availability (morpho-
logical and physiological characteristics of vegetation), weather (wind speed and direction,
temperature, and relative humidity) and terrain (slope and aspect) [7,8]—along this article
we will refer to such factors as FWT conditions. Based on the knowledge of a land patch
regarding these factors, and data on the initial fire condition it’s possible to calculate an
average value for the fire spreading rate [9]. Fire models such as Rothermel’s [10] predict
fire’s local behaviour and use fuel model parameters as input. Fuel models, such as [11,12]
and those presented by NFDRS, are sets of input parameters that describe the inherited
characteristics that have been found in certain fuel types in the past. Additionally, the
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environmental parameters of wind, slope, and expected moisture changes can also be
superimposed on these fuel models [10].

One of the existing strategies for fire spreading mitigation is the implementation of
fire-breaks. A fire-break is a gap in the vegetation and combustible material that prevents
the fire from advancing. It’s a very important structure in confining the burned area as
well as delaying the spread of the fire [13,14], thus facilitating the combat.

As a complementary effort to mitigate fire spread consequences, our goal is to establish
an efficient fire-break structure, i.e., with an optimal relation between cost and effectiveness.

Due to limitations of experimental work at a large scale, our strategy consists on
building a spatial multilayer network from bottom to top, focusing on understanding fire
behaviour only locally and evaluating the range of its spreading at the landscape scale. In
this structure, the landscape network is constituted by several local networks, but only
the dynamics of the latter are studied with greater detail. Here, we define local scale as
the range in which one is able to delimit a land patch with a well-known (measurable) set
of characteristics; we define landscape scale as the scale at which each patch of land is the
element of study.

We start by defining each node of the landscape network as a land patch, whose
border is previously delimited, regardless of its contour shape. Within each node, we study
fire behaviour locally, according to the set of characteristics of the associated land patch.
We divide the node into a grid of cells, and run simulations in a cellular automaton with
a SIR dynamics, where the correspondence of states is {S = unburned, I = burning, R =
burned}.

As we run the local simulations, the output is the time durations of the several spread-
ing processes from the ignition point to the neighbouring patches. The average spreading
time for each pair of nodes parametrizes the associated edge of the landscape network.

Attempts to model fire spreading using Complex Networks and cellular automata
with different approaches are known [14–17]. For instance, in [15], a methodology to
simulate the propagation of forest fires is presented using multiplex networks. Here, three
stacked layers are presented, representing the ground, surface and crown possible levels of
fire development. Each node of the multilayer represents a group of trees and the spreading
dynamics within it obeys to a diffusion process. In [14], the authors use cellular automata
modelling as a computational approach to identify efficient fuel break partitions for fire
containment, and study the efficiency of various centrality statistics. Here, is assumed flat
terrain and a single vegetation type. In [16], the same authors present a two-level approach
where the dynamics of fire spread are modelled as a random Markov field process on a
directed network. The cellular automata model used to parametrize the edge weights
considers GIS meteorological and landscape information data.

Our approach differs from the existing literature in the sub-model used within the
multilayer network model [18–23]. Here, the intended structure is a network of networks.
We also aim for a larger spatial extent to which our model can be applied, which is based
on a previous land recognition and categorization. In this regard, with the presented model
there is a demand for the inclusion of other areas of expertise, namely, land monitoring.
We present the first of a series of works that focuses on the establishment of the model. The
main goal of the overall study is to establish a fire-break structure, by selecting a set of edges
of the constructed network of networks whose removal mitigates fire spread, whether by
reducing the probability of node infection or by delaying its advance. The application of a
network of networks to a real geography, the refinement of land characterization and the
establishment of a fire-break structure is considered in further work.

This paper is organized as follows. In Section 2, we introduce the guidelines of our
model and get into more detail with local SIR dynamics. The cases for the homogeneous and
heterogeneous grid are described, as well as the influence of a vectorial component. We also
represent the landscape network as the network of networks that we aim to construct based
on local dynamics. Materials used throughout the study are listed in Section 3. Results are
shown in Section 4. Here, we present a particular patch layout with different class values,
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as a way to distinguish different FWT conditions for each patch. We present the simulation
results on the spreading process occurred in a cellular automata and the resulting average
spreading time values as parameters of the landscape network. We construct the landscape
network for this particular patch layout and take network measures. Sections 5 and 6
explain the main highlights so far and in a near future, given the current continuity of
this study.

