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Abstract: Some analytical methods are available for temperature evaluation in solid bodies. These
methods can be used due to their simplicity and good results. The main goal of this work is to present
the temperature calculation in different cross-sections of structural hot-rolled steel profiles (IPE, HEM,
L, and UAP) using the lumped capacitance method and the simplified equation from Eurocode 3.
The basis of the lumped capacitance method is that the temperature of the solid body is uniform
at any given time instant during a heat transient process. The profiles were studied, subjected to
the fire action according to the nominal temperature–time curves (standard temperature-time curve
ISO 834, external fire curve, and hydrocarbon fire curve). The obtained results allow verifying the
agreement between the two methodologies and the influence in the temperature field due to the use
of different nominal fire curves. This finding enables us to conclude that the lumped capacitance
method is accurate and could be easily applied.

Keywords: lumped capacitance method; simplified equation; steel profiles; nominal temperature-
time curve

1. Introduction

Fire is a very complex phenomenon and can cause severe structural damages. A
temperature–time curve evolution is always considered in fire analysis design. Temperature-
time curves are analytical functions of time that give a temperature, and they are termed
nominal because they do not represent a real fire but instead measure temperatures of pre-
vious fires and are therefore standardized. Since they are conventional, such relationships
are thus to be used in a prescriptive regulatory environment, and any requirement that
is expressed in terms of a nominal curve is prescriptive. According to Eurocode 1, fire
action is defined as a temperature-time curve, which represents the time evolution of a
gas temperature surrounding the structure. Eurocode 1 introduces three different nominal
temperature-time curves: the standard temperature-time curve, the external temperature-
time curve, and the hydrocarbon temperature-time curve. Each of these curves is used for
special types of fires [1–3].

The standard temperature-time curve, also referred to as the ISO 834 curve, is the most
common standard fire curve used internationally for fire resistance testing of components.
This curve has been used in standard fire tests to rate structural and separating elements,
which can be used for all fire design scenarios. The standard nominal curve ISO 834,
suitable for civil structures, which are characterized by cellulosic materials, helps to define
the conditions when the temperature increases according. This curve represents a fully
developed fire in a compartment. The ISO curve reference is due to the ISO 834 standard.
When a requirement is expressed as Rxx, where xx could be equal to 30 or 60 min, for
example, the standard fire curve must be used to evaluate the fire resistance duration of
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the structural elements. This allows for a direct comparison between standard fire tests of
components rather than indicating how long the component will survive in the fire [1–4].

The external temperature-time curve is used for the outside surface of separating
external walls of a building, which are exposed to a fire that develops outside the building
or to the flames coming through the windows of a compartment situated below or adjacent
to the external wall. The external curve has the same behavior as the standard curve up to
approximately 650 ◦C but after then it remains constant [1,2].

The nominal curve, if the hydrocarbons burn, is used to describe fires, and to evaluate
the fire resistance of constructive elements where the temperature can increase more quickly
than that of the standard nominal curve, thus reaching higher values (as with combustible
liquids). The hydrocarbon temperature-time curve is used for representing the effects of
a hydrocarbon-type fire. It shows that the hydrocarbon curve increases very quickly and
reaches a constant value of 1100 ◦C after half an hour, whereas the standard curve increases
more progressively but keeps on increasing with time [1–3].

In fire resistance, the calculation of the temperature profile developed in the element
cross-sectional area, as a function of time, is called thermal analysis. In this type of
analysis, it is always necessary to carry out a structural analysis since any discrepancy in
the temperature field calculation can lead to the selection of an incorrect cross-sectional size
element or a decrease/increase in the required thickness to fire protection [2–5]. Thermal
analyses can be performed using experimental tests, simplified analytical methods, or
numerical methods. The study of structural elements subjected to fire is a subject that
has been extensively studied by several authors in recent years. However, it still has a
significant number of aspects to be known and developed, requiring further research.

In 2006, Franssen [6] conducted a study to verify if the simplified method proposed by
Eurocode 3 for temperature determination would have a significantly lower safety factor
than the method proposed by the same Eurocode 3 for profiles without protection since
a new correction factor for the shadow effect was introduced. The study was focused on
a nominal fire situation in which the profile was exposed on all sides to the fire action.
Thus, it was possible to demonstrate that the temperature field in steel profiles can differ
depending on the method used, mainly for profiles with I cross-sections, since the method
proposed by the new standard leads to a temperature profile with lower values. However,
this temperature reduction never exceeded 14%, and it is only registered for a short period.
For profiles with convex shapes, this method allows obtaining a higher temperature profile.
Finally, the author reported that it was not possible to conclude that the new method has a
lower security level and that it is not a consistent method for profiles with I sections.

