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Abstract: Compared to conventional vapor-compression refrigeration systems, magnetic refrigeration
is a promising and potential alternative technology. The magnetocaloric effect (MCE) is used to
produce heat and cold sources through a magnetocaloric material (MCM). The material is submitted
to a magnetic field with active magnetic regenerative refrigeration (AMRR) cycles. Initially, this
effect was widely used for cryogenic applications to achieve very low temperatures. However,
this technology must be improved to replace vapor-compression devices operating around room
temperature. Therefore, over the last 30 years, a lot of studies have been done to obtain more efficient
devices. Thus, the modeling is a crucial step to perform a preliminary study and optimization. In
this paper, after a large introduction on MCE research, a state-of-the-art of multi-physics modeling
on the AMRR cycle modeling is made. To end this paper, a suggestion of innovative and advanced
modeling solutions to study magnetocaloric regenerator is described.

Keywords: magnetocaloric effect; magnetic refrigeration; (semi-)analytical modeling; bibliographic study

1. Introduction
1.1. General Context

In order to reduce greenhouse gas emissions and to decrease the carbon footprint,
it is necessary to develop an alternative to the most polluting technologies. Among
these technologies, the heating and cooling devices for a large part of the greenhouse gas
emissions represent about 17% of the global electricity consumption [1]. This demand
will increase in the next few years. In the current context, it is important to reduce this
part of the consumption. Indeed, current cooling devices use refrigerant fluids such as
hydrofluocarbons or more recently hydrochlorofluocarbons which are very polluting and
harmful. For this reason, innovative studies for alternative refrigerants are performed [2,3].
To solve these problems, the AMRR seems to be a good alternative and one of the most
promising technologies to replace actual cooling and heat pumping devices operating at
room temperature [4].

The magneto-thermal effect was demonstrated by Gilbert (1600) [5], by showing the
influence of temperature on the magnetic performance of an iron wire. The MCE was
discovered by Warburg (1881) [6] and explained by Weiss and Picard (1918) [7]. First
applications of MCE have been used for refrigeration, which is the most appropriate field
for this phenomenon. In 1926, Debye proved that the MCE could be used to reach the 0 K
with a cooling device [8]. One of the first devices was made by Giauque and MacDougall
(1933) [9]. The first prototype operating around room temperature was developed by
Brown (1976) [10]. Interest in this technology has increased significantly over the last
30 years and many prospects are being considered [11]. Other applications such as heat
pumping are possible to exploit this effect, as showed by Tishin and Spichkin (2014) [12].
Recently, Kitanovski (2020) [13] reviewed the historical progress of this technology.
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Throughout an adiabatic process, the MCE results from the change of the MCM tem-
perature when they are subjected to a magnetic field variation. The magnetization, induced
by (electro)magnet, increases the material temperature. This is a reversible effect. When
the material is removed from the magnetic field, a decrease of the material temperature is
induced. This effect is maximal around the Curie temperature of the material. Indeed, one of
the most popular materials for near room temperature applications is the Gadolinium (Gd)
(Figure 1) with a Curie temperature of 293 K. Despite its good characteristics, Gd can generate
a temperature difference of 3 K under a magnetic field of 1 T. However, for applications at
typical room temperatures, MCE alone is insufficient to be competitive with actual device.
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To increase the temperature differences, it is necessary to develop devices that will
perform AMRR cycles. This regenerator exchanges heat with a crossing fluid that circulates
between two external heat sources (cold and hot). This heat transfer between these lasts
increases the difference of their temperature. This type of cycle is called AMRR cycle [16].
To increase the efficiency, it is also possible to realize cascade systems consisting in several
interconnected regenerators connected by heat sources [17]. However, it is necessary to
technically and economically improve this technology, as well as the current devices, for a
better commercialization. A scientific and technological breakthrough is needed to design
a device with such feasibility and performance.

The modeling is an important step in the design of new devices. An efficient model
permits to make several investigations to earn time and to increase efficiency of a device.
For this review, the choice is made to focus the investigations on analytical modeling and on
mathematical models solved with numerical software (semi-analytical). The investigated
model can be one-dimensional (1-D), two-dimensional (2-D), or three-dimensional (3-D). In
the literature, a previous review has already been done on modeling by Nielsen (2011) [18]
and more recently in the PhD thesis of Plait (2019) [19]. Only models with a direct study on
the AMRR cycles are described. They consider a regenerator exchanging heat fluxes with a
liquid. These models consider at least the thermal and the fluidic effects.

This article shows the importance of the modeling for studies and improvements
of new and future devices using MCE. It focuses on the advantages of a new type of
modeling applied to magnetic refrigeration. It begins with a state-of-the-art of the existing
AMRR modeling in the scientific literature. A review of modeling applied to magnetic,
thermodynamic, fluidic, and thermomagnetic phenomena is made and compared to the
current state of the AMRR modeling. Then, a conclusion with an overview on next works on
the AMRR modeling is made. It is particularly shown that the (semi-)analytical modeling is
one of the promising ways to obtain optimized efficiencies for AMRR devices in the future.

1.2. Material and Magnetocaloric Effect Modeling

Many investigations are made on the regenerator geometry and its structure. Con-
cerning this last, it is more effective to have multi-layered (multi-stage) regenerator [20].
The type of material is also important. The studies of new MCM alloys are a key point to
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increase the performances of AMRR device. Indeed, a more performant MCM produces
a higher temperature span for a same flux density. Many alloys are investigated to find
new materials [21]. Recently, Ram et al. (2018) [22] reviewed a large amount of MCMs
(i.e., manganite, composites and alloyed materials, spinel ferrites). They highlighted the
composition and characteristics of each material they identified (i.e., magnetic entropy
change, Curie temperature, field change, relative cooling power). They can be classified in
two groups according to their magnetic phase transition, first-order or second order phase
transition MCM. These magnetic phase transitions influence the material behavior under a
magnetic field [4] (Figure 2).
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A first order material is characterized by high variations of entropy and magnetization
with temperature. The inconvenient is that this effect may be clouded for a very short
temperature range. A second order material can be used on a larger temperature range,
but the effect would then be less important. Some materials have both advantages for first-
and second-order magnetic phase transition. These materials permit to obtain a giant MCE.
Pecharsky and Gschneider showed for the first time in 1997 the giant MCE in Gd5(Si2Ge2)
with a Curie temperature of 276 K [23].

The regenerator shape is very important and is directly responsible for device effi-
ciency. Plenty of geometric shapes allowing to have an optimized heat transfer between the
solid and the fluid should be considered. There are many regenerator geometries available:
(i) micro-channel [24], (ii) packed bed of spheres [24], (iii) powder [25], (iv) cylinders [25],
(v) honeycomb shape [26], (vi) parallel plates [27], (vii) flakes particles [28], (viii) thin
ribbon [29], (ix) sheets [30].

Research laboratories carry out studies on materials. Some of them are described
below. Few papers focus in the investigation on the demagnetization effect in materials.
A model developed by Shir et al. (2004) [31] was made to study magnetization and
demagnetization. The model can be used to optimize the design of an AMRR and to
determine the temperature evolution of the MCM. Peksoy and Rowe (2005) [32] studied
this effect with a 2-D numerical model. They investigated a two layered AMRR composed
of Gd and alloy of GdTb (Terbium). They highlighted the importance to reduce the
demagnetization effect to increase the efficiency of magnetic cycles, especially on the
regenerator edge where the demagnetization is important. Also, Rowe and Tura (2008) [33]
developed a 2-D numerical model with the finite-element method (FEM) to study the
demagnetization effect. They demonstrated the importance of using passive magnetic
material to decrease the demagnetization effects and to increase the performance of the
AMRR. Huang and Teng (2004) [34] developed an evaluation model by the algorithms
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derivation procedures to make preliminary analysis in the design of magnetic refrigerator.
The model was composed of the related term to the magnetism, entropy and the free energy.
The input of the model is the entropy. The output is the temperature span generated by the
studied system. The model has been validated by the comparison with the simulation of
Ericsson and Brayton cycles.