2. Mathematical Model
2.1. Overall Model Description

As said in Section 1, the purpose is to construct a spatial multilayer network from
bottom to top, meaning that the local set of land characteristics and its correspondent fire
spreading dynamics define the landscape network structure. The constituting layers are
the different scales at which spreading dynamics are evaluated. We define local scale as
the range in which one is able to delimit a land patch with a well-known (measurable) set
of characteristics; we define landscape scale as the scale at which each patch of land is the
element of study.

The network nodes are defined by grouping certain land areas, of variable size, with
some characteristics in common, in patches. As a consequence, each patch has its own
fire spreading dynamics, and may be studied independently from the the overall network,
based on its FWT conditions. This divide-to-rule strategy circumvents the impossibility of
prediction and monitoring of local phenomena at the landscape scale.

Thus, the division of the land in patches with different sets of characteristics defines the
vertex layout of the landscape network, while the dynamics within each patch dictate the
strength of its connections. The more homogeneous a patch of land is in its characteristics,
the more accurate the model will be.

We do not present any particular requirement for the definition of these patches, only
that they must represent a delimited surface of a certain geographical area, such that there
is no point of land that does not belong to any patch. The result is a wide landscape area
divided into (irregular) patches. The parameters that we attribute to each node are the area
and the fire spreading rate, calculated from the land patch characteristics. We study local
dynamics in Section 2.2 and we present the built landscape network in Section 4, according
to the results obtained.

2.2. Local SIR Dynamics

We study fire behaviour locally within each node p, given its area Ap and the average
rate of spread, Rp. We choose a square lattice to divide the node in a grid of Np cells
and run a SIR dynamics for the spreading process, where the correspondence of states is
{S : unburned, I : burning, R : burned}. Thus, we have a list of states s = {si} that associate
the possible state values {S : 0, I : 1, R : −1} to each cell of the grid, ci, i = 1, . . . , Np. The
area of the node is the sum of every cell’s area, ai, which we assume to be equal,

Ap =
Np

∑
i=1

ai = Npap. (1)

One of the conditions we impose is that the higher the spreading rate associated to that
patch of land, the lower the resolution needed for the simulations, therefore, the larger the
area of each cell. This condition arises to spare computational demand and is expressed as

√
ap = τ Rp, (2)

where τ ∈ R represents the time the fire lingers in each one of the cells. Equations (1) and (2)
can be also expressed as

τ =

√
Ap/Np

Rp
, (3)
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where Rp = ‖ ~Rp ‖, since what interests us is the direction of highest velocity. This choice
is due to the fact that we intend to model a fire that has evolved into a quasi-steady state
condition (where the behaviour of one fire front is independent from the behaviour of
the front on the opposing side) [10]. Additionally, we are motivated by the practicality of
meeting the fire in advance in order to fight it.

The transition probability is the probability of a cell ci burning through the contamina-
tion of cell cj, and is given by

pij = f (Qj, Pi, ~ψij), (4)

where Qj is the amount of heat generated by cell cj (as a simplification, we assume that
the heat generated by the whole cell cj contributes for contamination, but in fact, only the
heat generated by the fire front adjacent to cell ci should be taken into account), Pi is the
burning potential of cell ci (which is mainly related to fuel availability) and ~ψij is a vectorial
component that influences (speeds up or slows down) the fire rate of spread along the~ij
direction. Examples of factors that may contribute to ~ψij are wind and slope.

In the spreading dynamics on a square lattice, the rules for changing the state si of
every cell ci along the process can be expressed as

a) p (si(t + 1) = 1 | sj(t) = 1) = pij, pij ∈ [0, 1],

b) cj ∈ M(x,y)(ci),

c) p (si(t + τ) = −1 | si(t) = 1) = 1, τ ∈ N,

where rule a), the definition of transition probability pij, implies that the burning probability
of cell ci at time t + 1 is only valid under the condition that cell cj is burning at time t. Rule
b) implies that cell cj belongs to the Moore neighbourhood, of cell ci, with coordinates (x, y).
The Moore neighbourhood of a cell ci is given by the set of coordinate pairs M(x,y)(ci) =
{(x, y + 1), (x, y− 1), (x + 1, y), (x− 1, y), (x + 1, y + 1), (x− 1, y− 1), (x + 1, y− 1), (x−
1, y + 1)}. Rule c) indicates that a cell burning at time t is going to burn down after τ time
units with probability 1. The choice of number τ depends on the desired resolution in the
number of cells, Np, (Equation (3)), whether the rate of spread is averaged to the patch
(r = Rp), whether specified to each cell, (r = ri). In this work, we consider only τ = 1,
meaning that after the cell has been contaminated at time t, it can already contaminate its
neighbours in the next step, at t + 1.