In 2009, Wald et al. [7] carried out experimental tests in a compartment of a three-story
steel structure exposed to fire before its demolition. The main objective of the study was to
evaluate the temperature in the unprotected steel elements (IPN profiles) and then compare
it with the values obtained by the simplified equation proposed by Eurocode 3. It was
concluded that the simplified method proposed by Eurocode 3 showed good accuracy
when compared to the results obtained by the experimental tests.

In 2009, Rigobello et al. [8] addressed a study to evaluate the simplified equation to
calculate the temperature of the steel profiles subjected to fire proposed by the Brazilian
standard NBR 14323: 1999, which is based on Eurocode 3, and compared the results
with numerical simulations. The results were carried out on steel exposed on three sides
to the standard fire curve ISO 834, and they concluded that the standard fire leads to
satisfactory results.

In 2013, Dwaikat et al. [9] developed an easy-to-use analytical method to estimate the
temperature in the cross-sectional area of protected and unprotected steel profiles subjected
to fire. This method is based on the differential equation that governs heat transfer by
performing the following simplifications: the temperature in the steel profile cross-section
must be considered uniform, the radiation problem must be approximated to a convection
problem, the temperature in the protective material must be considered equal to the
temperature of the steel and fire, and the thermal properties of the steel and the protective
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material must be considered constant and not dependent on the temperature. To validate
the developed method, the authors performed a numerical simulation in the ANSYS®

program (Engineering Simulation Software, United States) of a steel profile subjected to fire
on three sides, protected by a cement-based and fireproof material (CAFCO300), usually
applied by spray. Based on this study, it was possible to conclude that the proposed method
can be applied to any fire curve for protected and unprotected profiles exposed to fire up
to three sides, since the obtained results are quite close to the numerical method, with an
error of less than 8%. In the end, the proposed method was compared with the “best-fit
line” method, concluding that it obtains better results and can be applied for a longer
time interval.

In 2016, Lausova et al. [10] presented a study to analyze the distribution of nonuni-
form temperatures in hollow square steel cross-sectional profiles. This study consisted of
numerical simulations, of four different profiles under fire on three sides, using the finite
element method in the ANSYS®. The authors considered the nonlinear thermal properties
of steel. The results of the numerical simulations were compared with those obtained
by the simplified equation of Eurocode 3 and with experimental tests performed by the
authors. It was concluded that there is a big difference between the temperature of the
unexposed side and the temperatures of the sides exposed to fire and that, for profiles
with the same sections, a smaller thickness decreases the temperature difference. It was
also emphasized that the exact knowledge of temperature distribution is very important,
especially in structures where thermal expansion is conditioned. Therefore, the obtained
results indicate that no simplified equation should be used to calculate temperatures in
hollow square sections exposed to fire on three sides.

In 2019, Correia et al. [11] presented a study, based a geometric and nonlinear material
analysis, to propose new expressions for the calculation of the steel profile mass factor
in contact with walls. In this study, 26 profiles were analyzed, with two different brick
wall thicknesses and with two orientations of the core in relation to the wall, giving a
total of 94 studied cases. To calculate the temperature field in the cross-sectional area of
the profile, the simplified equation proposed by Eurocode 3 and four different formulas
were used to calculate the mass factor. Then, using the finite element method with the
ABAQUS® program (Dassault DS Systems, France), the temperatures in the profiles’ cross-
sectional area were calculated to compare the results. In the end, the authors presented
correction coefficients to be applied in the Eurocode 3 formulas to obtain a more realistic
approximation of the temperatures in a profile during the occurrence of a fire.

Different research using experimental and numerical methodologies are used to
study the behavior of different materials under fire conditions [12–18]. Nevertheless,
there are some cases where analytical methods can be used. Two cases are of interest
for both practical uses and basic understandings of the influence of material properties
on their fire behavior. Firstly, in cases where bodies can be assumed to have a uniform
temperature at any instant during the transient process, so that the temperature gradient
may be considered negligible, such as thin solids or metals with high conductivity. Any
thermal analysis that uses this idealization can be performed using the lumped capacitance
method [18–23]. Secondly, in cases when a body can be assumed semi-infinitely thick for
the time span considered. Then, the surface temperature can be estimated by analytical
methods if the material properties are assumed constant. The European standards also
represent simplified equations for the temperature calculation of steel structures exposed
to fire.