Von Ranke et al. (2005) [35] proposed an analytical study about the board MCE
observed for MnAs alloys under pressure and discovered by Gama et al. (2004) [36].
According to them, this effect finds its origin in the entropy variation coming from the
lattice through the magneto-elastic coupling. They want to understand this effect and its
contribution on the MCE. Their analytical model enabled observation of the entropy and
the magnetization variations according to the temperature (Figure 3). With their model and
in order to make an adapted study of the MCE, they pointed out the necessity to consider
the coupling between magnetic and crystal lattice. Indeed, this relation is a key point
to estimate the variation of the MCM entropy. They performed a parametric study and
investigated several sets of parameters to observe how the total entropy change is affected
by the lattice entropy. The sets are composed of two parameters (i.e., for the set 1: γ = 0,
η = 0). The parameter γ is the Grüneisen parameter and η is a parameter which controls
the order of the magnetic phase transitions.
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Kawanami et al. (2006) [37] studied the optimization of an experimental device. The
device uses air as heat transfer fluid. The rate and the temperature of air flow at the
entrance of the device are regulated. The considered magnetic working substance is Gd
packed chips. The aim is to find an optimal behavior of the device. In order to achieve
their optimization, they developed an analytical model to determine the evolutions of
the air and the MCM temperatures. They measured and simulated the evolution of the
air temperature with the air flow rate, in the phase of (de)magnetization (Figure 4). The
analytical and experimental results show differences because the used Gd is composed with
iron and aluminum that have impurities. Gschneider (1993) [38] showed the importance
of high purities on the material performances. They made other simulations to observe
the temperatures evolution of the air and the Gd during some cycles. The device and the
analytical model are still simple, but they highlighted the MCE and the importance of
working near the Curie temperature of the MCM.
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F. Allab et al. (2006) [39] developed a 2-D model considering the magnetic flux density
distribution and the interaction between the magnetic source and the MCM. They studied
the magnetic flux density distribution for two types of systems: (i) a Halbach cylinder (the
simple and double structures are compared) constituted of permanent magnets (PMs), and
(ii) a mixed C-structure made of PMs and ferromagnetic yokes. They have also studied the
magnetic force distribution in another structure. This last was a simple geometry, composed
by two PMs and ferromagnetic materials and an air-gap between them. The MCM moves
inside and outside the air-gap during the simulation. They have compared and analyzed
the magnetic force distribution during the magnetization and demagnetization phases. The
magnetic flux density and force calculations have been validated using a 3-D FEM with the
Flux3D® software. The comparison showed a good accuracy of their model (Figure 5). Other
papers have conducted a study on the optimization of Halbach cylinders, such as Bjørk et al.
(2008) [40]. The authors showed the interest of using Halbach cylinders as a magnetic field
source to increase the efficiency of magnetic cooling. They investigated the optimal design of
a Halbach cylinder to achieve the best magnetic cooling efficiency with MCM.
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More recently, Fortkamp et al. (2017) [41] proposed a parametric study on the perfor-
mance of two-poles nested Halbach cylinders for the AMRR and heat pumping applications.
In order to perform this parametric analysis, they made an analytical model by extending
the single-cylinder solution of Bjørk et al. [42]. This analytical model solves the Maxwell’s
equations for the magnetic field and flux density. Then, results of the analytical model
have been validated with numerical simulations on COMSOL Multiphysics®. The system
is composed of two Halbach cylinders of NdFeB PMs, which generates a magnetic field
between them. The AMRR is disposed in the air-gap between the cylinders. The calcu-
lations aim to observe the magnetic flux density as a function of different parameters as
the magnetic field and flux as well as the geometric parameters. Indeed, a high magnetic
flux density involves high system efficiency. The authors searched the best combination of
geometric parameters to improve the magnetic flux density (Figure 6). They studied how
the geometric parameters influence the efficiency of the device by observing the variation
of the magnetic circuit characterization parameter Λcool . A device with a high value of
Λcool means that it can provide a large temperature variation.
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Hess et al. (2020) [43] created an empirical model of materials to study a first-order
MCM La(Fe,Mn,Si)13 alloy-based. They used a modified Cauchy-Lorentz function as a base
function of the specific heat capacity. The model of the relevant equations is determined
from the specific heat capacity also function of the temperature and the magnetic field. The
performances of the model are compared to measured data (Figure 7). According to the
authors, a better agreement with measured data can be achieved through more degrees
of liberty of the model. Nevertheless, it also increases the complexity of the model. The
model can be implemented in a more global model to simulate cooling devices using a
first-order MCM. Then the chosen compatibility seems to be a best way compared to the
obtained accuracy of the model integrated into a complete modeling system. Their model
gives an analytical description of the thermal behavior of the caloric material. Previously,
another model has been developed by Hess et al. (2018) [44].



Math. Comput. Appl. 2021, 26, 47 7 of 37

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 6 of 34 
 

 

model have been validated with numerical simulations on COMSOL Multiphysics®. The 
system is composed of two Halbach cylinders of NdFeB PMs, which generates a magnetic 
field between them. The AMRR is disposed in the air-gap between the cylinders. The cal-
culations aim to observe the magnetic flux density as a function of different parameters as 
the magnetic field and flux as well as the geometric parameters. Indeed, a high magnetic 
flux density involves high system efficiency. The authors searched the best combination 
of geometric parameters to improve the magnetic flux density (Figure 6). They studied 
how the geometric parameters influence the efficiency of the device by observing the var-
iation of the magnetic circuit characterization parameter Λ௖௢௢௟. A device with a high value 
of Λ௖௢௢௟ means that it can provide a large temperature variation. 

 
(a) 

 
(b) 

Figure 6. Influence of the air gap height on the magnetic circuit performance: (a)  Λ௖௢௢௟ (viz., the 
magnetic circuit characterization parameter); (b) each individual term which composes Λ௖௢௢௟ [41]. 

Hess et al. (2020) [43] created an empirical model of materials to study a first-order 
MCM La(Fe,Mn,Si)13 alloy-based. They used a modified Cauchy-Lorentz function as a 
base function of the specific heat capacity. The model of the relevant equations is deter-
mined from the specific heat capacity also function of the temperature and the magnetic 
field. The performances of the model are compared to measured data (Figure 7). Accord-
ing to the authors, a better agreement with measured data can be achieved through more 
degrees of liberty of the model. Nevertheless, it also increases the complexity of the model. 
The model can be implemented in a more global model to simulate cooling devices using 
a first-order MCM. Then the chosen compatibility seems to be a best way compared to the 
obtained accuracy of the model integrated into a complete modeling system. Their model 
gives an analytical description of the thermal behavior of the caloric material. Previously, 
another model has been developed by Hess et al. (2018) [44]. 

 
(a) 

 
(b) 

Figure 7. Comparison of the modeled and measured (a) adiabatic temperature and (b) isothermal 
entropy evolutions with temperature [43]. 