The scope of the local scale study contemplates three distinct cases: (1) the case where
the rate of spread is the same for every cell within a patch, which is associated to a uniform
fuel bed; (2) the case where one can distinguish different patches, with their own value of
spreading rate, that we associate to possible variations in FWT conditions throughout the
landscape; (3) the addition of a vectorial component representing either the wind or slope.

Note: for either of these cases, we don’t specify yet in the present article a method
for the calculation of transition probabilities. Nonetheless, we emphasize that this is a
work-in-progress, and we aim to synchronize data gathering to its respective analysis
and computation.

2.2.1. Homogeneous Grid

In the simplest case, we assume a homogeneous grid. In the context of cellular
automata, a forest is homogeneous if the rate of fire spread is the same for all cells [17]. In
our work, we consider the value of the rate of spread Rp for every cell ci within each patch
p, i.e., r1 = . . . = ri = . . . = rNp = Rp.

We do not consider cell differentiation by environment conditions or any other external
factors. We only assume that every cell has two intrinsic attributes: the potential to burn,
given by Pi, and the amount of heat that it generates when it burns, Qi. We also assume
that the fire always advances towards the neighbouring unburned cells, with no cessation
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criterion. Here, we propose that pij values should be calculated according to the quantities
Qj and Pi,

pij = f (Qj, Pi). (5)

Quantities Qj and Pi are intimately related to the study of terrain properties (an
example can be found in the work [8]). In the absence of an external vectorial influence,
such as wind or slope, which directly affects fire trajectory, ~ψij = 0 and therefore, ~ψij is not
considered for the calculation of pij.

After cell cj becomes infected, it is ready to infect the next neighbours after τ time
units, as long as si = 0 (as said previously, in this work we assume τ = 1).

When applying this model to a region prone to fire occurrence, land data should be
gathered in a way that motivates the land division in patches as homogeneous as possible.

2.2.2. Heterogeneous Grid

In the case of an heterogeneous grid, based on our knowledge of the patch of land, pij
values are associated to each particular cell, from each particular patch,

pp
ij = f (Qp

j , Pp
i ), (6)

where p is the patch pp
ij is referring to.

In the case where different FWT conditions are considered, it is important to emphasize
that not only the model of pp

ij values varies with p, in general, as the calculations are
independent from each other. This is one of the main advantages that outcomes from our
work. Different patches p and q have their own suitable model for transition probabilities
and each one should be treated regardless of the FWT conditions of its neighbours. This
is an implication of our definition of the edges for the landscape network. Each edge
that connects two nodes starts at the point of the ignition, wherever it is located in the
patch, and ends at the beginning of the following node, at the border. In practice, the edge
never represents any trajectory outwards the patch where it started, and therefore it never
represents other FWT conditions but those of its own patch.

The layout with different FWT conditions for different patches motivates the multi-
layer network structure, precisely to organize as much as possible a very complex manage-
ment problem.

Still in this case, we assumed the absence of any vectorial effects, that is, ~ψij = 0.

2.2.3. Influence of a Vectorial Component

With the influence of wind, we have ~ψij 6= 0, the probabilities of fire spreading are
biased towards the direction of the vectorial component, ~ψ. Thus,

pij = f (Qj, Pi, ~ψij). (7)

Notice that this is not a cell attribute, but rather a measure of the interaction between
neighbouring cells, that can be stronger or weaker, depending on the alignment of cells ci
and cj with respect to ~ψ. We propose that

pij ∝ cos∠(~ij, ~ψij), (8)

where ~ij is the vector defined by the centroids of cells ci and cj. A negative value for
cos∠(~ij, ~ψij) may also act as a spreading slowing down or even cessation mechanism.

The calculation of ~ψ is out of the scope of this prototype study. In a real-case application
we are able to gather some wind or slope-related data, for instance, and discuss with
experts from the areas of forestry engineering, meteorology and civil protection forces the
appropriate method to calculate ~ψ, using the angle of slope and wind, both horizontal
and vertical.
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2.3. Landscape Network

The study carried out referring to local dynamics in Section 2.2 has the purpose of
generating a set of spreading time values as outputs of the dynamic simulations, given
a specific fuel, terrain and weather conditions as inputs. The quantity tpq is defined as
the time spent between the instant of the first ignition at node p and the first ignition at
neighbouring node q. By attributing tpq to each edge (p, q), we parametrize the landscape
network, which is a graph representation of the layout of the land patches, as we can see in
Figure 1.