This present paper examines the temperature distribution in different ranges of hot-
rolled steel profiles when submitted to fire at all four sides. The obtained results agree
between the lumped capacitance method and the simplified equation from Eurocode 3,
according to the use of different nominal temperature-time curves.

Discussion of results and the calculated relative error will give a clear insight into this
issue. The main goal of this work is to present the temperature calculation, using both
methods, in different cross-sections of structural hot-rolled steel profiles: I-beams with
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parallel flanges using the acronym IPE, heavy wide-flange beams, also called HEM, beams
with equal or unequal angles or L profiles, and channels that have conical internal flanges
or UAP.

The advantage of this work is the demonstration of two different forms of equations
for the simple temperature calculation in steel members that can be used from the scientific
and technical research fire community.

2. Thermal Properties

To calculate the temperatures in hot-rolled steel profiles exposed to fire, it is necessary
to consider the thermal material properties. The density of steel ρ is assumed to remain
constant and equal to 7859 kg/m3, as defined by Eurocode 3 [24]. The specific heat capacity
of steel Cs and the thermal conductivity λs are a function of the temperature evolution, as
presented in Eurocode 3 [24]. Figures 1 and 2 present the steel thermal properties used in
this work.

Figure 1. Thermal conductivity of steel.

Figure 2. Specific heat capacity of steel.
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3. Nominal Temperature–Time Curves

The environment temperature evolution due to a fire is given by one nominal time-
temperature curve, as represented in Figure 3, according to Eurocode 1 [3,4].

Figure 3. Nominal temperature-time curves.

The ISO 834 curve (standard temperature–time curve) is the one that has been used in
fire tests to rate structural and separating elements [1,3,4]. This curve is obtained as follows.

θ∞ = 20 + 345 log10(8t + 1) (1)

The external fire curve is used for the outside surface of separating the external walls
of a building [1,3,4]. This curve is a temperature-time relationship that is representative of
the reduced exposure experienced by building elements and is defined by Equation (2).

θ∞ = 20 + 660
(

1 − 0.687e0.32t − 0.313e−3.8t
)

(2)

The hydrocarbon fire curve, used for environments where a high degree of hydrocar-
bons is present, as for offshore oil installations or tunnels, is given by [3,4,25] as follows.

θ∞ = 20 + 1080
(

1 − 0.325e−0.167t − 0.675e2.5t
)

(3)

In the equations above, t is the time in min and θ∞ is the gas temperature in the fire
compartment in ◦C.

As represented in Figure 3, the hydrocarbon curve increases very quickly and reaches
a constant value of 1100 ◦C after 30 min [1]. The external fire curve reaches a constant
value of 680 ◦C after 20 min. The standard temperature–time curve gradually increases and
reaches 800–1200 ◦C. The standard curve gives temperatures of 842 ◦C at 30 min, 945 ◦C at
60 min, and 1049 ◦C at 120 min [26].

4. Calculation Methods

According to the Eurocodes, there are two main types of calculation methods for
steel structures exposed to fire—simple calculation methods and advanced calculation
methods [27]. For the design of individual steel members exposed to fire, simple methods
could be applied, often using hand calculations. The use of advanced methods is dedicated
to more complex structures that require the use of computer programs [27].

In this work, two simple methods are presented. One method consisting of the
simplified equation from Eurocode 3 [24], which is based on the principle that the heat
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entering the steel over the exposed surface area in a small-time-step is equal to the heat
required to raise the temperature of the steel, assuming that the steel temperature is uniform
over the cross-section [27]. Additionally, the lumped capacitance method is also considered,
which is very desirable due to its simplicity and accessibility since it is an easier transient
heat conduction approach that permits the temperature of the steel members to be analyzed
only as a function of time. Both methods can be used for a protected or unprotected steel
element on the assumption that the internal steel temperatures are constant.

Nevertheless, there are other analytical methods, using the Duhamel’s theorem and
Green’s functions, to determine steel elements in fire [28]. Heat transfer analysis of fire
steel elements normally requires the solution of a two-dimensional transient diffusion
equation. Since heating conditions assume steel members to be fully embedded in fire,
the two-dimensional problem can be approximated by the one-dimensional differential
conduction equation, assuming a steel lumped capacitance [28–30]. Duhamel’s theorem
provides a convenient approach for developing a solution to heat conduction problems
with time-dependent boundary conditions by using the solution to the same problem with
time-independent boundary conditions [28–30]. These methods are frequently used by
different authors to obtain easy solutions to compare with other methodologies.

5. Simplified Equation from Eurocode 3

The temperature increases over a given time step ∆t in the cross-sectional area for an
unprotected hot-rolled steel profile submitted to fire, which must be determined from the
simplified equation (EC3) presented in Eurocode 3 [24], according to Equation (4).