Figure 7. Comparison of the modeled and measured (a) adiabatic temperature and (b) isothermal entropy evolutions with
temperature [43].

1.3. AMRR Device

Many reviews and states-of-the-art on the experimental devices are available: Yu et al.
(2010) [45], Kitanovski et al. (2015) [46], Trevizoli et al. (2016) [47], and Greco et al.
(2019) [48]. Overview tables in [46] and [48] summarize the characteristics of each existing
device (i.e., MCM used, the magnetic field source, the year of production, the type of
devices, the performances...). There are three types of devices: rotary, linear, and static
according the magnetic field source and the regenerator. The electromagnet can be used for
static operating conditions. With PMs or superconducting coils, the MCM must be removed
from the magnetic field to realize AMRR cycles (magnetization and demagnetization
phases). It is made with rotary and linear movements.

Recently, some prototypes have been achieved very high performances. The cooling
device of Jacobs et al. (2014) [49] (Figure 8) reached a cooling power of 2.5 kW for a range
of 11 K.
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Mira (2014) [27] and Plait (2018) [19] developed an experimental device (Figure 9). The
magnetic field source is an electromagnet composed of four coils generating a magnetic
flux density of 1 T in an air-gap of 2.1 cm. The goal was to characterize the thermo-fluidic
behavior and to maximize the performances of the device. This last reached a temperature
range of 7 K at the outputs of the regenerator.
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Chaudron et al. (2016) [50] developed a rotary device with very high performances.
Indeed, a temperature range of 20 K for a cooling power of 15 kW was generated. To achieve
such results, the magnetic field source was a NdFeB PM generating a 1.34 T magnetic
field. The regenerator was composed of a Gd alloy exchanging heat with water. The heat
exchange surfaces must be large to obtain such performances (Figure 10).
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More recently, an original study by Nakashima et al. (2021) [51] have been developed.
Authors worked on a magnetic device for wine cooling. For a room temperature of 298 K, the
device reached a temperature of 283.8 K inside the cabinet for a cooling power of 27.9 W. This
device permits to cool 31 bottles of wine (Figure 11). Globally, in order to develop this type of
magnetic refrigeration device, an efficient modeling should be initially performed.
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2. Multi-Physics Modeling of the AMRR

In this section, the presentation of models focuses on the (semi-)analytical modeling of
the AMRR technology; an overview on the existing accomplishments or to be done is made;
and a description of the considered geometry, the used method, and the obtained results so
that the author’s aims are described. The models are initially enumerated by type, then by
the considered geometry dimensions and lastly by the chronological publication date. The
more interesting model is described when an author has published several models. This
publication intends to be as comprehensive as possible in order to avoid any omissions.

2.1. Preamble

Table 1 makes the synthesis of the different models and provides a lot of information
as: characteristics and type of the model, physical phenomena, studied geometry with the
magnetic field source type—viz., PMs, superconducting magnet (SM) or electromagnet
(EM)—and the applied motion. The type of validation and a short description for each
model are also described. Classification is done according to the publication date (Table 1).
Some models are shortly mentioned but not developed in this table.

2.2. Thermo-Fluidic Modeling
2.2.1. 1-D Thermo-Fluidic Modeling

Smaïli and Chahine (1998) [52] studied the ∆T(T) profile impacts on the refrigerator
capacity and the thermodynamical cycle efficiency. They developed a 1-D model based
on partial differential equations solved with a finite-difference method (FDM). Debye’s
approximation and the molecular field theory are mainly used to estimate alloys ther-
momagnetic properties. They used the model to compare the thermal performances of
several composite MCM (seven Gd-Dy alloys and pure Gd) for a magnetic field of 7 T.
The model permits to determine and to compare the ∆T(T) profiles for several materials
(Figure 12). Results show that some alloys have better performances than the gadolinium.
The axial thermal conduction in the regenerator bed is neglected. Authors conclude that
the composite MCM has the best efficiency.
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Table 1. Models’ synthesis and characteristics.

Authors, Year, References Model Type, n-D Physical Coupling Magnetic Field Source,
Movement 1

Geometry of the Studied
MCM Validation Description

Smaïli and Chahine, 1998 [52] Semi-analytical, 1-D Thermo-fluidic Porous matrix Study of MCM composite and
thermodynamical cycle.

Allab et al., 2005 [53] Semi-analytical, 1-D Thermo-fluidic PM, translation Gd thin plate Experimental Study on the AMRR cycle.

Dikeos et al., 2006 [54] Semi-analytical, 1-D Thermo-fluidic SM, translation Gd puck Experimental Simulation of an
AMRR test device.

Sarlah et al., 2006 [55] Semi-analytical, 2-D Thermo-fluidic PM, rotary Gd honeycomb Study on the four steps of
an AMRR.

Bouchekara et al., 2008 [56] Semi-analytical, 1-D Thermo-fluidic Gd plates Numerical Inverse problem optimization
method to design an AMRR.

Petersen et al., 2008 [57] Semi-analytical, 2-D Thermo-fluidic PM, translation Gd parallel plates Numerical Study on parallel plates with
a 2-D model.

Engelbrecht et al., 2008 [58] Semi-analytical, 1-D Thermo-fluidic PM, translation Three parallel plates Experimental and
numerical

Model considering the
mechanical losses.

Nielsen et al., 2009 [59] Semi-analytical, 2.5-D Thermo-fluidic PM, translation Gd parallel plates Experimental Improvement of
Petersen’s model.

Bouchard et al., 2009 [60] Semi-analytical, 3-D Thermo-fluidic Gd spheres particles Experimental Study on a
porous regenerator.

Tagliafico et al., 2010 [61] Semi-analytical, 1-D Magneto-thermo-fluidic Gd Parametric study on the
AMRR performances.

Risser et al., 2010 [62] Semi-analytical, 1-D Magneto-thermo-fluidic PM Gd parallel plates Study of a MC system for an
industrial application.

Sarlah and Poredos, 2010 [63] Semi-analytical, 1-D Thermo-fluidic Gd spherical particles Experimental Study on a
dimensionless model.

Liu and Yu, 2011 [64] Semi-analytical, 2-D Magneto-thermo-fluidic Gd packed bed Experimental and
numerical

Study on the AMRR
performances and

temperature distribution.

Tušek et al., 2011 [65] Semi-analytical, 1-D Thermo-fluidic Packed bed Gd spheres Study on a large AMRR
operating conditions.

Rowe, 2012 [66,67] Semi-analytical, 1-D Magneto-thermo-fluidic Experimental Model to study the AMRR
thermodynamics.

Vuarnoz and Kawanami, 2012 [68] Semi-analytical, 1-D Thermo-fluidic PM, translation Stack of Gd wires Experimental Model to study
an AMRR geometry.

Oliveira et al., 2012 [69] Hybrid (analytical and
numerical), 2-D Thermo-fluidic PM Gd parallel plates Experimental Focus on the fluidic

phenomena in the regenerator.

Canesin et al., 2012 [70] Semi-analytical,
2-D or 3-D Thermo-fluidic Analytical and

numerical
Open source CFD program to

study AMRR geometry.

Risser et al., 2013 [71] Semi-analytical and
numerical, 1-D and 3-D Magneto-thermo-fluidic PM Gd parallel plates Experimental

Enhanced model to increase
the design efficiency of

future model.
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Table 1. Conts.