The shape of the border of each patch is only taken into account in cellular automaton
simulations. Instead of attributing mean probability values to each edge of the landscape
network, we consider instead the transition probabilities in each pair of cells (i, j). The
resulting time values are affected by these probabilities. In addition, if a connection between
two nodes is not suitable for fire spread, local transition probabilities will inhibit the process
and the fire will never reach the respective neighbour. Thus, the network’s parametrization
should account probability information which, in turn, depends on the accuracy of the
study of the terrain.

Mathematically, our landscape network can be expressed as

G = (V, E), V = {1, . . . , n}, E = (p, q)|(p, q) ∈ V2, p 6= q (9)

(a) Patch layout. (b) Landscape network.
Figure 1. (a) Layout of some irregular-shaped patches, numbered from 1 to 6. Different colours
represent different class values, from 0 to 1 (vector image generated in ArcMap and converted into
raster format); (b) graph representation of the patch layout, as the landscape network parametrized
by time values tij distributed along the edges (i, j).

This network is directional, but the direction of the edges is determined by the ignition
point and the edge values, determined by local SIR dynamics. Determining the path of the
fire throughout the edges will always depend on the specific real-case application of the
dynamics of each patch and their respective layout.

The ArcMap generated layout image comprises n = 6 polygons. Each polygon
represents a land patch and can take one of the three possible class values. A class value
is a generic attribute that we associated to each patch to characterize them. In a real-case
scenario, this class value is substituted by a value that depends on FWT conditions, and
affects the transition probability of each cell in the correspondent polygon. The adjacency
matrix of this landscape network can be written as

G =



0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 0 1
1 1 1 0 1 1
0 1 0 1 0 0
0 0 1 1 0 0

,
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and the time-weighted adjacency matrix is given by

GS =



0 0 0 t14 0 0
0 0 0 t24 t25 0
0 0 0 t34 0 t36

t41 t42 t43 0 t45 t46
0 t52 0 t54 0 0
0 0 t63 t64 0 0

.

In general, tpq 6= tqp, but because the patch layout is fixed, G is symmetric, while GS
is not symmetric in its values. For a certain pair of nodes (p, q), the path p→ q is different
than the path q → p, due to different patch characteristics and the randomness in the
respective trajectories. The equivalence in a spread of a disease is the latency period, i.e.,
the time interval between the infection of an individual and the instant from when the
individual becomes capable of infecting others. In this equivalence, each patch corresponds
to an individual, the instant of infection is the instant of the first ignition and the instant
when the individual infects others is the instant when the fire reaches other patches. Thus,
we can consider the tpq latency period as the time the fire travels from the first ignition at
node p to its neighbour q.

The importance of representing a fire spreading dynamics on a network of networks
is that each node may be treated individually, according to its own characteristics, but
independently of the rest of the nodes. The knowledge of the spreading time is useful for
the articulation of the protection forces when it comes to fighting the advancing fire.

One of the most common network measures that can contribute to this articulation is
the geodesic distance, i.e., the shortest network distance between a pair of nodes, or the
smallest value of r such that [Gr]pq > 0. In our case, we use propagation time, which is
deeply related to distance. Thus, our mean geodesic time from p to q, averaged over all nodes
q in the network is given as

tp =
1
n ∑

q
tpq, (10)

where tpq is the time duration for fire spread from node p to node q and n is the number of
nodes of the landscape network. The average over all tp of Equation (10) is the mean time
spent between all pairs of nodes, the average landscape spreading time,

ts =
1
n2 ∑

pq
tpq =

1
n ∑

q
tp. (11)

The fire-break structure should act in a way as to interfere with the most likely and
the quickest path of propagation of the fire.

Let us consider a region with a central response command (CRC), whose function is to
detect, monitor and fight against forest fires in that region, using every means possible for
the effect. Let us assume that the expected response time, tr, is defined as the time spent
from the instant of the initial ignition until the instant that the any direct action against
fire starts. We assume here that, at the moment of the ignition, the CRC is immediately
aware of the fire occurrence and we do not consider any variable during the process of
mobilization of CRC. For that specific region, we must verify tr < ts, at least for the paths
with the highest probabilities of fire spread. In the graph of that region, for instance, we
need to sequentially cut the paths with the smallest tpq. A fire-break structure must be
implemented in order to satisfy this condition.