∆θa,t = ksh
Am/V
Cs ρ

.
hnet,d∆t (4)

where ksh is the correction factor for the shadow effect and is considered equal to unity
for conservative results, Am is the surface area of the member per unit length m2/m, V is
the volume of the steel member per unit length m3/m, Am/V is the section factor for
unprotected steel members m−1, Cs is the specific heat of steel J/kgK, and ρ is the density
of steel, as previously referred, according to Eurocode 3 [24], ∆t is the time interval, which
must not be taken as more than 5 s and

.
hnet,d is the net heat flux per unit area, in W/m2, due

to radiation and convection, which should be determined according to Eurocode 1 [3,26]
by the following expression.

.
hnet,d =

.
hnet,c +

.
hnet,r (5)

where
.
hnet,c is the net convective heat flux per unit area W/m2,

.
hnet,r is the net radiative

heat flux per unit area W/m2 and their values must be obtained from Equations (6) and (7),
respectively [26].

.
hnet,c = αc(θ∞ − θm) (6)

where αc is the coefficient of heat transfer by convection and should be taken as 25 W/m2K
for standard fires or 50 W/m2K for hydrocarbon fires, θ∞ is the gas temperature in the vicin-
ity of the fire exposed steel member, and θm is the surface temperature of the steel member.

.
hnet,r = φ.εm.ε f .σ.

[
(θr + 273)4 − (θm + 273)4

]
(7)

where φ is the configuration factor, which must be equal to unity, εm is the surface emissivity
of the member, ε f is the emissivity of the fire, generally taken as equal to unity, σ is
the Stephan Boltzmann constant, taken as 5,67 × 10−8 W/m2K4, and θr is the radiation
temperature of the surrounding environment of the steel member, being often considered
that θr = θ∞.

Regarding the time interval, ∆t, Eurocode 3-Part 1–2 [24] recommends the use of an
interval equal to or less than five seconds (∆t ≤ 5 s). To understand which interval leads to
the least errors, a study was performed on an Excel spreadsheet. Thus, it was considered
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to study that the minimum time interval to be used would be ∆t = 0.5, 1, 2, 3, 4, and 5 s. To
try to understand this restriction, ∆t = 10 and 20 s were also studied.

Figure 4 shows the evolution of the relative error, obtained for each solution time,
comparing the temperature using a time step equal to ∆t = 0.5 s (assumed as reference)
and a different time step. This study was carried out for different profiles, although only
the IPE 400 exposed to fire on four sides is presented, according to the ISO 834 nominal
fire curve.

Figure 4. Relative error for the use of EC3 method, IPE400.

Analyzing Figure 4, it is possible to verify that the simplified equation proposed
by Eurocode 3 is very susceptible to time variation in the first 15 min, which makes it
impossible to use time intervals higher than five seconds. However, after 30 min, the
selected time interval does not have much effect on the obtained results since, for all
studied time intervals, its error is almost zero. However, for the simplified Equation (4), a
time interval ∆t = 5 s was selected since the error obtained, when compared with shorter
time intervals, is insignificant. The same observation was obtained in all different profiles
in this study.

6. Lumped Capacitance Method

The assumption of the lumped capacitance method (LC) method or uniform tempera-
ture is a reasonable approximation when calculating the temperature of steel cross-sections
exposed to fire on all four sides. This type of formula is most accurate where it is used
repeatedly with sequential time steps. For the application of this method, the temperature
of a solid is assumed to be spatially independent or uniform. A perfect spatially uniform
transient temperature field does not exist and relatively uniform temperature distribution
within the solid should be assumed when compared to the distribution between the body
and its surroundings. This hypothesis is valid if the resistance to the heat conduction
within the solid is small in comparison to the heat transfer resistance between the solid and
ambient, with the calculated Biot number (Bi) [20,21,23]. This number plays an important
role in conduction involving convection effects. The Biot number is a dimensionless param-
eter, and it is defined as the ratio of the convection and the conduction thermal resistance,
according to Equation (8) [31].

Bi =
Lc αcr

λs
(8)

where Lc is the characteristic length of the solid shape, in m−1, defined as the ratio between
the solid volume and the cross-sectional area exposed to fire, and equal to the inverse
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of the section factor or massivity factor Am
V , λs is the steel thermal conductivity, which

is temperature dependent in W/mK (Figure 1), and αcr is the heat transfer coefficient by
convection and radiation W/m2K, which is given by the sum of the coefficient of heat
transfer by convection, αc, equal to 25 W/m2K, and the coefficient of heat transfer by
radiation, αr, which must be calculated according to Equation (9) [25].