Authors, Year, References Model Type, n-D Physical Coupling Magnetic Field Source,
Movement 1

Geometry of the Studied
MCM Validation Description

Aprea et al., 2013 [72] Semi-analytical, 1-D Thermo-fluidic
Comparison between SOMT

and FOMT energy
performances.

Mira et al., 2014 [73] Semi-analytical and
numerical, 1-D Magneto-thermo-fluidic EM, static Gd parallel plates Experimental Multi-physics model, applied

to a test bench.

Burdyny et al., 2014 [74] Semi-analytical, 1-D Magneto-thermo-fluidic PM, rotary Gd spheres Experimental and
numerical

Performance of a
single-material AMRR with a

good accuracy.

Hsieh et al., 2014 [75] Semi-analytical, 2-D Thermo-fluidic Segments of Gd and GdTb Focus on a graded
AMRR performance.

Nikkola et al., 2014 [76] Semi-analytical, 1-D Thermo-fluidic
A model to study AMRR on

Matlab® with a Graphical
user interface.

Lei et al., 2015 [77] Semi-analytical, 1-D Thermo-fluidic PM Packed particles bed of
La(Fe,Mn,Si)13Hy

Experimental
An AMRR model to study

multi-layered
regenerator performances.

Lionte et al., 2015 [78] Semi-analytical, 2-D Thermo-fluidic PM Gd parallel plates Experimental Simulation performance of a
test bench.

Park et al., 2015 [79] Semi-analytical, 1-D Thermo-fluidic SM Experimental Model of a two-stage AMRR
with 2 MCM for each stage.

Trevizoli et al., 2016 [80,81] Semi-analytical, 1-D Thermo-fluidic PM, rotary Gd spheres Experimental
Mathematical modeling to

determine the thermal losses
for cooling applications.

Niknia et al., 2016 [82] Semi-analytical, 1-D Thermo-fluidic PM Gd spheres Experimental Study on the external losses.

Schroeder and Brehob, 2016 [83] Semi-analytical, 1-D Thermo-fluidic Gd parallel plates Experimental New four cycles consideration
of the AMRR processes.

Mugica et al., 2017 [84] Semi-analytical, 1-D Magneto-thermo-fluidic PM, translation Gd parallel plates Experimental and
numerical

The addition of insulator
layers within the MCM

increases the
temperature span.

Roy et al., 2017 [85] Semi-analytical, 1-D Thermo-fluidic Gd parallel plates Experimental
A model coupled with a

genetic algorithm to study
parallel plate AMRR.

Plait et al., 2018 [86,87] Semi-analytical and
numerical, 2-D Magneto-thermo-fluidic EM, static Gd parallel plates Experimental Multi-physics model,

application to a test bench.

Monfared, 2018 [88] Semi-analytical,
1-D and 3-D Magneto-thermo-fluidic PM, rotary Packed bed of Gd particles Experimental

Multi-physic model to design
and optimize a rotary

AMRR device.



Math. Comput. Appl. 2021, 26, 47 12 of 37

Table 1. Conts.

Authors, Year, References Model Type, n-D Physical Coupling Magnetic Field Source,
Movement 1

Geometry of the Studied
MCM Validation Description

Mugica et al., 2018 [89] Semi-analytical, 3-D Magneto-thermo-fluidic PM Random packed bed
particles Experimental

An original solver to study
random AMRR of packed

bed particles.

Teyber et al., 2019 [90] Semi-analytical, 1-D Thermo-fluidic PM Experimental Semi-analytic AMRR model
with Phyton ScyPy package.

Silva et al., 2019 [91] Semi-analytical, 1-D Thermo-fluidic PM, translation Numerical
Development of the python
framework: HEAt TRAnsfer

in Python (HEATRAPY).

Vieira et al., 2021 [92] Semi-analytical, 1-D Thermo-fluidic La(Fe,Mn,Si)13Hy
spheroidal particles Experimental

Study of the La(Fe,Mn,Si)13Hy
properties and performances
in an epoxy-bonded AMRR.

1 Determination of the type of motion of the magnetic field source considered by the studied geometry of the model. Most of the time, the utilization of PM or SM requires a movement (translation or rotation for
example) and an EM can be used without motion. These motions can carry out the cycles of magnetization and demagnetization.
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phenomena. Two more simulations of the temperature range evolutions with the fluid 
flow rate and the cycle frequency are made. The model shows a good reliability with the 
experimental measurements, excepted for small fluid flow rates for which the axial ther-
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Allab et al. (2005) [53] developed a 1-D time-dependent model to study the AMRR.
They do not consider the diffusion phenomena along the bed considered negligible. Only
the convection exchanges at the interface fluid-regenerator are considered. Authors use
the FDM to numerically simulate the model and to make the comparison with the experi-
mental results (Figure 13). The analytical model shows a good reliability with the thermal
phenomena. Two more simulations of the temperature range evolutions with the fluid
flow rate and the cycle frequency are made. The model shows a good reliability with the
experimental measurements, excepted for small fluid flow rates for which the axial thermal
conduction in the Gd is not anymore negligible. The model was improved by Roudaut et al.
(2011) [93] and was used to perform a parametric study of a parallel plate AMRR.
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Dikeos et al. (2006) [54] worked on a 1-D transient FEM developed with FEMLAB
(today COMSOL Multiphysics®). This model simulates the test of an AMRR device (called
AMRTA [94]) to determine the temperature range of a regenerator. The studied system
is composed of two regenerators separated by a cold space and a cylinder of SM for the
magnetic field source. The model has been validated through experimental measurements
performed on the AMRTA (Figure 14). As it can be seen, there is a good predictability of the
model excepted for the Gd for a high Curie temperature. In the paper, it is explained that
this phenomenon has already been noted by Rowe [95]. Two reasons can explain it: (i) the
ratio of the zero-field heat capacity on the full-field heat capacity is less than one, and (ii) it
can be seen a higher MCE at the cold end of the AMRR compared to that one at the hot end.
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Bouchekara et al. (2008) [56] developed a 1-D thermal semi-analytical model and a
new method to design AMRR systems. The model is solved numerically by using FDM.
An inverse approach has been considered to create the model. Indeed, the input used
by the model is the performance of the chosen system (viz., cooling power, temperature
profile, etc.). The outputs of the inverse problem optimization method are the geometry, the
dimensions of the system, the physical properties, the flow rate, etc. The model presents a
good accuracy (Figure 15). The results are relative to a system composed of Gd as MCM
and water as heat transfer fluid for a magnetic field of 0.8 T. The authors proposed to do
more studies with this more accurate and flexible method.

Engelbrecht et al. (2008, 2010, 2013) [58,96,97] developed a 1-D model to study an
AMRR system with three parallel plates. This model was compared to experimental results.
Very often, the effects of the demagnetizing fields, parasitic heat losses and fluid flow
maldistribution in the regenerator are neglected. Without considering these loss mecha-
nisms, the experimental results are overestimated by the model. Finally, they performed
several simulations to compare the accuracy of different modeling cases, varying the mass
flow rate of the fluid and the height of the regenerator channels (Figure 16). With a wide
regenerator and channels of 0.25 and 0.1 mm, the added maldistribution losses gave worse
predicted performances. However, this study showed the influence of the losses on the
model accuracy. These losses should be considered to properly predict the performances of
an AMRR device.