Other centrality measures are computed as well, such as degree, betweenness, close-
ness and eigenvector centralities,

CD(p) =
n

∑
q=1,p 6=q

Gpq, (12)
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CB(p) =
n

∑
i=1

i−1

∑
j=1

σij(p)
σij

, (13)

CC(p) =
n− 1

∑n
q=1 dpq

, (14)

CE(p) =
1
λ

n

∑
q=1

GpqCE(q), (15)

where, in Equation (12), Gpq are the (p, q) entries of the adjacency matrix G; in Equation (13),
σij is the number of geodesic paths connecting nodes i and j and σij(p) is the number of σij
that pass through node p; in Equation (14), dpq is the shortest distance between nodes p
and q; in Equation (15), λ is the largest eigenvector of G.

3. Materials

We used ArcMap from ArcGIS Desktop, version 10.8.1.14362, to build the vector and
raster files used in our study. Vector file images were converted to raster type in ArcMap
and the correspondent vector data was stored in .csv files, under Microsoft Excel. The
created files were then used as input in the python 3.8.

The ArcMap generated raster image—our prototype image—comprises a set of class
values with a certain patch layout (Figure 1a) and was converted in python 3.8 to a
250× 254 matrix, with a direct correspondence between each entry (cell) and the image
pixels.

Cellular automaton simulations were run in the terrain matrix, which results from the
convolution of the ArcMap converted matrix with a random 250× 254 matrix, meaning that
the transition probabilities were calculated using the class values associated to each patch
and a random component. The initial ignitions took place at each patch, in a convenient set
of coordinates, (i, j).

Computation of network measures, as well as graphs and plots not related to cel-
lular automaton simulations, were carried out in Mathematica 12.2, generously offered
by SYMCOMP 2021, the 5th International Conference on Numerical and Symbolic Computa-
tion: Developments and Applications, on 25–26 March, Évora, Portugal, under the Young
Research Awards.

4. Results

We worked over an ArcMap generated raster image, whose patches are drawn poly-
gons in the associated vector file (Figure 2a). The patch layout was intentionally aiming for
simplicity to ease computational simulations. Each patch has an irregular border and is
represented by a numbered node. Different colours represent patches with different types
of initial FWT conditions, mentioned in Section 1, which are translated by a class value,
represented in the colour bar. As a prototype image, it can be applied to any geography, as
long as the patches are rearranged according to the respective FWT conditions (e.g., layout
of different vegetation types). This can be achieved by visual recognition through satellite
monitoring data.

As said in Section 3, the input image was converted into a 250× 254 matrix. The
matrix that reproduces the terrain more faithfully, in Figure 2c, results from the convolution
of matrices in Figure 2a,b. The respective transition probabilities were used at every step
of each spreading process to obtain Figure 2d. The coordinates of each ignition point at
each respective polygon are 1: (230, 120); 2: (60, 75); 3: (60, 140); 4: (125, 127); 5: (130, 25);
6: (90, 200).
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(a) Patch layout. (b) Normalized random matrix.

(c) Terrain matrix. (d) Spreading process.

Figure 2. (a) is an ArcMap generated image, where the polygons were manually drawn into a vector
file, which was converted to a raster format thereafter, and then converted into a matrix; (b) is a
python-generated matrix, with random entries between 0 and 1; (c) results from the convolution
between matrices (a,b); and (d) is an example of a spreading process occurring in polygon 5 of the
terrain matrix (c), with starting ignition at coordinates (60, 75). The state correspondence of the ith
cell is unburned: si = 0, burning: si = 1, burned: si = −1.

4.1. Homogeneous Grid

For the homogeneous case in no-wind conditions, the convolution matrix attributes
to each cell transition probabilities pij = Cp αi, where Cp ∈ [0, 1] is the class value of
polygon p, which translates its average rate of spread Rp, and αi is a random number in
[0, 1] that attributes randomness to the patch. The calculus of the value αi should include
the parameters as the representative measures of FWT conditions, but in this prototype
image, for simplicity, we use a random number.