αr = ε σ(θ + θ∞)
(

θ2 + θ2
∞

)
(9)

Similar to the mass factor, for prismatic bars, the characteristic length Lc can be
simplified according to Equation (10), which is a function of the cross-sectional area of the
hot-rolled steel profile A m2, the perimeter cross-section P m, and the profile length L m.

Lc =

(
Am

V

)−1
=

V
A

=
A × L
P × L

=
A
P

(10)

To apply this method to solids submitted to fire, it is necessary to consider the heat
transfer by radiation, since a large part of the heat flow transferred to the steel members is
through radiation [32]. The use of this method is generally accepted when the Biot number
is smaller than unity [25], where the resistance to conduction within the solid is much
less than the resistance to convection across the fluid boundary layer. This means that the
assumption of uniform temperature distribution is reasonable [20]. Therefore, solid bodies
with high thermal conductivity, as in the case of steel, are good candidates for the use of
this method. If the temperature in the element cross-section is uniform, i.e., θx,t ∼= θt, the
solution of Equation (11) allows obtaining the temperature as a function of time according
to the LC method [20].

θt = (θi − θ∞)e(−Bi.Fo) + θ∞ (11)

where θt is the temperature for a time t, (θi − θ∞) is the temperature difference at time t = 0,
Fo is the Fourier number, and θ∞ is the gas temperature in the vicinity of the fire exposed
steel member.

The Fourier number is a dimensionless ratio between the heat conducted through
the solid and the heat retained by the solid. A high Fourier value reveals a faster heat
spread through a solid body, and it is calculated for a time after a step change in ambient
temperature, according to the following equation [31]:

Fo = α
t

L2
c

(12)

In Equation (12), α represents the ratio of the thermal conductivity to the heat capacity,
which is an important property, termed as thermal diffusivity and given in m2/s [20].

α =
λs

ρ Cs
(13)

The characteristic length, equal to the inverse section factor, was determined for all
members, as shown in Table 1, according to the chosen hot-rolled steel profiles and their
cross-sectional area from the Arcelor catalog represented in Table 2 [33].

Table 1 represents the section factor Am
V for unprotected steel members, which mea-

sures the rate of temperature increase of a steel profile cross-section through the ratio of
the heated surface area to the volume, or the heated perimeter to the cross-sectional area.

For the LC method, the Biot number was below unit in all studies, as represented
in Figure 5.
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Table 1. Section factor values m−1.

Profiles IPE100 IPE300 IPE500 IPE600
Am
V 387.3837 215.5733 150.9564 129.1536

Profiles HEM100 HEM400 HEM700 HEM1000
Am
V 115.9488 61.4993 66.8315 67.8309

Profiles L 100 × 100 × 8 L 140 × 140 × 10 L 180 × 180 × 15 L 250 × 250 × 25
Am
V 255.4960 203.8704 138.2748 85.6769

Profiles UAP80 UAP150 UAP200 UAP300
Am
V 302.8423 230.8237 210.7968 165.1751

Table 2. Expressions used to calculate the section factors of IPE/HEM, L, and UAP, m−1.

IPE/HEM

Am
V = P

A =
4b+2d+4t f −2tw−4r+2πr

h×tw+2(b×t f )−2(t f ×tw)+4r2−πr2

L

Am
V = P

A =
2h+2b+2r1−4r2+2t+ πr1

2 +πr2

h×t+b×t− πr2
1

4 +
πr2

2
2 +r2

1−2r2
2−t2

UAP

Am
V = P

A =
h+d+4b+t f +2r+2t f −2tw+πr

h×tw+2(b×t f )−2(t f ×tw)− πr2
2 +2r2
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Figure 5. The Biot number.

The Biot number measures the temperature difference inside the solid in relation to
the temperature difference between the surface of the solid and that of the surrounding
environment. The lower the Biot number is, the lower this temperature difference and the
more uniform the temperature field inside the solid. In this way, it is possible to consider
a uniform temperature distribution for the entire cross-sectional area of the solid when
the value of the Biot number is much less than the unit (Bi << 1). It is desirable to use the
global capacitance method only when this condition is verified [22,23,34].

Figure 5 shows the evolution of the Biot number as a function of temperature, accord-
ing to the nominal curve ISO 834, for some of the hot-rolled steel profiles in this study.

Like the simplified equation proposed by Eurocode 3, it was studied what time interval
to use and how is the sensitivity of the method to the use of large time intervals. Thus,
in an Excel spreadsheet, considering that the minimum time interval to use would be
∆t = 0.5 s for the relative error calculation, the intervals ∆t = 1, 2, 3, 4, 5, 10, and 20 s were
also verified.