Sarlah and Poredos (2010) [63] did a 1-D model to simulate AMRR cycles. The model
gave dimensionless results (Figure 17). This model allowed to determine the heat transfer
coefficient of a regenerator and to simulate the AMRR device—i.e., a passive regenerator
with two additional parameters. It was possible to compare the temperature range of an
active and a passive magnetic regenerator. Results showed 25% higher temperature ranges
for the AMRR. The fluid used for simulations was a gas (helium) and the MCM was made
of Gd spherical particles. An increase of 10% and 4.4% were respectively observed for the
convection coefficient and the temperature range. Authors considered that a dimensionless
model was more adapted to compare the different studied magnetic refrigeration systems.
Previously, in 2005, the authors worked on a partial 2-D FDM heat transfer model composed
of a 1-D equation for the fluid and a 2-D equation for the solid [26].
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Tušek et al. (2011) [65] achieved a 1-D model to study an AMRR reciprocating opera-
tion. The model consists in a system of heat transfer equations solved with MATLAB®. The
FDM is used to discretize the governing equations and the boundary conditions. The model
can take into account various operating conditions, different AMRR geometries, MCM,
and fluids. The studied geometry is a packed bed composed of Gd spheres. The model
simulates the MCM temperature evolutions with an inverse Brayton’s cycle (Figure 18).
To avoid a multi-parametric optimization, the authors made the optimization with the
mass flow rate and the operating frequency in the packed bed AMRR. The influence of
the diameter of the spheres on the performances was also studied. Tests with a prototype
to validate the model was on going during the writing of this article. Thus, no more
publications concerning the subject are available.

Vuarnoz and Kawanami (2012) [68] realized a 1-D thermal model to perform a para-
metric study on an AMRR system made of Gd wire stack. They computed the model in
the Modelica language and considered the four steps of a Brayton’s cycle. The regenerator
was rectangular and constituted of Gd wires stack arranged in the same direction of the
fluid flow. The model analyzed the influence of some parameters as the frequency, the
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utilization factor (UF) and the temperature range on the coefficient of performance (COP)
and the cooling load of the system (Figure 19).
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One year later, the same authors coupled this model to a 2-D magnetic model [98].
This new model also included three sub-models [68,99,100]. The model took into account
the variation of the internal magnetic field, the MCE, and the heat transfer between the fluid
and the solid. This coupled magneto-thermal model has been validated with experimental
measurements (Figure 20).
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Aprea et al. (2013) [72] studied the magnetic transition of some MCM with a mathemat-
ical modeling. They have compared the energetic performance of the first-order magnetic
transition phase (FOMT) and the second-order magnetic transition phase (SOMT) of some
MCM and alloys. Their developed mathematical model estimates the refrigeration capacity,
the power consumption and the COP of an AMRR. It simulated the MCM and an AMRR
operating at room temperature with a Brayton’s cycle. They used it to compare the COP
and the refrigeration power of the FOMT and the SOMT (Figure 21). The figure shows the
obtained results for simulations in an ideal case. As we can see, a better COP was obtained
for the FOMT (Gd5Si2Ge2 and MnAs1−xSbx) alloys with the same water mass flow rate than
for the SOMT (Gd, Gd0.9Tb0.1 and Gd0.9Dy0.05) materials. However, the SOMT materials
lead to better refrigeration powers, especially the Gd. Simulations based on the fluid flow
circulation and the FOMT materials always provide the best COP. Authors demonstrated the
superiority of the Gd5Si2Ge2 as a magnetic material. Nevertheless, a multi-layer of SOMT
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materials has the same performances. Few years before, Aprea et al. worked on two other
models. The first was made by Aprea and Maiorino (2010) [101]. In that one, they developed
an analytical model to study the thermodynamical cycle of an AMRR by determining the
temperature profiles. Following year, Aprea et al. [17] proposed a model to simulate different
types of AMRR based on multistage Brayton’s cycles. In 2015, Aprea et al. worked on a 2-D
multi-physics model for a room temperature magnetic refrigeration application [102].
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Nikkola et al. (2014) [76] developed a 1-D AMRR model on MATLAB®. This 1-D model
presented new characteristics such as: (i) thermal losses in the regenerator, (ii) parasitic heat
exchange during adiabatic phases, and (iii) calculation of the AMRR cycle output power
for the steady state. This model determines the evolution of the temperature profiles of the
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fluid and the material inside the regenerator with the energy conservation law. Authors
created a graphic user interface permitting to enter the input parameters.

Park et al. (2015) developed a 1-D transient model validated by experimental results
of an AMRR device functioning at the room temperature [79]. The aim of the work
was to increase the cooling capacity of the device. The authors performed an original
design (Figure 22) using a two-stage regenerator with multi-layer in parallel of a hydrogen
liquefaction system. In the regenerator, helium was used as a heat transfer fluid and PM as
the magnetic field source. The heat exchanger was connected to two tanks (respectively
for hydrogen and for liquid hydrogen). The AMRR system was connected to the heat
exchanger by means of two baths (Figure 22a). The full regenerator included four different
MCM. The heat capacity and the magnetic entropy of each material was determined with
experimental results described in the literature.

Lei et al. (2015) [77] developed a 1-D AMRR model based on the Engelbrecht’s model [58].
The goal was to model multi-layer regenerators. Consequences of the number of layers, the
working temperature and the temperature range on the AMRR performances are investigated.
The partial differential equations (PDEs) of the model are solved using implicit time schemes.
These authors have developed other models. Lei et al. (2014) [103] developed a 1-D model to
compare novel and conventional regenerators. The study focused on the dead volume impacts
on the regenerator performances. Later, Lei et al. (2018) [104] used this model to analyze
and validate the results from an active test of epoxy bonded regenerators. Navickaitė et al.
(2019) [105] have worked on a model previously developed by Lei et al. (2016) [106] to
study bioinspired geometry for AMRR. They study a new flow structure of a solid AMRR,
composed of double corrugated tubes with an elliptical cross-section. The authors compared
this structure to two more conventional flow structures (i.e., a packed bed of spheres and a
cylindrical micro-channel matrix). They found interesting results with this new type of flow
structure which is more efficient and allows for increased maximum cooling power. They
suggest using the MCM more efficiently to achieve a lower investment cost.

Trevizoli et al. (2016) [80,81] made a 1-D model on an AMRR device. The first part of
the paper is dedicated to the description and the evaluation of the device performances. It
consists of two concentric Halbach cylinders as magnetic field source and small spheres
of Gd as MCM. Experimental measurements have been made and used to validate the
modeling. The 1-D mathematical model permitted to determine the fluid flow and the
heat transfer coefficient for a porous matrix (Figure 23) in order to determine the main
losses. According to the authors, important losses come mainly from the void (or dead)
volume between the regenerator and the two heat exchangers. Convection losses with
the external environment are not negligible. All of them affect the AMRR performance.
It is therefore always important to take them into account. Finally, the comparison with
experimental data showed good accuracy. Previously, Trevizoli et al. (2014) [107] worked
on the thermo-magnetic effect in the AMRR system, by studying the fluid flow and the
heat transfer processes.

