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Abstract: The spatial resolution of electron probe microanalysis (EPMA), a non-destructive method
to determine the chemical composition of materials, is currently restricted to a pixel size larger than
the volume of interaction between beam electrons and the material, as a result of limitations on the
underlying k-ratio model. Using more sophisticated models to predict k-ratios while solving the
inverse problem of reconstruction offers a possibility to increase the spatial resolution. Here, a k-ratio
model based on the deterministic M1-model in Boltzmann Continuous Slowing-Down approximation
(BCSD) will be utilized to present a reconstruction method for EPMA which is implemented as a
PDE-constrained optimization problem. Iterative gradient-based optimization techniques are used in
combination with the adjoint state method to calculate the gradient in order to solve the optimization
problem efficiently. The accuracy of the spatial resolution still depends on the number and quality of
the measured data, but in contrast to conventional reconstruction methods, an overlapping of the
interaction volumes of different measurements is permissible without ambiguous solutions. The
combination of k-ratios measured with various electron beam configurations is necessary for a high
resolution. Attempts to reconstruct materials with synthetic data show challenges that occur with
small reconstruction pixels, but also indicate the potential to improve the spatial resolution in EPMA
using the presented method.

Keywords: electron probe microanalysis; spatial resolution; material reconstruction; material imag-
ing; m1-model; adjoint state method; inverse problem; k-ratio

1. Increasing the Spatial Resolution in EPMA

Electron probe microanalysis (EPMA) [1,2] is a non-destructive method to determine
the chemical composition of a material sample that is applied in various fields, for example
geophysics, material science, or engineering. The composition is not measured directly,
but reconstructed from the intensity of X-rays, which are produced by exciting a material
sample with a focused beam of electrons. Atoms inside the sample are ionized by collision
with the highly energetic beam electrons and subsequently relax from the excited state by
emitting characteristic X-ray radiation. A part of the radiation is absorbed, the other part
leaves the sample and is measured by a detector. The characteristic radiation is quantified
in the form of k-ratios k = I/Istd, where the measured radiation intensity I is normalized by
standard intensities Istd measured for a known reference sample. A sketch of the physical
processes is shown in Figure 1.

We characterize the chemical composition of a material by its mass fraction field
c(x). Due to the statistical nature of the k-ratio measurements, the mass fractions c(x),
as the solution to the inverse problem of reconstruction, are also probabilistic and all
information gained by the experiment is encoded in the statistical moments of c(x) [3].
However, the probabilistic inversion is challenging; thus, this article deals with the mini-
mization of the squared error of k-ratios obtained from an experiment kexp and a forward
model k(c(x)). The result can be interpreted as a maximum likelihood estimate under
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the assumption that the noise of the experimental data is independent and identically
Gaussian distributed.

e−
Sample Ω

Electron Beam

Interaction Volume

Detector

Atom

X-Rays

Figure 1. Sketch of the physical processes in EPMA: electron path with multiple collisions
(dotted line), vacant electron (hollow circle), relaxation (black arrow), X-ray radiation and attenua-
tion/detection (wavy lines), and reconstruction pixel (dashed lines).

A parametrization p that restricts the unknown c(x; p) to finite dimensions states a
regularization of the generally ill-posed inverse problem. The minimization can then be
written as

p∗ = arg min
p
‖k(c(x; p))− kexp‖2

2. (1)

Currently, forward models typically used in reconstruction (ZAF, φ(ρz)) [2,4–7] as-
sume either a fully homogeneous or a layered structure interaction volume (the part of
the sample in which beam electrons excite atoms). The ZAF model uses correction factors
for the atomic number Z(c), the absorption A(c), and the fluorescence F(c) and is imple-
mented as a fixed-point iteration to reconstruct homogeneous mass fractions from k-ratios
obtained from a single beam configuration. This idea is extended to layered samples using
a correction model based on the depth distribution of X-ray generation φ(ρz). The material
is scanned by the electron beam, ensuring that their interaction volumes do not overlap,
and each interaction volume is reconstructed independently. In this procedure, the forward
models limit the size of the reconstruction pixels to a size that corresponds approximately
to the size of the interaction volume.

Previous analysis [8–10] of the analytical spatial resolution highlight the need to
resolve small structures inside the sample, e.g., the inclusion of spherical droplets in lunar
rock which forms due to exposure to energetic particles or small crystals of magnetite
embedded in glass. In [8–10], the analytical spatial resolution of EPMA is defined as the
size of the interaction volume and approaches which physically decrease this volume
are described. In contrast, we propose to decouple the spatial resolution and the size of
the interaction volume by employing a more sophisticated reconstruction method that
harnesses k-ratio measurements from multiple experiments with overlapping interaction
volumes.

To analyze the size of the interaction volume of inhomogeneous structures, Monte
Carlo models [11–15] are used. Additionally, Monte Carlo models can be used to implement
a k-ratio model that allows inhomogeneous material structures by first estimating the
electron transport on the basis of Monte Carlo sampling and then approximating the
measured X-ray intensity. However, Monte Carlo models suffer from statistical noise
which restricts the use of gradient based optimization techniques to solve the inverse
problem [16].

In this work, we use a deterministic k-ratio model that bases on theM1-model [16–20]
in Boltzmann Continuous Slowing-Down approximation (BCSD) and is able to deal with
inhomogeneous interaction volumes. The model has previously been validated against
Monte Carlo models [16]. Our model additionally allows a fast and precise gradient
computation via the adjoint state method, hence efficient gradient based optimization
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techniques can be applied. The combination of a deterministic model and gradient based
optimization methods allows the implementation of a reconstruction method with a higher
spatial resolution. Instead of prohibiting overlapping interaction volumes, this method
merges sequential k-ratio measurements with multiple beam configurations to accomplish
a higher resolution with a pixel size smaller than the size of the interaction volume.

The source code accompanying this article is made available via GitHub: https:
//github.com/tam724/m1epma (accessed on 9 July 2021) [21].