Figure 6 shows the relative error as a function of the fire time for each of the time
intervals mentioned for an IPE 400 profile subjected to the ISO 834 standard fire curve on
the four sides.

Figure 6. Relative error for use of LC method, IPE400.
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Comparing the errors obtained for the LC method with those obtained for the simpli-
fied method of Eurocode 3, it is possible to state that the LC method has less sensitivity to
the use of longer time intervals. For time intervals less than 30 min, this method causes
minor errors, unlike the simplified method recommended by Eurocode 3.

Even so, in this work, ∆t = 5 s was used, which is the same interval used in the
Eurocode 3 method.

7. Results and Discussion

Numerical and experimental investigations in different specimens from typical beam
cross-sections exposed to fire were, among others, reported by [1,2,30].

Analytical methods were used and compared with the experimental data results
obtained from a furnace that adopts the standard ISO fire curve. The results of comparison
for the same representative specimens of steel sections HEM, HEB, HEA, IPE, and U prove
reasonable accuracy between the chosen methods [30].

Numerical simulations of the thermal response of steel HE profiles subjected to the fire
curve ISO were analyzed by [1,2]. The authors concluded that the temperature field on the
steel cross-sectional profile exposed to all four sides shows an almost uniform temperature
in each time instant [1,2].

In this work, the results obtained from the LC method were compared with the results
from the EC3 method from Eurocode 3. To respond to the described objectives, an analysis
was made of the temperature evolution of the profiles of each studied range exposed to fire
according to the three nominal fire curves.

In Figures 7–9, it is possible to analyze the temperature–time history for different sizes
of the studied hot-rolled steel profiles.

Figure 7. Temperature–time history of different profiles under ISO 834 curve. LC and EC3 are in agreement.
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Figure 8. Temperature–time history of different profiles under external curve. LC and EC3 are in agreement.

Figure 9. Temperature–time history of different profiles under hydrocarbon curve. LC and EC3 are in agreement.
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Figure 7 represents the temperature–time history of different profiles under the ISO
curve that have a similar tendency to the previous investigations.

Figure 8 represents the temperature–time history of different profiles under the exter-
nal curve, and Figure 9 according to the hydrocarbon curve.

The results using the LC method agree with the results obtained from the simplified
equation of Eurocode 3 for all different types and sizes of the studied profiles. It is possible
to verify that, for IPE, L, and UAP hot-rolled steel profiles, when the profile size increases,
the temperature distribution decreases, except for the HEM steel profile. This fact is related
to the thickness of the HEM profile, which is the same for cross-section 320 and over,
increasing the fire exposed surface. In IPE, L, and UAP hot-rolled steel profiles, the section
factor decreases when the cross-section of the profile increases. The exception is the HEM
profile, in which the section factor decreases until HEM400 and then increases.

Analyzing the graphs, it is possible to state that the thermal analyses using the LC
method are close to those performed by the EC3 method since the temperature values are
very close for any hot-rolled steel profile size and any nominal fire curve.

All these results add to the state-of-the-art of previous research by the authors, who
formerly studied hollow tubular sections and a range of IPE profiles using numerical and
analytical methodologies [1,21].

In this study, as a conclusion, hot-rolled steel profiles that have cross-sectional areas
with low section factors will heat up more slowly, as referenced by K. Banerjee [34].

Figure 10 shows the relative error of the obtained results in relation to the simplified
equation. The maximum error obtained is 2% in IPE100 when using the Hydrocarbon
curve and for a time equal to 60 s. Nevertheless, the fire resistance might be not sensitive
to so small errors.

Figure 10. Relative error of the obtained results in relation to the EC3 method.

The analysis of Figure 10 shows that the error decreases with the increase in the profile
cross-section. It should also be noted that the maximum error obtained in the ISO 834 fire
curves and with external elements curves is similar, due to the similarity of the heating
curves in the initial moments. In all hot-rolled steel profiles, the biggest error is obtained
in the hydrocarbon fire curve due to its severity and the high-temperature increase in



Math. Comput. Appl. 2021, 26, 48 14 of 15

the initial instants. Thus, it is concluded that the LC method is valid and can be used as
an alternative to that proposed by Eurocode 3 (EC3 method) during the design of metal
structures for this type of profile.

8. Conclusions

Regarding the use of analytical methods, it was possible to verify that the LC method
can be used in design to determine the temperature evolution for profiles submitted to
different fire scenarios since the results obtained agree with those of the simplified equation
recommended by the Eurocode 3 for the studied profiles.