Niknia et al. (2016) developed a 1-D transient model based on a resistance network
to study the performance of an AMRR considering external losses [82]. Experimental
measurements of a device called “the PM II” are used to validate the model [108]. The
magnetic field source is generated by two Halbach cylinders and the MCM is made of Gd
spheres. The heat transfer fluid is water (80%) added with glycol (20%). As already seen in
some previous models, they concluded that external losses have a significant influence on
the performances of the AMRR system. They considered the sinusoidal meshing technique
more adapted than the uniform meshing technique.
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Schroeder and Brehob (2016) [83] did a 1-D model computed with python for a FDM.
It permitted to determine the steady state cooling power of a multi-stage AMRR. The
model was validated with experimental measurements. According to the authors, the
AMRR model usually considers four independent cycles of the processes. However, in
these works, cycles are considered as continuous in the model. The studied system is a
regenerator constituted of Gd and is located between the two heat sources. The MCM and
the fluid are represented by nodes at each axial step. They improved the rapidity of the
average computation time by 50% by using convergence acceleration through the adjusted
derivation gain and a variable time step (Figure 24).
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The convergence appears when the curves reach a set value.

Roy et al. (2017) [85] developed a 1-D model to study a parallel plate regenerator
and to optimize its performances. Several parameters are retained, such as the mass flow
rate and the thickness of the plate and the fluid duct. They obtained optimal results with
a good computation time with a genetic algorithm. For this, they used a multi-objective
optimization with MATLAB®.

Teyber et al. (2018) [109] developed a semi-analytical AMRR model. The model was
implemented in Python using the open-source SciPY package [110]. Their goal was to screen
the best operating conditions and regenerator compositions, in order to perform an opti-
mization of the multi-layer AMRR. The semi-analytical model was optimized with a hybrid
method using firstly SciPY and then the sequential least squares quadratic programming
method. The studied device is composed of two cylindrical multi-layer regenerators. The
magnetic field of the device is generated by two nested concentric Halbach arrays which
produce 1.45 T. They divided the MCM in two parts. The first one—called ‘hot layer’—is
composed of Gd; and the second one—called ‘cold layer’—is an alloy of Gd and GdY. To
validate their model, they used two-layer performance data measured by an AMRR test
device (Figure 25). They finally found that the semi-analytical AMRR model gave good
predictive capabilities. A temperature range of 40 K was experimentally measured. One
year later, Teyber et al. (2019) [90] performed another semi-analytical model validated by
experimental measurements. They extended the previous model by discretizing the MCM
in four elements being described by equations. They also validated the model by comparing
simulation with experimental data, for a 100 K measured temperature range. With the
model, they were able to calculate the cooling performance and the efficiency according to
the thermodynamic second law by observing the influence of the temperature range and
the heat transfer fluid density variations. They highlighted the importance of improving
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the applied magnetic field and the heat transfer fluid density to increase the AMRR effi-
ciency. According to the authors, this temperature scale has never been reported before
in the literature and for the first time they succeeded in simultaneously optimizing the
material composition and the operating parameters. Their simulations lead to an optimized
configuration that could reach a temperature range of 160 K.
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the total temperature range [109].

Silva et al. (2019) [111] made a new method to quantify the efficiency of the magnetic
refrigeration. They proposed to achieve the magnetic refrigeration with good performances
without the using of thermally switchable components. The studied system consists of a
MCM (pure Gd) positioned between two PMs that have a linear alternative movement. To
explore a maximum of configurations, they developed a software called HEAt TRAnsfer
in PYthon (HEATRAPY). This mathematical model has been developed by Silva et al.
(2018) [112]. The working cycles are simulated in order to find the best configuration
and to determine the temperature range reached by the studied system. They considered
the model as validated by comparing the results with COMSOL Multiphysics® results.
With this 1-D model, they have tested 66 combinations of operating modes and found a
maximum temperature range of 0.87 K by optimizing the applied magnetic field (Figure 26).
According to the authors, this temperature span can be easily increased by optimizing the
MCM or the fluid flow rate and the frequency.

The same year, but in another paper, Silva et al. [91] developed two simple models of
the magnetic refrigeration device again with the software HEATRAPY, in order to estimate
the temperature range in a system. They also made two 1-D models for: (i) a solid-state
magnetocaloric system, and (ii) a hydraulic AMRR system operating with a heat transfer
fluid. They applied their model on both studied system and obtained the results shown in
(Figure 27). Result was better for the magnetocaloric system using heat transfer fluids. They
validated the results of the model using thermodynamic verification steps/criteria and results
found in the literature. As already seen, they have developed an interesting Python software
that allowed to perform multiple modeling runs per year and to study the heat transfers
in a multitude of 1.5-D model by considering the heat conduction and the thermo-physical
parameters. Silva et al. (2014) [113] worked on a 1-D model with a FDM to optimize the
temperature range of a solid-state AMRR applications by using Python language.
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Figure 27. Temperature evolutions for the: (a) solid-state magnetocaloric system and (b) hydraulic AMRR system. An inset
shows the evolution of the temperature range and the COP versus the time for the two systems [91].

Vieira et al. (2021) [92] developed a 1-D model to predict the performances of the
AMRR. It consisted of studying the magnetocaloric properties and the thermal perfor-
mances of the MCM alloys. The MCM of the studied regenerator is composed of three-
layered La(Fe,Mn,Si)13Hy spheroidal particles. The particles are bounded with an epoxy
resin, which leads to the formation of epoxy bridges between the particles. These bridges
can lead to some potential blockage for fluid flow passages. Following the procedure
highlighted by Trevizoli et al. [81], the governing equations of the model are solved using
the finite-volume method (FVM). They added some calculation improvements in order
to accelerate the numerical convergence. The model can determine the thermal profile in
the regenerator and has been validated with experimental measurements (Figure 28). The
model showed a quite positive accuracy. They also studied the evolution of the cooling
capacity with the temperature range for several mass flow rates. For a small temperature
range, they observed better performances for higher mass flow rate. Conversely, better
performances are obtained for a low mass flow rate at higher temperature range. According
to the authors, the obtained differences between the experimental phase and the model
come from the thermal loss effects in the dead volume.
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2.2.2. 2-D Thermo-Fluidic Modeling

Petersen et al. (2008) [57] developed a 2-D analytical model to study a reciprocating
AMRR cycles operating at room-temperature. The model has been used to determine the
performance of the refrigeration capacity and the temperature difference between the two heat
exchangers of a regenerator. The model calculated the fluid flow and the heat transfers by
solving the coupled PDEs to replace this calculation made by a 1-D numerical model and
to overpass some limitations of a 1-D model. The studied regenerator was composed of
two heat sources connected by channels. The heat transfer fluid was some water whose
channels crossed a regenerator composed of Gd parallel plates. The analytical model was
validated with tests to verify the energy conservation, the independency of the steady-state
heat transfers to initial conditions, the grid analysis and the time step sensitivity. They used
the model to observe the temperature distributions as a function of the AMRR cycle in the
fluid and the regenerator (x-direction) so that, along the fluid through the regenerator (y-
direction), they could also determine the temperature evolution during the cycles and the
(de)magnetization phases. A piston was used to move the fluid in the regenerator. They
pointed out the importance of taking into account the energy consumed by the piston to opti-
mize the performance of the system. With this tool, they were able to determine the evolution
of the temperature distribution after magnetization phases (Figure 29). They confirmed the
importance of taking into account the consumed energy of the piston and to consider the
(de)magnetization phases to increase the performances of the AMRR. Following year, this
model has been adapted to a 2.5-D model with new developments by Nielsen et al. [59]. They
also reduced the computational time and increased the accuracy of the model by comparing
it with experiment results. After that, the model worked with a FDM.