The rules for fire contamination apply under the general condition pij > βi p0, where
βi is a random number generated at every step of the process and p0 is a fixed value
established previously, also between 0 and 1. We ran 100 simulations for values of p0 from
0.4 to 1.0 in increments of 0.1 and calculated the average time duration of the spreading
process for each polygon. The break condition was the instant at which an infected cell no
longer belonged to the patch at which the process took place.

Figure 3a shows the time averages of the spreading process for each patch as function
of p0. Spreading time for patches 1, 2 and 3, with Cp ≈ 0.33, p = 1, 2, 3, decreases with p0
and converges to approximately 3 time steps, most probably from the lack of burning cells
for the next infection. We also observe an "inflection point" at p0 = 0.7. The initial increase,
from p0 = 0.4 to p0 = 0.6 is present in those three spreading simulations, but with lower
values for p = 1, which might be related to the fact that patch 1 has the smaller area among
all the patches, as shown in Figure 3b. Patch p = 5, with c5 = 1.0 is approximately constant
along p0 values. Patch p = 6, with c6 = c5 = 1.0, shows a slight increase with p0, alongside
with p = 4, of c4 ≈ 0.67—the latter with the largest area. Figure 3b shows the area of each
patch in proportion to the sum of the area of all patches.
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(a) Average spreading times. (b) Patch area ratios.

Figure 3. (a): average spreading time duration for patches {1, 2, 3, 4, 5, 6}. Each time unit represents
a computational step. The horizontal axis represents an increase in p0 values. Each point series
corresponds to the average spreading time over 100 simulations within a patch, starting from the
each ignition point. The break condition for the spreading process was the time step at which an
infected cell reached a neighbouring patch or the lack of burning nodes for infection in the next step.
(b): representation of patch areas, in relation to the total layout.

4.2. Heterogeneous Grid

The heterogeneous case is analogous to the homogeneous one, but we now consider
different patches and, therefore, different Rp values, translated by different Cp. Each cell
has, again, randomness associated pij = Cp αi. With different patches to consider, we
now consider both ways of spreading between each pair of nodes, that is, tpq 6= tqp, since
the path taken by the fire is always in respect to the origin patch, with the original FWT
conditions.

Figure 4 shows the evolution of the averaged spreading time for each node patch and
for each directed edge, in number of steps. In general, average spreading time durations
increase with p0. Node 1 shows an irregular increase and also an increase in the standard
deviation error. The edges of node 2 have approximately the same average slope. They
differ in behaviour at p0 = 0.6, and the error also increases with p0. In node 3, the edges
have a similar behaviour, but with an error that compromises the increasing pattern. The
edges (4, q), q = 1, . . . , 6 have the lowest increase rate and the values t4q are approximately
regularly spaced. Edges t52 and t54 differ in slope and behaviour throughout the range of
p0 values. Edges t63 and t64 also differ in their behaviour, although from p0 = 0.6 onwards,
the slope and constancy is similar, with different values of spreading time.

(a)
(b)

Figure 4. Cont.
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(c) (d)

(e) (f)

Figure 4. Average spreading time results for each patch. Each time series is in respect to each directed
edge. Each point corresponds to a time value, averaged over 100 simulations within the patch it
refers to.

4.3. Influence of a Vectorial Component

Under the effect of a vectorial component, our condition to perform the simulations
was pij > (1−γ ∗ p0) ∗ δ, where γ = cos(θ) represents the vectorial influence on the spread-
ing process, with θ = ∠(~ij, ~ψij), θ ∈ [0, π]; p0 works as a measure of the intensity of that
influence; the random number δ ∈ [0, 1] introduces randomness into the whole process.

Cellular automaton simulations in Figure 5 show the wind effect towards East, with
~ψij = (1, 0), for each patch of our prototype image. That effect is also represented in
Figure 6.

(a) Patch 1. (b) Patch 2.

Figure 5. Cont.
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(c) Patch 3. (d) Patch 4.

(e) Patch 5. (f) Patch 6.

Figure 5. Spreading results in the cellular automaton 250× 254, for p0 = 0.7 and wind oriented
towards East, with the vectorial component ~ψij = (1, 0). In green, the unburned cells (si = 0), in
yellow, the fire front (si = 1) and in blue, the burned cells (si = −1). Each image corresponds to a
specific time step in the sequence of 100 simulations.

Figure 6. Average spreading time values for each of the edges tpq. In gray, no wind situation; in
yellow, the same simulations performed with the action of the wind. Simulations were performed for
p0 = 0.7.