However, some limitations could arise when using the proposed approaches. The
LC method is a common approximation in transient conduction heat transfer, which may
be used when the resistance to heat transfer by conduction inside the body is smaller
than the resistance to the heat transfer across the boundary of the body [1]. With the EC3
method, an equivalent uniform temperature distribution through the cross-section needs
to be assumed. Additionally, the section factor value should not be taken less than 10 m−1,
because such a massive section would not have a uniform temperature, and ∆t should not
be taken as more than 5 s.

With the thermal analysis carried out using the analytical methods, it was possible to
conclude that the lower the profile section factor is, the lower the temperatures developed in
the cross-sectional area during exposure to fire. The section factor decreases with increasing
cross-sectional size for all profile ranges studied, except for HEM profiles. Thus, it appears
that the profiles with higher fire resistance have a larger cross-section, except for HEM
profiles, since HEM 1000 has higher temperatures than HEM 320.
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7. Wald, F.; Chlouba, J.; Uhlíř, A.; Kallerová, P.; Štujberová, M. Temperatures During Fire Tests on Structure and its Prediction

According to Eurocodes. Fire Saf. J. 2009, 44, 135–146. [CrossRef]
8. Rigobello, R.; Neto, J.M.; Silva, V.P. Análise Numérica da Elevação de Temperatura em Secções Transversais de Elementos

Estruturais em Situação de Incêndio. Rev. Sul-Am. Eng. Estrut. 2009, 5, 40–58.
9. Dwaikat, M.M.S.; Kodur, V.K.R. A Simplified Approach for Predicting Temperatures in Fire Exposed Steel Members. Fire Saf. J.

2013, 55, 87–96. [CrossRef]
10. Lausova, L.; Skotnicova, I.; Michalcova, V. Thermal Transient Analysis of Steel Hollow Sections Exposed to Fire. Perspect. Sci.

2016, 7, 247–252. [CrossRef]
11. Correia, A.; Lopes, P.; Rodrigues, J.P.; Correia, J. Proposta de Novas Expressões para o Cálculo do Fator de Massividade em Perfis

Estruturais em Contacto com Paredes. In Proceedings of the 5th Iberian-Latin-American Congress on Fire safety, Porto, Portugal,
15–17 July 2019; pp. 359–369.

12. Fonseca, E.M.M.; Leite, P.A.S.; Silva, L. Wood Connections Under Fire Conditions Protected with Gypsum Plasterboard Types A and
F. Advances in Fire Safety Engineering; Piloto, P.A.G., Ed.; CILASCI 2019; Lecture Notes in Civil Engineering; Springer: Cham,
Switzerland, 2020; Chapter 7; Volume 1, pp. 93–106. [CrossRef]

https://www.iso.org/standard/2576.html
https://www.iso.org/standard/2576.html
http://doi.org/10.1016/j.firesaf.2005.11.007
http://doi.org/10.1016/j.firesaf.2008.05.002
http://doi.org/10.1016/j.firesaf.2012.10.018
http://doi.org/10.1016/j.pisc.2015.11.040
http://doi.org/10.1007/978-3-030-36240-9_7


Math. Comput. Appl. 2021, 26, 48 15 of 15

13. Fonseca, E.M.M.; Silva, L.; Leite, P.A.S. Numerical model to predict the effect of wood density in wood–steel–wood connections
with and without passive protection under fire. J. Fire Sci. 2020, 38, 122–135. [CrossRef]

14. Couto, D.L.; Fonseca, E.M.; Piloto, P.A.; Meireles, J.M.; Barreira, L.M.; Ferreira, D.R. Perforated cellular wooden slabs under fire:
Numerical and experimental approaches. J. Build. Eng. 2016, 8, 218–224. [CrossRef]

15. Łukomskia, M.; Turkowski, P.; Roszkowski, P.; Papis, B. Fire Resistance of Unprotected Steel Beams–Comparison between Fire
Tests and Calculation Models. Procedia Eng. 2017, 172, 665–672. [CrossRef]

16. Wang, Y.; Chuang, Y.-J.; Lin, C.-Y.; Zhang, H. The Standard Fire Testing and Numerical Modelling of the Behavior of Calcium
Silicate Board Metallic-Framework Drywall Assembly with Junction Box. Adv. Mater. Sci. Eng. 2018, 2018, 8130647. [CrossRef]

17. Yang, J.; Shao, Y.B.; Chen, C. Experimental study on fire resistance of square hollow section (SHS) tubular T-Joint under axial
compression. Adv. Steel Constr. 2014, 10, 72–84. [CrossRef]