2. Deterministic k-Ratio Model
2.1. Parameterized Material Description

A sample occupying a domain Ω ⊂ R3, which consists of ne chemical elements, is
characterized by the mass fractions of all elements c(x; p) : Ω× P→ [0, 1]ne at every point
x ∈ Ω. The mass fraction

ci =
mi

mtot
(2)

describes the ratio of partial mi to total mass mtot in a (infinitesimal small) volume dx
around x for one element i = 1, . . . , ne and is therefore constrained by 0 ≤ c(x; p) ≤ 1 and
∑ne

i=1 ci(x; p) = 1. The choice of a global set of parameters p ∈ P ⊆ Rnp discretizes the
mass fractions and limits the unknown to finite dimensions.

In this work, the mass density ρ(x) is modeled by a linear combination of the mass
fractions and the density of the pure elements. Such a model neglects the influence of
different molecular structures and assumes that only mass fractions sufficiently describe
the material.

2.2. k-Ratios as a Function of the Electron Number Density

The measured quantities in EPMA, the radiation intensities of X-rays with wavelengths
characteristic to elements occurring in the material, are considered in terms of k-ratios k =
I/Istd. The measured intensity I gets normalized by the intensity Istd measured for a known
reference sample, to account for experimental inaccuracies, e.g., the detector efficiency.
Furthermore, an experiment is conducted with ns setups (here, we consider different beam
energies and beam positions) yielding different measurements. An enumeration of all nk
k-ratios allows for collecting all measured k-ratios into kexp ∈ Rnk .

We model a k-ratio kj by

kj =
1

Istd
j

∫
Ω

e−
∫

d(x) µj(c(y;p))dy NV
i (c(x; p))

∫ ε1

ε0

σemiss
j (ε)ψ0(x, ε)dε dx, (3)

representing the integral of the zeroth moment of the electron fluence ψ0(x, ε) over the
spatial domain x ∈ Ω and all considered energies ε ∈ [ε0, ε1], weighted by attenuation
and emission/fluorescence factors. The presence of element i at a position x is taken
into account by the number density of atoms per unit volume NV

i = ci(x)ρ(x)/Ai, with the
atomic mass Ai. The ionization cross-section σemiss

i , which combines fluorescence yield
and ionization cross-section, describes the fraction of electron-atom collisions leading
to X-ray generation. X-ray attenuation is approximated by the Beer–Lambert law with
the linear attenuation coefficient being averaged over paths d(x) from each point x to
the detector. The attenuation coefficient of a compound affecting an X-ray j is given by
µj(c(y; p)) = ρ(y)∑ne

m=1 cm(y; p)(µ/ρ)m,j. Emission cross-section and mass attenuation
coefficients (µ/ρ) are interpolated from tabulated data; for details, see [22–25]. Note that
the integrals in Equation (3) model the intensity Ij; hence, the standard intensities Istd

j can
also be calculated this way by inserting the respective mass fractions.

https://github.com/tam724/m1epma
https://github.com/tam724/m1epma
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2.3. M1-Model of Electron Transport

To model ψ0(x, ε), we use theM1-model [16–20] in BCSD, which describes the first
two moments of the electron fluence inside the material. They are defined as

ψ(0)(x, ε) =
∫

S2
‖v(ε, Θ)‖n(x, v)dΘ and ψ(1)(x, ε) =

∫
S2

Θ‖v(ε, Θ)‖n(x, v)dΘ, (4)

using the velocity v(ε, Θ) of electrons (with magnitude defined by the electron energy ε and
direction Θ) and the stationary number density of electrons n(x, v). Based on the Boltzmann
equation in Continuous Slowing-Down approximation, theM1-model belongs to a class
of modelsMN which are derived from closing the system of moments by minimization
of the Boltzmann entropy. With a closure after the first moment,M1, the system takes
the form of a nonlinear hyperbolic partial differential equation (PDE) in space and energy,
given by

G(ψ, p) := −∂ε(S

(
ψ(0)

ψ(1)

)
) +∇ ·

(
(ψ(1))T

ψ(0)( 1−χ
2 I3 +

3χ−1
2

α
‖α‖ ⊗

α
‖α‖ )

)
︸ ︷︷ ︸

=F(ψ)=(F1(ψ),F2(ψ),F3(ψ))

−T

(
ψ(0)

ψ(1)

)
= 0. (5)

Thereby, α = ψ(1)(x,ε)/ψ(0)(x,ε) is the anisotropy parameter and χ(‖α‖) is the Eddington
factor, which implicitly depends on α and is approximated by a rational function. The
identity matrix is denoted by I3 ∈ R3×3. Stopping power S and transport coefficient T
for a compound are obtained from the mass fractions c, the density ρ, and the respective
coefficients of pure elements Si and Ti:

S(ε, x) = ρ(x)
ne

∑
i=1

ci(x; p)Si(ε) T(ε, x) =
(

0 0
0 ρ(x)I3 ∑ne

i=1 ci(x; p)Ti(ε)

)
(6)

The analytic forms of Si, Ti and the function that approximates χ(||α||) as well as the
Jacobian of the flux function F(ψ) are given in Appendix A. For a detailed description of the
M1-model, we refer to [16–20]. A solution ψ = (ψ(0), ψ(1))T : Ω× [ε0, ε1] → R1+3 of the
M1-model depends on the material parameters p because stopping power and transport
coefficient depend on the mass fractions which are parameterized by p.