Sarlah et al. (2006) [55] developed a 2-D thermodynamical model to consider the four
steps of an AMRR cycle for a magnetic cooling application. The model was developed
using a FDM under some assumptions for fluid and materials properties. They studied the
behavior of an AMRR with a wavy-structure and obtained largest temperature differences
between the two ends of the regenerator by optimizing the magnetic material arrangements
with the model. The heat transfer fluid crossed a honeycomb regenerator. The temperature
evolution is simulated for a regenerator made of Gd and for a magnetic flux density of 0.5 T
(Figure 30). The also studied the Curie temperature of different alloys for different magnetic
flux densities in order to compare the alloys and to determine the optimal component
for an alloy. They concluded that their model needed improvements to be more accurate.
They underlined the importance of concentrating the magnetic flux lines in the structure to
improve the efficiency of the prototypes.
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Oliveira et al. (2012) [69] proposed a 2-D hybrid model to study the thermal behavior
of a parallel alternating AMRR cycle based on the Brayton’s cycles. A hybrid model,
composed of two numerical and analytical models, has been used to calculate firstly a
numerical solution for the thermal field with the FEM, and secondly an analytical solution
for the flow velocity. The goal of this hybrid model was to quantitatively evaluate the
cooling capacity and to observe during the four processes of the AMRR cycle the influence
of some parameters on the efficiency. These parameters were the mass flow rate, the
channel thickness, the cycle frequency, and the moved volume of the fluid. The studied
regenerator was composed of some Gd parallel plates separated by thin channels for the
moving fluid (pure water). The speed of the fluid in the channel has been studied. Authors
found that it decreased when the working frequency increased. They also concluded that
the volume of the fluid moving in the regenerator channel during the magnetic processes
had a real influence on the magnetic refrigeration performance.

Canesin et al. (2012) [70] developed a computational fluid dynamics (CFD) open
source to study an AMRR for 2-D or 3-D geometries. An arbitrary number of regions
for the solid and the fluids could be considered. The model was validated by a Blasius’
analytical solution [114] and the model of Oliveira et al. [69].

Hsieh et al. (2014) [75] have developed a 2-D model on COMSOL Multiphysics® to
optimize the design of a room temperature graded regenerator. It was grading along the
flow direction with several MCM with different Curie temperatures. According to the
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authors, the study of the grading effects is needed and has only been done by few models.
Firstly, they studied a two-segment regenerator composed of Gd and GdxTb(1−x) alloys
(Figure 31a). They found a cooling power three times higher than for a pure Gd regenerator.
Then, better performances of a three-segment regenerator compared to a two-segment
one is confirmed. They found a better cooling capacity for the three-segment regenerator
(Figure 31b). They pointed out that a three-segment regenerator induced a faster and more
efficient cooling. The Gennes’ model [115] and the mean field theory have been used to
determine the best material in COMSOL Multiphysics®. Other simulations concerning
cooling capacities, geometries, and their structures have been realized.

Lionte et al. (2015) developed a 2-D dynamic mathematical model to determine the
transient flow and temperature fields into an alternating AMRR [78]. The model is based
on an FDM. The studied regenerator geometry is composed of two cold and hot heat
exchangers separated by Gd plane plates. Water is the heat transfer fluid. The magnetic
field source is a PM positioned on both sides of the regenerator. Authors chose to model the
heat transfers in the regenerator and in the fluid flow separately. The fluid flow resolution in
the regenerator used 2-D Navier–Stokes equations whereas the FEM was used to solve the
model. The model has been validated with experimental data (Figure 32). The difference
between the experimental and numerical results is due to the bad thermal insulation of the
test bench. Indeed, they made some assumptions for the model and one of them is that the
regenerator is perfectly insulated. The regenerator performances, the fluidic phenomena,
and the pressure drops are also analyzed to find the best operating conditions.
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2.3. Magneto-Thermo-Fluidic Modeling
2.3.1. 1-D Magneto-Thermo-Fluidic Modeling

Siddikov (2005) [116] developed a 1-D mathematical model solved numerically. The
model was used to observe the packed bed of the MCM temperature profile depending on
the AMRR cycle step. They firstly validated their model on a passive regenerator by solving
the partial differential heat equations concerning the fluid and the MCM with a simulation
without magnetization and demagnetization. They compared it with experimental results
found in the literature. Then, the model was generalized to the all-AMRR cycle (Figure 33).

Tagliafico et al. (2010) [61] developed a 1-D transient thermo-fluidic model for an
alternating AMRR cycle. It used the PDEs to calculate the temperature field in the solid
and the fluid. The energy balance equation of the solid and fluid phases was discretized
by a numerical model. With this last, authors carried out a parametric study of a device
(Figure 34) using some Gd as MCM and some water as heat transfer fluid. The studied
parameters were mainly the fluid mass flow rate, the frequency of the operating cycle
and the average operating temperature. They highlighted the importance of having a
room temperature near the Curie temperature of the used MCM to obtain a better cooling
capacity. They chose to neglect the heat generation due to the viscous dissipation and the
heat losses due to the imperfect insulation. Consequently, they found a higher cooling
capacity as the frequency increased.
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Risser et al. (2010) [117] performed a 1-D model of the AMRR cycles based on the
FDM in order to simulate a regenerator composed of Gd parallel plates. The studied
magnetocaloric system was composed of two hot and old tanks located on both sides of a
regenerator connected by rectangular channels. The magnetic field source was generated
by PMs. The model considered a single channel, representative of the real regenerator. It
determined the thermal performances of a magnetocaloric device (Figure 35). This model
was improved three years later by Risser et al. (2013) [71] by replacing the 1-D magnetic
field model with 3-D modeling. The model was finally used by Torregrosa-Jaime et al.
(2014) [117] to design a magnetocaloric reversible heat pump.
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Rowe (2012) [66,67] proposed a description of the thermodynamic behavior of a
regenerator. The first part of the paper was devoted to the analytical description of the
AMRR operating. The second part simplified the equations and presented some results
of the model. In the first part, they assumed that a thermal equilibrium between the fluid
and the solid exists due to a high convective interaction. This equilibrium was quickly
reached after a field change and before the injection of the fluid. The author considers an
idealized AMRR cycle. In the second part, it is assumed that the MCM is ideal and that
the variation of the MCE is linear with the temperature. The purpose of this analytical
modeling was to determine the performances of the system. In that way, the cooling power,
the efficiency and the COP should be known. The author compared the model results
with results found in the literature. It showed the good prediction of their modeling. The
model was improved the following year by Burdyny and Rowe (2013) [118], where the real
material properties and the regenerator characteristics were considered.
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steady-state after 70 cycles [27,73].

A. Mira et al. (2014) [27,73] proposed a multi-physics model computed with the
Python language to make accurate modeling of the magnetic refrigeration systems. The
model was composed of three sub-models:

• A 3-D magnetostatic model solved with a FEM to determine the magnetic field and
the magnetic flux density in the Gd

• A 1-D magnetocaloric model to calculate the thermal power density in the Gd during
the magnetic field variation.

• A 1-D thermo-fluidic model solved with the FDM to describe the thermal behavior of
the fluid and the material.

For each step time, these three models were successively executed until the simulation
reaches a convergence criterion. Authors chose to avoid a fast computation time to obtain
a more accurate resolution of the magnetic field and finally more realistic results. With this
model, they simulated the evolution of the temperature interval in the regenerator (Figure 36).