As the fire front is represented in yellow in Figure 5, we see a right leaning tendency
for the distribution of burning cells. For situations in Figure 5c,d,f, we observe a well
defined vertical line, in yellow, perpendicular to ~ψij = (1, 0), suggesting the saturation
of the fire front in that direction. Each subfigure corresponds to a time step in one of 100
simulations for the respective node patch. Due to the randomness introduced, all of the
outcomes referring to cell layout are different, so these images are merely illustrative of the
spreading process simulations.

In the bar chart of Figure 6, we can compare the average spreading time results for the
no-wind and wind cases, which is also reflected in the relative increase in spreading time,
in Figure 7f.
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(a) p0 = 0.4 (b) p0 = 0.5

(c) p0 = 0.6 (d) p0 = 0.7

(e) p0 = 0.8 (f) p0 = 0.7 (wind); measure of the relative time increase.

Figure 7. Graph schemes of the patch layout for different values of p0. Edge values correspond to averaged spreading time
values. Graph from (f) is parametrized with the measure of time increase in relation to (d).

4.4. Landscape Network

Based on the spreading time results from local dynamics, we build a representative
network of the patch layout for different values of p0, as shown in Figure 7. The landscape
networks are parametrized by the average spreading time values, as a result of given FWT
conditions, which were translated by the parameter p0 in cellular automaton simulations.
We also computed some overall network measures, such as the mean distance, edge
connectivity, diameter and assortativity, listed in Table 1, and the mentioned centrality
measures, shown in Figure 8.
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Table 1. Network measures.

Graph Measures\p0 0.4 0.5 0.6 0.7 0.8 0.7 (Wind)

Mean distance (time) 55.175 59.9817 66.8983 68.9357 - 80.5607
Edge connectivity 13.76 15.08 19.34 21.7 0.0 28.43

Diameter 117.59 122.14 140.87 141.75 - 162.17
Assortativity −0.655575 −0.656574 −0.616465 −0.631667 −0.577425 −0.704399

By analysing Table 1, we see that the mean distance, edge connectivity and diameter
tend to increase, although for p0 = 0.8 these values are either null or invalid. This
is because the success rate in the spreading process was null (shown in Figure 7e as a
null percentage, 0%) and, therefore, those connections were cut off. Negative values for
assortativity naturally show a correlation between nodes of different degree, which is a
direct consequence of the way the patches were drawn (ideally based on map observance
and FWT conditions). The results for the presence of wind are the highest among all the
results for these measures.

We computed the centrality measures (Equations (12)–(15)) using Wolfram Mathematica
software. The results for the nodes {1, 2, 3, 4, 5, 6} are shown in Figure 8.

(a) Degree centrality. (b) Betweeness centrality.

(c) Closeness centrality. (d) Eigenvector centrality.

Figure 8. Centrality measures of the the landscape network for different nodes and different values
of p0.

By analysing Figure 8, the degree centrality shows the number of edges for each node,
which only varies for the case where p0 = 0.8, based on the null success rate of fire spread
throughout the patch for nodes 2 and 3. This reflects on edges 2 → 4, 2 → 5, 3 → 4 and
3→ 6 being cut off.

While betweenness centrality is only non-null for node 4, closeness centrality shows a
decreasing pattern with p0, with a null value for nodes 2 and 3, in the situation p0 = 0.8.
Eigenvector centrality is constant with p0 = 0.8, but varies for every node in when p0 = 0.8.

5. Discussion

Results for the heterogeneous grid, where we only analyse the spreading process in
a node patch, reveal the same decreasing tendency for patches 1, 2, 3, with Cp ≈ 0.33,
for increasing values of p0. Given the discrepancy of terrain values and p0 at each step,
infection becomes more difficult, which leads to the break of the spreading process after
approximately 3 time steps, as shown in Figure 3a. Primarily, one should aim for such
terrain conditions in order to achieve fire spread mitigation. Nodes 4, 5 and 6 don’t reveal
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a decreasing tendency, so there is a higher risk of infecting neighbours in comparison to
other nodes, although in this analysis we lack the correlation with the area of each patch.

In the heterogeneous grid, for each node we associate a similar behaviour between
edges, provided the class of the node, Cp, is the same. The difference in average spreading
time values is due to the distance from the ignition point to the next neighbour. A similar
behaviour is observed in nodes 2, 3, 4 and 6, although the latter presents the edge t64, with
an atypical spreading time point value for p0 = 0.5.