Boundary Conditions

Initial ε1 and cutoff energy ε0 of the computational domain Ω× [ε0, ε1] are chosen
such that the beam is sufficiently captured εbeam < ε1 and all minimal ionization energies
are considered ε0 < mini=1...ne εedge,i. The edge energy εedge,i of an element i is the lowest
energy at which ionization still occurs. Initially, no beam electrons are present inside the
domain Ω, hence

ψ(x, ε = ε1) = 0. (7)

The spatial boundary ∂Ω consists of one surface that corresponds to the samples
surface Simpact where the electron beam impacts. The other boundaries lie inside the
sample and are assumed to be sufficiently far from the interaction volume so as not to
influence the solution. A schematic of the 2D setup is provided by Figure 2. The electron
beam is modeled as Gaussian in space and energy and Dirac in angle, yielding the moments

ψbeam(x, ε) =

(
1

Dbeam

)
ϕ(ε|εbeam, σbeam)ϕ(x|xbeam, Σbeam), (8)
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where Dbeam ∈ R3 is a unit vector describing the direction of the beam, ϕ the normal
distribution, given the respective means, εbeam and xbeam, and variances, σε and Σbeam. This
leads to the following spatial boundary condition:

ψ(x ∈ ∂Ω, ε) =

{
ψbeam(x, ε) x ∈ Simpact

0 otherwise
(9)

which will in the following be referred to as Bk(ψ(x, ε)) = 0 for multiple beam configura-
tions k = 1, . . . ns.

For the implementation of the M1-model with its boundary conditions using the
finite volume library Clawpack [26–28], we refer to Section 4.

ψ
(0)
beam(x, ε = εbeam)

Simpact

Ω

∂Ω \ Simpact

Interaction Volume

Figure 2. 2D schematic of the domain Ω, the exposed sample surface Simpact (solid line), the internal
surfaces (dashed lines), the interaction volume (dotted line), and the beams’ spatial distribution

ψ
(0)
beam.

3. Inverse Problem of Material Reconstruction
3.1. PDE-Constrained Optimization Problem

Given measured k-ratios kexp, the reconstruction of material parameters can now
be written as a PDE-constrained optimization problem. Incorporating the k-ratio model,
consisting of the integral equation (Equation (3)) and theM1-model G (Equation (5)) with
boundary conditions Bk, the inverse problem of reconstruction is:

p∗ = arg min
p

‖k(ψ1, . . . , ψns , p)− kexp‖2
2︸ ︷︷ ︸

:=H(p)

s.t. G(ψk, p) = 0 x ∈ Ω, ε ∈ [ε0, ε1]

ψk(x, ε) = 0 ε = ε1

Bk(ψk) = 0 x ∈ ∂Ω

k = 1, . . . , ns.

(10)

This reads as follows. Find the parameters p∗ such that the objective function H(p),
the least-squares error of the residuals between modeled and measured k-ratios, is minimal.
Later, we will refer to the residuals as h := k− kexp. Here, the moments of the electron
fluence ψk, which are used to determine the k-ratios k, are subject to the implicit constraint
to fulfill theM1-model G(ψk, p) = 0 with its boundary conditions Bk(ψk) = 0. To obtain a
set of k-ratios k, a solution of the PDE-constaints Gk is calculated and integrated according
to Equation (3).

Note the direct influence of the mass fraction parameters p on the modeled k-ratios
k(ψ1, . . . , ψns , p) via Equation (3) and the indirect influence via the moments of the electron
fluence ψk. Therefore, a perturbation in p will not only change the objective function H
due to their direct dependency, but also due to the implied perturbation in ψk.
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3.2. Iterative Gradient Based Optimization

To find a solution to the inverse problem, an iterative optimization method of the form
pk+1 = pk + ∆pk starting with an initial guess p0 is used. Many optimization methods
calculate the update ∆p based on the gradient of the objective function H(p) and possibly
also higher order derivatives—for example, using the negative gradient of the objective
in combination with a line search method to find the step length yields the method of
steepest descent [29]. The Levenberg–Marquardt [29] algorithm additionally exploits the
least-squares form of the objective function and can be interpreted as a combination of a
gradient descent approach on the objective function H and a Gauss–Newton method acting
on the residuals h. In contrast to the method of steepest descent, which only requires the
evaluation of the objective function H and its gradient, the Levenberg–Marquardt method
additionally needs the computation of the Jacobian of the residuals Jph(p) with respect
to p. In [29,30], these two and several other methods of a similar form are extensively
described, with most methods sharing the need to calculate derivatives. Note that such
methods only converge to a local optimum and do not guarantee a global minimization.

For the PDE-constrained problem (10), the cost of such methods is dominated by the
cost of evaluating the PDE-constraint as part of the objective function and the cost of evalu-
ating its derivatives. It is advantageous to choose an optimization method which requires
a low number of evaluations of the objective function and its derivatives, but the efficiency
of each evaluation still remains crucial. A naive approach to determine the derivative is
a finite difference approximation, which, applied to our problem, requires at least np + 1
evaluations of the objective function. Each evaluation of the objective function includes
solving ns computationally expensive PDEs. Given many parameters np or experimental
setups ns, which are required for high resolution, this approach becomes computationally
too expensive. Furthermore, the choice of the spacing for the finite difference approxi-
mation is non-trivial. Another option to determine derivatives is the implementation of
additional sensitivity equations [31] besides the PDE-constraint. However, the cost also
scales with the number of parameters np in this case, which inhibits their application for
our problem.

3.3. The Adjoint State Method

The adjoint state method provides an alternative to calculate the gradient. Details on
the method can be found in [31–33], while here we give the general steps that will later be
needed to apply it for problem (10).

The Levenberg–Marquardt method requires the Jacobian of the residuals h, while, for
the steepest descent, the gradient of the objective H is needed. Covering both cases, we con-
sider the gradient of a scalar valued functional ∇ph(ψ, p) with respect to p. The functional
h could be one component of the residual h, to gradually calculate the Jacobian for the
Levenberg–Marquardt method, or the objective H for the gradient used in steepest descent.
Without loss of generality, but, for simpler notation, the discussion here is limited to only
one PDE constraint where we consider the state variable ψ, which is implicitly related to
the parameters p by G(ψ, p) = 0 (omitting the index k for the beam configurations).

The introduction of a Lagrange multiplier, the adjoint state variable λ, allows for
stating the Lagrange function of the optimization problem:

L(ψ, p, λ) = h(ψ, p) + 〈λ, G(ψ, p)〉?. (11)

Here, 〈ψ, φ〉? =
∫ ε1

ε0

∫
Ω ψ(x, ε)Tφ(x, ε)dx dε denotes the scalar product in function

spaces, 〈·, ·〉 is the scalar product in Rn. For G(ψ, p) = 0, one recognizes the equality of L
and h, which implies the equality of their gradients ∇pL = ∇ph.