18. Oliveira, P.N.; Fonseca, E.M.M.; Campilho, R.D.S.G. Easy trends to analyse structural profiles: Lumped capacitance vs simplified
equation. Int. J. Saf. Secur. Eng. 2020, 10, 625–629. [CrossRef]

19. Fonseca, E. Thermal Analysis of Hollow Tubular Sections under High Temperatures. Front. Eng. Mech. Res. 2013, 2, 9–14.
20. Incropera, F.P.; De Witt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons:

Hoboken, NJ, USA, 2010.
21. Fonseca, E.; Ferreira, D.; Barreira, L. Profiles Submitted to Fire: Lumped Capacitance Method Versus Computational Model.

Rev. Assoc. Port. Análise Exp. Tensões 2016, 27, 1–5.
22. Xu, B.; Li, P.W.; Chan, C.L. Extending the validity of lumped capacitance method for large Biot number in thermal storage

application. Solar Energy 2012, 86, 1709–1724. [CrossRef]
23. Baglio, S.; Castorina, S.; Fortuna, L.; Savalli, N. Modeling and design of novel photo-thermo-mechanical microactuators.

Sens. Actuators A Phys. 2002, 101, 185–193. [CrossRef]
24. CEN. Design of Steel Structures; EN1993-1-2: Eurocode 3. Part 1–2: General Rules-Structural Fire Design; The European Union:

Brussels, Belgium, 2005.
25. Wickstrom, U. Temperature Calculation in Fire Safety Engineering; Springer: Cham, Switzerland, 2016.
26. Purkiss, J.A.; Li, L.-Y. Fire Safety Engineering Design of Structures, 3rd ed.; CRC Press: New York, NY, USA, 2014.
27. Buchanan, A.H.; Abu, A.K. Structural Design for Fire Safety, 2nd ed.; John Wiley & Sons: Chichester, UK, 2017.
28. Mesquita, L.M.R.; Piloto, P.A.G.; Vaz, M.A.P. Temperature evaluation in steel fire protected elements with intumescent coating.

WIT Trans. Built Environ. 2007, 94. [CrossRef]
29. Wang, Z.-H.; Tan, K.-H. Temperature prediction for contour-insulated concrete-filled CHS subjected to fire using large time

Green’s function solutions. J. Constr. Steel Res. 2007, 63, 997–1007. [CrossRef]
30. Wang, Z.-H.; Tan, K.-H. Green’s function approach for heat conduction: Application to steel members protected by intumescent

paint. Numer. Heat Transf. Part B 2008, 54, 435–453. [CrossRef]
31. Holman, J.P. Heat Transfer, 10th ed.; McGraw Hill: New York, NY, USA, 2010.
32. Hurley, M.J.; Gottuk, D.T.; Hall, J.R., Jr.; Harada, K.; Kuligowski, E.D.; Puchovsky, M.; Watts, J.M., Jr.; Wieczorek, C.J. SFPE

Handbook of Fire Protection Engineering, 10th ed.; Springer: New York, NY, USA, 2015.
33. ARCELOR Sections Commercial, S.A: Beams, Channels and Merchant Bars Catalog. 2021. Available online: https://sections.

arcelormittal.com/products_and_solutions/products_range/EN (accessed on 28 March 2021).
34. Banerjee, K. Uncertainties in steel temperatures during fire. Fire Saf. J. 2013, 61, 65–71. [CrossRef]

http://doi.org/10.1177/0734904119884706
http://doi.org/10.1016/j.jobe.2016.10.007
http://doi.org/10.1016/j.proeng.2017.02.078
http://doi.org/10.1155/2018/8130647
http://doi.org/10.18057/IJASC.2014.10.1.5
http://doi.org/10.18280/ijsse.100506
http://doi.org/10.1016/j.solener.2012.03.016
http://doi.org/10.1016/S0924-4247(02)00200-5
http://doi.org/10.2495/SAFE070231
http://doi.org/10.1016/j.jcsr.2006.08.014
http://doi.org/10.1080/10407790802554034
https://sections.arcelormittal.com/products_and_solutions/products_range/EN
https://sections.arcelormittal.com/products_and_solutions/products_range/EN
http://doi.org/10.1016/j.firesaf.2013.08.012

	Introduction 
	Thermal Properties 
	Nominal Temperature–Time Curves 
	Calculation Methods 
	Simplified Equation from Eurocode 3 
	Lumped Capacitance Method 
	Results and Discussion 
	Conclusions 
	References