Cellular automaton simulations were visually monitored through images such as
those presented in Figures 2d and 5, which were generated every simulation, at every time
step. This helped us control simulation results in terms of expected fire spread behaviour,
based on the literature. For example, following [10], typically, wildfires begin from a single
source and spread outward, growing in size and assuming an elliptical shape with the
major axis in the direction most favourable to spread, which we always observed for the
homogeneous case, which is visually presented in Figure 5. The presence of a vectorial
component, such as wind or slope, clearly affects the average spreading time. In Figure 7f
we observe, for the left-right oriented edges, either a negative or a small value in terms of
the relative increase when faced to Figure 7d (t24 = −0.3 (73%), t43 = 0.07), t52 = −0.05,
t54 = 0.00035, t46 = −0.067, t36 = −0.45), while for the right-left oriented edges, a general
increase in the same values (t34 = 0.3, t42 = 1.27, t25 = −0.47 (73%), t45 = 0.45 (1%),
t63 = 0.39, t64 = 0.34). Values t24 and t25 don’t coincide with the tendency, with a success
rate of 73%.

The landscape network is built based on average spreading time values. These values
vary with the parameter p0, which could reflect, for instance, the variation in the vegetation
over the seasons, and the presence of a vectorial component, such as wind or slope. The rate
of success in fire spread, expressed as a percentage along the edges, varies according to each
case. The implementation of a fire-break should act in such a way as to mitigate fire spread
throughout the edges with lower values of tpq and higher probability, especially in nodes
with high centrality values. That depends on previous knowledge on FWT conditions.
With this test case, with a random scenario for such conditions, we intend to expose the
structure of our model, leaving the establishment of an adequate fire-break structure in a
real-case scenario for further work.

This work shows a network model for predicting fire spread in specific terrain, fuel
and weather conditions. Our multi-scale approach allows real-time simulations, which can
be an added value for measures adopted by the civil protection forces and other competent
authorities when fighting forest fires. Additionally, our model doesn’t specify a method
for terrain characterization (satellite image recognition, land probing, terrain survey, etc.),
therefore area and rate of spread, whether at the cell or at the patch range, are assessed by
prior knowledge, usually available to authorities.

Results indicate the importance of transition probabilities from one cell to another,
which we associated to fuel availability. Work has already been done with cellular automata
to model fire spread [14], although our focus is on average spreading time, in order to
construct an effective landscape network. One advantage of dividing the land in patches is
that it allows gathering information of smaller areas easier in comparison to larger ones,
in general.

Computing the spreading time under different terrain, fuel availability and weather
conditions may be an important contribution to time management in the event of a forest
fire and may also help to mitigate the consequences of such phenomenon.

Although real-case applications are still in progress, it’s already possible to ensure
a larger structure, given time values from local dynamics. In this context, a multilayer
network structure is a possible solution for our approach of contributing for the mitigation
of fire spread.
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6. Further Work

In this article, we built a mathematical model and we implemented a test case. As a
future work we intend to study specifically the geometry of the simulated fire front and
burned area, to find the best configuration for patch layout.

In the most practical scope, we intend to apply this model to a specific geography,
most preferably to a well-documented wildfire-prone region of the Globe. By simulating a
real-case scenario, we can analyse more deeply the effect of Qj and Pi of every transition
probability pij, as well as ψij, when dealing with the presence of wind or slope. The formula
for pij = f (Qj, Pi, ~ψij) may depend strongly on the fire model, the associated fuel model
in the respective geography, and the data gathering methods used.

Varying the coordinates of the initial ignition is also important, although its impor-
tance may be emphasized at the local scale. It’s specially important to vary the initial
ignition when dealing with a real-time case simulation, with well-defined and well-known
FWT conditions.

In a real-case scenario, after getting knowledge of the spreading times for a collection of
connected patches, we intend to use the obtained time values to parametrize the landscape
network. With the final structure of a networks of networks, we study its connectivity.
The main goal is to gather cut-sets solutions (as fire-breaks) with the best relation cost-
effectiveness.

The overall study will also be complemented by comparing spreading results with
burned areas of previous fire events. This comparison should act as calibration factor for
data refinement regarding FWT conditions. Although this comparison is possible, we
also need to consider human intervention to stop the fire and its effect on the shape of
the burned areas, which is a challenge to overcome. The information regarding human
intervention is accessed through the civil protection forces.
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