Consider the directional derivative dL
dq = 〈∇pL, q〉 of the Lagrangian L in a direction

q. Using ψq, the direction of change of the state variable corresponding to a small perturba-
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tion of the parameters, such that G(ψ + τψq, p + τq) = O(τ2), the directional derivative
can be written as

d
dq
L = 〈 δh(ψ, p)

δψ
, ψq〉? + 〈

δh(ψ, p)
δp

, q〉+ 〈λ,
[

δG(ψ, p)
δψ

]
(ψq) +

[
δG(ψ, p)

δp

]
(q)〉?. (12)

Here, δh/δψ denotes the functional derivative, δh/δp the vector of partial derivatives
with respect to p, not including the variation due to ψp, and [δG/δ·] the corresponding
Fréchet derivative operators. Multiple calculations of Equation (12), while iterating over
the unit vectors as direction q, accumulate to the gradient∇ph, but would include multiple
expensive calculations of the direction ψq. To avoid this calculation, Equation (12) is
rearranged to

d
dq
L = 〈 δh(ψ, p)

δψ
+

[
δG(ψ, p)

δψ

]∗
(λ), ψq〉? + 〈

δh(ψ, p)
δp

+
δ〈λ, G(ψ, p)〉?

δp
, q〉, (13)

where [δG/δψ]∗ is the adjoint operator of the Fréchet derivative [δG/δψ]. The crux of the
adjoint state method is to force λ to satisfy the adjoint state equation

δh(ψ, p)
δψ

+

[
δG(ψ, p)

δψ

]∗
(λ)

!
= 0, (14)

such that the first scalar product in Equation (13) including ψq vanishes and only the
second scalar product remains as the directional derivative of L. Then, the gradient ∇ph is
identified as

∇ph =
δ

δp
(h(ψ, p) + 〈λ, G(ψ, p)〉?). (15)

To calculate the full gradient, one evaluation of the adjoint state Equation (14) is
sufficient because it does not depend on the direction q. Its structure is usually similar
to the structure of the forward equation G(ψ, p) = 0 but depends on the specific form of
the adjoint operator. Being an essential component of the method, the adjoint operator for
our problem (Equation (10)) will now be derived under consideration of the form of the
PDE-constraint G (Equation (5)).

3.4. Adjoint State Method for the M1-Model Constraint

The adjoint state method bases on the identity

〈λ,
[

δG(ψ, p)
δψ

]
(ψq)〉? = 〈

[
δG(ψ, p)

δψ

]∗
(λ), ψq〉?. (16)

The adjoint operator [δG/δψ]∗ allows for isolating the direction ψq in the scalar product
of Equation (13), which subsequently enables stating the adjoint state Equation (14). To
derive the adjoint state equation for the M1-model, this identity must be considered,
taking G from Equation (5) into account. The Fréchet derivative of G can be found using
the Jacobians of the flux functions JψFd(ψ) =: Ad(ψ). Inserting into Equation (16) and
proceeding using integration by parts yields
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〈λ,
[

δG(ψ, p)
δψ

]
(ψq)〉? = 〈λ,−∂ε(Sψq) +

3

∑
d=1

∂xd(Ad(ψ)ψq)− Tψq〉?

=
∫ ε1

ε0

∫
Ω

λT(−∂ε(Sψq) +
3

∑
d=1

∂xd(Ad(ψ)ψq)− Tψq)dx dε

=
∫ ε1

ε0

∫
Ω
(S∂ελ−

3

∑
d=1

AT
d (ψ)∂xd λ− Tλ)Tψq dx dε

+
∫

Ω

[
−SλTψq

]ε1

ε0
dx +

∫ ε1

ε0

∫
∂Ω

λT Ax0(ψ)ψq
...

λT AxD (ψ)ψq

 · n ds dε

︸ ︷︷ ︸
!
=0

= 〈S∂ελ−
3

∑
d=1

AT
d (ψ)∂xd λ− Tλ, ψq〉?

= 〈
[

δG(ψ, p)
δψ

]∗
(λ), ψq〉?.

(17)

The boundary integrals, which are enforced to be zero, yield boundary conditions for
the adjoint state variable λ. At energy ε1, the state variable ψ is specified by the bound-
ary condition of theM1-model which does not depend on the parameters p; therefore,
ψq(ε1) = 0. At energy ε0, we have to prescribe the adjoint state variable λ(ε0) = 0. In
addition, the boundary term for the spatial boundary ∂Ω with outer normal vector n has
to vanish, which yields boundary values for λ on ∂Ω. Their numerical implementation is
discussed along with the boundary conditions for the forward model in Section 4.

Then, the adjoint state equation to be solved for the adjoint state variable λ is given by

δh(ψ, p)
δψ

+ S∂ελ−
D

∑
d=1

AT
d (ψ)∂xd λ− Tλ = 0. (18)

To solve the adjoint equation, the solution ψ of the forward equation G(ψ, p) = 0 has
to be known, since AT

d (ψ) and δh(ψ,p)/δψ depend on it.
The term δh/δψ acts as a source to the adjoint state variable and depends on the

choice of the functional h to be differentiated. For the Levenberg–Marquardt algorithm,
the calculation of the gradient of each residual is required, thus we choose h = hj =

kj(ψ, p)− kexp
j . Since in Equation (3) the first component of the state variable ψ(0) enters

the integral linearly, the functional derivative of one residuum hj is given by

δhj

δψ
=

(
ξ j(x, ε)

03×1

)
, where ξ j(x, ε) = e−

∫
d µj dyNV

i σemiss
j . (19)

Here, ξ j collects all weighting factors of the integral in Equation (3).
To implement the steepest descent method, the gradient of the objective H is required;

therefore, h = H = ‖h‖2
2 and, by a similar argument as above, its functional derivative is

δH
δψ

=

(
2 ∑nk

j=1 hjξ j(x, ε)

03×1

)
. (20)

Having the adjoint equation determined by the adjoint operator and the respective
source for the adjoint state variable, the calculation of the gradient via the adjoint state
method can be summarized by

1. the solution of the forward equation G(ψ, p) = 0 for ψ,
2. the solution of the adjoint Equation (18) for λ and
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3. the calculation of the gradient ∇ph(ψ, p) = δ
δp (h(ψ, p) + 〈λ, G(ψ, p)〉)

In comparison to a finite difference approximation with np + 1 solutions of a PDE,
the adjoint state method only requires the solving of the forward (first step) and the adjoint
(second step) equation to calculate the gradient. The calculation of the gradient (third step)
can usually be implemented efficiently. Consequently, the adjoint state method offers an
efficient way to determine the gradient to be used in an iterative optimization method for
our problem (10).

4. Numerical Implementation
4.1. Material Parameterization

The subdivision of the material into reconstruction pixels (see Figure 1) motivates
the discretization of the mass fractions as piecewise constant functions. Each parameter
describes one of the constant mass fractions in one of the reconstruction pixels. Note that,
due to the conditions on c (c.f. Section 2), ne − 1 parameters per pixel are sufficient.

4.2. Solving the M1-Model Using Clawpack

The form of Equation (5) motivates the application of finite volume methods to
approximate its solution. Our solver of theM1-model in two spatial dimensions is imple-
mented using the finite volume library Clawpack/pyclaw [27]. A pseudo time variable
t(ε) = ε1− ε transforms the energy interval to be compatible with Clawpack’s formulation.
The term −∂ε(Sψ) can then be split into −ψ∂εS and S∂tψ, where the first acts like a source
term and the second fits to Clawpack’s formulation with S being the capacity function. The
capacity coefficient and the source term are applied to the solution via the ‘before-step’ and
the ‘source’ function defined by Clawpack. Furthermore, it is important to choose the grid
of finite volume cells at least as fine as the reconstruction pixels and to assure that their
cell/pixel boundaries coincide.

To implement a Riemann solver, we, as suggested in [26], approximate the Jacobian
A ≈ JψFd(

ψL+ψR
2 ) at each cell interface using the average of the state variable ψ. (See

Appendix A.4 for the analytical form of the Jacobian of the flux function JψF1(ψ).) Then,
A is numerically decomposed in eigenvalues and eigenvectors A = RΛR−1 on the basis
of which the wave speeds Λ, the wave strengths R−1∆ψ = R−1(ψR − ψL) and right and
left going fluctuations apdq = R max{Λ, 0}R−1∆ψ and amdq = R min{Λ, 0}R−1∆ψ can
be identified.

Spatial boundary conditions on ∂Ω are implemented in Clawpack using ghost cells
surrounding the computational domain. At the boundary where the beam enters the
domain, the ghost cells are updated using Equation (8). The remaining ghost cells are set
to zero, justified by the assumption that the computational domain is large enough such
that no electrons reach those boundaries.

4.3. Implementation of the k-Ratio Model

Clawpack discretizes the electron fluence into ‘snapshots’ of the solution at specific
energies with piecewise constant cell values in space. The spatial integral for the k-ratios k
in Equation (3) reduces to a weighted summation over all cells. The attenuation coefficients
for each cell is approximated using the path from its midpoint to the detector, which is
split in segments overlapping the reconstruction pixels. For the integral in energy, the
trapezoidal rule is applied.

4.4. Adaptions to Solve the Adjoint State Equation and Compute the Gradient

Analogous to the M1-model, the adjoint Equation (18) is also implemented using
Clawpack/pyclaw taking into consideration the reversed direction of computation. Using
another pseudo time variable for the adjoint τ(ε) = ε− ε0, the term S∂ελ can be written
as S∂τλ so that it matches Clawpack’s interface. For the wavespeeds, wavestrengths and
fluctuations, the same Riemann solver as for the forward problem is employed. It is only
modified to calculate the waves of the transposed Jacobians AT

d (ψ) instead of the Jacobians
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Ad(ψ). To evaluate the Jacobians, the whole forward solution is stored in memory. Via
Clawpack’s ‘source’ function, the source term of the adjoint state variable, depending on the
required gradient, is integrated. At energy ε0, we choose λ(ε0) = 0 as the initial condition,
while the ghost cells of the spatial boundary are set to Clawpack’s ‘extrapolate’ setting.

The partial derivatives in Equation (15) are computed using the algorithmic differenti-
ation tool jax [34].

5. Numerical Experiments

The following numerical examples illustrate the application of the presented methods
and demonstrate their capabilities and limitations. We use synthetic measurements in our
experiments which are computed using the same forward model as used for the inversion.
The utilized optimization method does not guarantee convergence to a global minimum,
and no constraints are enforced on c. Overcoming those limitations and implementing a
more robust reconstruction method is left for future work.

5.1. Reconstruction on a Small Grid
5.1.1. Zeroth Moment of the Electron Fluence: M1-Model

Under investigation is a domain Ω = [0, 1000] nm× [−800, 0] nm of a sample consist-
ing of copper and manganese. The domain Ω is partitioned into 10× 10 reconstruction
pixels, with a width of 100 nm× 80 nm, as indicated by the grid in Figure 3. The mass
fraction of copper cCu in each cell is randomly chosen from a uniform distribution over
[0, 1]; consequently, the mass fractions of manganese are cMn = 1− cCu. The solution of the
M1-model is computed on a smaller grid with 160× 120 grid cells, with 170 time/energy
steps between the initial energy ε1 = 13 keV and the cutoff energy ε0 = 5 keV.

Bombarding this sample with an electron beam from above in a negative y-direction
(beam energy εbeam = 12 keV, σε = 0.1 keV, beam position xbeam = (500, 0)T nm, σx = 30 nm),
produces the zeroth moment of the electron fluence ψ0 shown in Figure 3. It displays three
snapshots of ψ0 in energy space as a heat map over the domain Ω. Figure 3 also illustrates
the interaction volume, the volume where ψ0 > 0, which is larger than the reconstruction
pixels p1,...4.

While the number of electrons with high energy is highest near the point of electron
impact, electrons with lower energy are more widely distributed in the sample. The contri-
bution of each pixel to the k-ratios scales linearly with the zeroth moment of the electron
fluence (Equation (3)), hence a measurement carries most information from pixels close to
the surface near the point of electron impact. It is impossible to gain information about the
chemical composition in pixels where ψ0 is zero, so only pixels lying sufficiently close to
the surface can be reconstructed.
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Figure 3. The electron fluence ψ0(x, ε) induced by a centered electron beam (εbeam = 12 keV,
σε = 0.1 keV and xbeam = (500, 0)T nm, σx = 30 nm) for three different energies ε ∈ {11, 9, 7} keV.
Discretization of theM1-model in (nx, ny, nε) = (160, 120, 170). White lines indicate the size of the
reconstruction pixel. The white dashdotted (p1), solid (p2), dashed (p3) and dotted (p4) pixel are
reconstructed in Section 5.1.5.

5.1.2. Convergence to a Particular Solution

In order to show convergence of the M1-model solver and the k-ratio model to a
particular solution, we investigate the difference of a solution ψ0 calculated with different
resolutions to a reference solution ψ0

∗ calculated with high resolution (320× 240, cell size:
3.125 nm× 3.3 nm). Additionally, the k-ratios k based on the variable resolution ψ0 are
compared to the k-ratios k∗ computed with the high resolution ψ0

∗. Figure 4 shows the
convergence to the reference solution with decreasing cell sizes. The different resolutions
as well as other model parameters are shown in Table 1.

Table 1. Discretization and model parameters used for the convergence analysis.

spatial domain Ω [0, 1000] nm× [−800, 0] nm

spatial grid 40× 30 (25 nm× 26.6 nm), 80× 60 (12.5 nm× 13.3 nm),
160× 120 (6.25 nm× 6.6 nm)

spatial grid (reference) 320× 240 (3.125 nm× 3.3 nm)
energy range [5, 13] keV
energy steps 350
beam configuration 12 keV σε = 0.1 keV, 500 nm σx = 30 nm
k-ratios Cu Kα, Mn Kα
detector position (500, 50) nm
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Figure 4. Error of the solution of the M1-model ψ0 and the k-ratios k compared to a reference
solution calculated with high resolution ψ0

∗ and k∗. The cell size of the reference solution is 3.125 nm,
and the energy interval is discretized in 350 steps. For reference, the gray dashed and dotted lines
indicate the first and second order.

5.1.3. Synthetic Measurements

To mimic a reconstruction problem, we generate synthetic k-ratios (Cu Kα and Mn Kα)
from the six different beam configurations given by the beam positions and parameters in
Table 2. This yields a set of 12 k-ratios, which we consider as synthetic data kexp. All other
model parameters are taken from the previous example (Table 1).

Table 2. Beam configurations used to generate synthetic k-ratio measurements.

beam energies and positions (450 nm, 12 keV), (450 nm, 11 keV), (450 nm, 10 keV),
(550 nm, 12 keV), (550 nm, 11 keV), (550 nm, 10 keV)

beam widths σε = 0.1 keV, σx = 30 nm

5.1.4. Objective Function

In order to give an insight into the behavior of the inverse problem of reconstruc-
tion, we will evaluate the objective function ‖k(ψ, p)− kexp‖2

2. All k-ratios, synthetic
measurements and modeled k-ratios are computed using the same discretization (spatial
grid: 80× 60, energy steps: 100) of theM1-model. Both plots in Figure 5 visualize the
dependency of the objective function on two of the four parameters describing the mass
fractions in the reconstruction pixels. The parameters p1 and p2 describe reconstruction
pixels that are next to each other while the pixel belonging to p3 is above that of p2, cf.
the marked cells in Figure 3. The parameters in all other reconstruction pixels are kept
to the values used to calculate the synthetic data. The crosses mark the hidden truth,
i.e, the parameter values used to calculate the synthetic data. Both contour plots show a
unique minimum with a convex objective function, which, however, cannot be expected
for the case where all parameters are simultaneously variable. Nevertheless, Figure 5
gives an intuition into the nature of the problem. The shape of the objective function,
which increases less rapidly in the direction in which the parameters cancel each other out,
e.g., increasing pa while decreasing pb, shows that the pixels can partially compensate for
each other. It is not detectable in which pixel the x-rays were generated, so an increase
in the mass fraction of an element in one pixel may be counteracted to some extent by a
decrease in its mass fraction in an adjacent pixel. Therefore, a high spatial resolution can
only be achieved by combining measurements obtained from experiments with different
electron beam positions and energies.

In addition, the greater elongation in the right plot indicates that it is more difficult
to resolve the vertical direction than the lateral direction. The intensity of detected X-rays
generated deeper inside the material is lower due to the decreased electron energy and the
increased absorption, hence the sensitivity of the k-ratios to changes in the mass fractions
of deeper pixels decreases. Using different electron beam energies, the depth of pixels
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which get excited can be varied and better discrimination of vertical pixels can be achieved.
However, the reconstruction of vertical pixels is more difficult than the reconstruction of
lateral pixels because, in lateral reconstruction, different electron beam positions can be
used to excite only certain pixels. In vertical reconstruction, higher lying pixels are always
excited as well.

0.0 0.2 0.4 0.6 0.8 1.0

p1

0.0

0.2

0.4

0.6

0.8

1.0

p
2

objective - lateral

0.0 0.2 0.4 0.6 0.8 1.0

p3

objective - vertical

0.1

0.2

0.3

0.4

0.5

Figure 5. Contour lines of the objective function, the least squares error of Cu and Mn k-ratios from
six electron beam positions and energies. In the left-hand plot, two parameters describing pixels lying
next to each other are varied, and, in the right-hand plot, two parameters lying below each other are
varied, see Figure 3 for the scenario, pixel size, and position. In both cases, all other parameters are
fixed to their hidden truth values. The cross marks the hidden truth of the variable parameters.

5.1.5. Reconstruction of Four Parameters

Using the Levenberg–Marquardt optimization algorithm to minimize the objective
function of the artificial reconstruction problem yields the optimum illustrated in the
left-hand plot of Figure 6, together with the initial values and their evolution during the
optimization. Synthetic measurements are computed using the following discretization of
theM1-model: 160× 120 spatial grid, 300 energy steps. For the reconstruction, multiple
discretizations are used: a 40× 30 spatial grid with 70 energy steps, a 80× 60 spatial grid
with 100 energy steps and a 160× 120 spatial grid with 300 energy steps.

The hidden truth values are marked with solid lines, which after around 10 steps are
identified by the optimization algorithm. The dotted, dashed, and dashdotted lines show
the evolution of the parameters during the optimization for the different discretizations.
Using the same resolution as used for the synthetic measurements (160× 80, dashdotted
line) yields a perfect reconstruction. For other resolutions, the reconstructed parame-
ters differ from the hidden truth but converge to similar values. This is due to the fact
that the k-ratios also differ when being calculated from the same parameters but with
different discretizations. The right-hand plot shows the value of the objective function
over the steps of the Levenberg–Marquardt iterations. Again, deviations are visible for
different discretizations.

The size of the reconstruction pixel is smaller than the size of the interaction volume (c.f.
Figure 3); nevertheless, the iterative reconstruction method is able to reveal the mass frac-
tions. The combination of measurements with different electron beam configurations and
overlapping interaction volumes allows the reconstruction with a high spatial resolution.



Math. Comput. Appl. 2021, 26, 51 14 of 19

0 1 2 3 4 5 6 7 8 9 10 11 12

iteration step

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
a
ss

fr
a
ct

io
n

c
C
u

0 1 2 3 4 5 6 7 8 9 10 11 12

iteration step

10−13

10−11

10−9

10−7

10−5

10−3

10−1

o
b

je
ct

iv
e

40x30

80x60

160x120

p1

p2

p3

p4

Figure 6. The iterative reconstruction of the mass fractions of copper in each of the four variable
pixels and the value of the objective function using the Levenberg–Marquardt algorithm. The mass
fraction of manganese can be deduced from 1− cCu. Dotted, dashed, and dashdotted lines show
the reconstructions where different discretizations of the M1-model are used. Solid lines show
the hidden truth of all four parameter values. The synthetic measurements are generated with a
resolution of 160× 120, hence the perfect reconstruction using this resolution. Using other resolutions,
the reconstruction also converges to similar values.

5.2. Reconstruction on Small Vertical Layers

We now consider the reconstruction of a material consisting of iron, nickel, and
chromium arranged in vertical layers with a size of 50 nm, which is smaller than the size
of the interaction volume. The material is excited by beams with an energy of 17 keV and
positions centered on each of the vertical layers. All model parameters and discretizations
used in this example are given in Table 3. In Figure 7, the iterative reconstruction of the
mass fractions is illustrated. The hidden truth configuration of all layers is shown as the
background color, where blue is chromium, red is nickel, and the remaining orange part is
iron. The Levenberg–Marquardt iterations for the mass fractions of chromium and nickel
in each layer are shown by the blue solid and red dotted lines. The mass fraction of iron
can be deduced (c.f. Section 2). From the initial configuration (the leftmost point in each
layer), all parameters are reconstructed successfully. The rightmost point in each layer
shows the mass fractions after six iterations. The algorithm was able to identify the mass
fractions in all vertical layers.

Table 3. Discretization and model parameters used for the reconstruction of a layered material.

spatial domain Ω [0, 1000] nm× [−800, 0] nm
reconstruction pixel 20× 1 (50 nm)
spatial grid 40 × 40 (25 nm× 20 nm)
energy range [5, 18] keV
energy steps 200
beam positions {25, 75, 125, 175, . . . 925, 975} nm σx = 30 nm
beam energy 17 keV σε = 0.125 keV
k-ratios Cr Kα, Ni Kα, Fe Kα
detector position (500, 50) nm
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Figure 7. Reconstruction of a vertically layered material. Electron beams bombard the sample
from above with 17 keV centered at each of the 50 nm layers, whose interfaces are indicated by
vertical black lines. The background color shows the hidden truth mass fraction of each layer (blue:
chromium, red: nickel, orange: iron). The lines (blue solid: chromium, red dotted: nickel) in each
layer show the Levenberg–Marquardt steps from initial (left) to sixth iteration (right). These two
parameters are sufficient to describe all three mass fractions (see Section 2). No additional constraint
was applied during the optimization, hence the nonphysical behavior cCr + cNi > 1 during the
optimization. Nevertheless, all parameters are reconstructed successfully.

6. Conclusions and Outlook

The results presented in this paper illustrate the potential of using high-resolution
deterministic models (e.g., theM1-model in BCSD) for the implementation of a reconstruc-
tion method that improves the spatial resolution of EPMA. Although a compromise must
always be found between higher resolution and the number of measured values or the
computing effort, the size of the reconstruction pixels is no longer limited by the size of the
interaction volume and can be selected independently.

The reconstruction can be formalized as a deterministic PDE-constrained optimization
problem and can be implemented using iterative gradient-based minimization techniques.
Hereby, the computation of the derivative of the objective function forms the major part
of the calculation of the next iterate. Hence, the adjoint state method, which efficiently
calculates the gradient, yields significant reductions in computing time over e.g., the finite
difference method.

Having the possibility to resolve fine structures in materials using EPMA raises the
question about the confidence in a reconstruction. By means of the numerical examples,
it was illustrated that reconstruction pixels close to the surface are easier to reconstruct
than pixels deeper inside the material, and other pixels are not reconstructible. A high
number of parameters, for example in a 3D reconstruction, increases the problem of
underdetermination and raises the need to include prior knowledge about the material,
e.g., in the form of additional regularization. Furthermore, an uncertainty quantification
of the reconstruction result based on the uncertainty of the model and the measurements
would provide deeper insight. In any case, the noise of real experimental data must be
considered since the strength of the noise influences the accuracy of the reconstruction.
Reconstruction experiments based on real measurements should be accompanied by a
careful parameter study, since the uncertainty for many of the parameters used in this
model is unclear. Nevertheless, the examples presented in this paper indicate the potential
of using deterministic k-ratio models to improve the spatial resolution of EPMA compared
to conventional methods by implementing a more sophisticated reconstruction method.
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Appendix A. Additional M1-Model Equations

Appendix A.1. Stopping Power

The stopping power follows from modeling the energy loss of electrons as a continuous
process in BCSD. In this work, we evaluate the stopping power of an element i at electron
energy ε by the analytical Bethe-loss formula [1,18]:

Si(ε) =
2πe4Zi

Ai(4πε0)
2ε

ln(b
ε

Ji
). (A1)

Except for the electron energy ε, all remaining quantities are constants: the vacuum

permittivity ε0, the elementary charge e, a relativistic constant b =
√

e
2 as well as the atomic

mass Ai and the atomic number Zi. The mean ionization potential Ji of element i can be
calculated from its atomic number Zi

Ji = e

{
9.76Zi + 58.8(Zi)

−0.19 , Zi > 6
11.5Zi , Zi ≤ 6

. (A2)

Appendix A.2. Transport Coefficient

The transport coefficient used in this work neglects inelastic collisions and is based on
the screened Rutherford cross-section [1,18]

Ti(ε) =
2πe4

16(4πε0)2ε2
(Zi)

2

Ai
(A3)(

8
cos(θ0,i(ε))− 3

+ 4(ln(3− cos(θ0,i(ε)))− ln(1− cos(θ0,i(ε))))

)
.

Here, θ0,i is the screening angle, Ri is the screening radius, and λ(ε) the De-Broglie wave-
length

θ0,i(ε) =
λ(ε)

2πRi
, Ri = aH(Zi)

− 1
3 , λ(ε) =

h√
2m0ε

. (A4)

In addition to the constants defined in Appendix A.1, the Bohr radius aH , Planck’s
constant h, and the electron rest mass m0 are used.

Appendix A.3. Eddington Factor

The Eddington factor χ implicitly depends on ||α|| and is approximated by a rational
function in ||α|| (c.f. [18])

χ(||α||) ≈ a6||α||6 + a4||α||4 + a2||α||2 + a0

||α||4 + b2||α||2 + b0
, (A5)

with the coefficients given in the following table.

i 6 4 2 0

ai 0.720371 −0.139318 0.348509 0.621529
bi - - −1.32002 1.87095

https://github.com/tam724/m1epma
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Appendix A.4. Jacobian of the Flux Function

In the following, we will derive an analytical expression of the Jacobian of the flux
function with respect to ψ = (ψ(0), (ψ(1))T)T = (ψ(0), ψ

(1)
x , ψ

(1)
y , ψ

(1)
z )T . Exemplarily, we

will only consider the flux function into direction of the first unit vector F1(ψ) = F(ψ)e1.
Using the definition α = ψ(1)/ψ(0) and the fact that ψ(0) ≥ 0 [18], the outer product in

the flux function can be simplified to

α

||α|| ⊗
α

||α|| =
1

||ψ(1)||2
ψ(1) ⊗ ψ(1) =

1
||ψ(1)||2


(

ψ
(1)
x

)2
ψ
(1)
x ψ

(1)
y ψ

(1)
x ψ

(1)
z

ψ
(1)
y ψ

(1)
x

(
ψ
(1)
y

)2
ψ
(1)
y ψ

(1)
z

ψ
(1)
z ψ

(1)
x ψ

(1)
z ψ

(1)
y

(
ψ
(1)
z

)2

. (A6)

For a compact notation, we, if possible, replace occurring terms with α, ||α||, and
||ψ(1)|| and abbreviate

t1 :=
1− χ(||α||)

2
, t2 :=

3χ(||α||)− 1
2||ψ(1)||2

, (A7)

t3 :=
χ′(||α||)

2
(
ψ(0)

)2||α||
and t4 :=

3t3||ψ(1)||2 − 3χ(||a||) + 1
||ψ(1)||4

, (A8)

which allow for writing the flux function F1(ψ) (c.f. Equation (5)) as

F1(ψ) =



ψ
(1)
x

ψ(0)


t1

0
0

+ t2


(

ψ
(1)
x

)2

ψ
(1)
x ψ

(1)
y

ψ
(1)
x ψ

(1)
z




︸ ︷︷ ︸
=:t5


. (A9)

We differentiate the individual parts separately for ψ(0) and ψ(1). Starting with
(t1, 0, 0)T , differentiation yields

Jψ(0)

t1
0
0

 = t3

||α||2ψ(0)

0
0

 and Jψ(1)

t1
0
0

 = t3

−
(

ψ(1)
)T

01×3

01×3

 =: T1 (A10)

Similarly, for t2, we get

Jψ(0)(t2) = −
3t3

ψ(0)
and Jψ(1)(t2) = t4

(
ψ
(1)
x ψ

(1)
y ψ

(1)
z

)
. (A11)

The combined derivative of t2 and the first column of the tensor product ψ(1) ⊗ ψ(1)

results in

Jψ(0)

t2
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)2
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 = −3ψ

(1)
x t3α and (A12)
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 =: T2. (A13)
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With the two auxiliary matrices T1, T2 ∈ R3×3, the derivative of the flux function
JψF1(ψ) is given by

Jψ(F1(ψ)) =


0 1 0 0

t5 + ψ(0)

t3||α||2ψ(0)

0
0

− 3ψ
(1)
x t3α

 ψ(0)(T1 + T2)

. (A14)

While exploiting similarities in the other two flux function, their Jacobians JψF2(ψ)
and JψF3(ψ) can be derived accordingly.
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