Burdyny et al. (2014) [74] presented a semi-analytical model to study the cooling
power and the magnetic work of a single-material active magnetic regenerator. The model
presented was validated with another more performing model developed the same year by
Burdyny et al. [119]. Experimental data given by room temperature tests for a relatively
low magnetic field have been carried out and compared. The semi-analytic method has
sometimes provided less accurate results when these lasts were compared to obtained
data for tests using compressed helium, carbon dioxide and nitrogen in a superconducting
device. According to the authors, this loss of accuracy came from compressibility effects
and pressure drops, which were surely important to integrate. Also, the performed tests
were realized at a low frequency and compared with other more complex models. It was
nevertheless more difficult to simulate the device at low operating frequency with the
semi-analytical model. That may be due to assumptions made in the derivation of the
analytic cooling power. After validation, their model worked globally as effectively as
more complex models.

Mugica et al. (2017) [84] developed a 1-D model to resolve the problem of the behavior
of the fluid and to estimate the solid energy. The magnetic circuit was also considered in
the study with the demagnetizing field and the leakage magnetic flux. The authors propose
a feasible solution to diminish conduction losses in AMRR. In conclusion, the addition of
insulator layers within the MCM increases the temperature span, cooling load, and COP
by a combination of lower heat conduction losses and an increment of the global MCE.

Monfared (2018) [88] presented a model to redesign a prototype. The studied prototype
was a rotating device using PMs as magnetic field source. The prototype was composed of
12 regenerators filled by packed bed of Gd particles. The model was composed of:
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• A 3-D model on COMSOL Multiphysics® to determine the internal and external
magnetic fields. The homogeneity for the external field was investigated, and the
demagnetization effect for the internal field was considered.

• A 3-D steady-state model created and solved with COMSOL Multiphysics® to study
the ‘parasitic’ heat transfer.

• A 1-D transient model of the AMRR cycle using the results of the two models
described above.

With their models, they investigated the key points of the performance and opti-
mized the performances of 12 regenerators filled up with Gd or La(Fe,Mn,Si)13Hz. They
found that high pressure drops in the packed bed prevented to use FOMT material (like
La(Fe,Mn,Si)13Hz) at its full potential. The using of epoxy layer reduced the cooling
capacity by increasing the pressure drop. The model was validated with experimental
measurements of the studied prototype (Figure 37). The validation showed the good
accuracy of the model.
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2.3.2. 2-D Magneto-Thermo-Fluidic Modeling

Liu and Yu (2011) [64] have developed a 2-D porous medium model for an alternating
AMRR near room temperature. Their model was composed of nonlinear PDEs solved
using the FDM. The model considered the thermal diffusion effect, the heat flux effects
on the boundaries and the variable physical properties of the fluid. The studied system
was composed of a porous region between two magnetic fields. The cold and heat flows
could come from both side of the porous region. The porosities are supposed constant in
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the porous region. Finally, the model was validated with experimental data and with a 1-D
semi-analytical solution model of Schumann [120]. The computational time of their model
is more important than with the 1-D model, but this 2-D model can be transformed into a
1-D model by neglecting the heat flux boundary.

Plait et al. (2018) [19,86,87] developed a 2-D semi-analytical model for magnetic
refrigeration systems. The model is based on a previous 1-D multi-physics model made
by Mira [27,73]. Some improvements have been made in this new version. An accurate
and low computational cost semi-analytical magnetostatic model based on a reluctance
network was developed. In [86], the model is used to determine the internal magnetic
field and the flux density, before being compared to 3-D FEM. It had a good accuracy
with a faster computation time (400 times faster). The 2-D multiphysics model integrates
the magnetocaloric (determination of magnetization and heat capacity) and the thermo-
fluidic models (solving the energy equations). The multiphysics results are compared to
experimental measurements and present a good accuracy (Figure 38).
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2.3.3. 3-D Magneto-Thermo-Fluidic Modeling

Bouchard et al. (2009) [60] developed an analytical 3-D model to study a porous
regenerator for the magnetic refrigeration at room temperature. The model used the 3-D
Navier-stokes equations with a coupled system of PDEs with height unknown parameters.
The equations are simultaneously solved using a FVM. The MCM of the regenerator
is composed of small spheres and ellipsoidal Gd particles. These particles bring to a
regular matrix inside the regenerator through which the fluid circulates. The model could
determine the velocity and the pressure of the fluid so that the temperature field between
the particles in the regenerator. The four steps of the AMRR cycle have been simulated.
They modeled the magnetic material and the regeneration fluid respectively. The model
was solved numerically with a FEM (Figure 39).

Mugica et al. (2018) [89] developed a 3-D multi-physics model to describe the AMRR
cycles. For this, they built an Open Field Operation and Manipulation (OpenFOAM)
framework with several sub-models using a FVM to solve the PDEs. This model worked in
several steps. First, they randomly generated a packed bed geometry for the regenerator
using Python. All the physical aspects which constituted an AMRR cycle were calculated
(viz., the flow field, the MCE, the heat transfer and the magnetic field). This model calcu-
lated the transient thermal evolution of the AMRR cycles. This model has been validated
in two steps: (i) each considered physics matters were firstly separately validated, and
(ii) the whole model was finally validated with experimental data found in the literature
(Figure 40). Then, the model was validated for a plate regenerator to simplify the reproduc-
tion of the material form. Recently, a study by the same author Mugica et al. (2020) [121]
investigated the influence of the axis geometry. They were particularly interested in the
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influence of the tortuosity of the fluid flow in porous media on the performance of a device.
Higher tortuosity leads to a longer path for the fluid to move through the regenerator and
increase the regenerator power.
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3. Discussions and Prospects

Generally, multi-physics modeling to study the AMRR cycle contains a lot of mathe-
matical assumptions. Most of the time, to solve the model, a numerical software is used.
The models generally consider thermal and fluidic phenomena to obtain the thermal be-
havior of the regenerator and to simulate the temperature evolutions as functions of the
applied cycles (viz., Brayton, Ericsson, Carnot). The magnetic field source is therefore
considered with a boundary condition or an increase (or decrease) step on the material
temperature. The consequence is to neglect the end-effects and to consider the magnetic
field and the temperature variation in the material which is also uniform. This can lead
to overestimating the final performances and induced a decrease of the model accuracy.
Current models consider the thermal losses with more interest, which complicates the
resolution, but the accuracy of the performance prediction is finally better. Most of the time,
the models are validated with comparison of experimental measurements. The models are
often used to optimize an already existing device.
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Lot of assumptions are made on the physics behavior by the scientific community.
Because some phenomena can be considered as negligible or to simplify the resolution,
this leads to a loss of accuracy of the model. Most of the authors’ assumptions concern
the material and the fluid properties, neglecting some aspects. For example, the contact
between the solid and the fluid is considered perfect (i.e., no sliding of the fluid at the
solid–fluid interface) and the fluid is supposed incompressible. The MCE (magnetization
and demagnetization) are often considered as instantaneous. The regenerator is often
supposed perfectly isolated from the external environment. Mostly for the 1-D modeling,
the radial- and end-effects are neglected by the models. All these accumulated assumptions
lead to a loss of accuracy. It is important to make the less simplistic assumptions as possible.

Most of studies are developed with 1-D models numerically solved. These types of
model are easy to make, to modify and to adapt, but they are less accurate. This is why
some authors have considered, instead of 1-D models, to use 2-D or 3-D models: like
Smaili “In general, 1D models neglect the intraparticle thermal conduction and require the
application of a heat-transfer coefficient between the fluid and the solid matrix.” And “In
general, a fully developed 3D model could be applied to any geometry” [52]. Indeed, a
3-D model can be more flexible, but some authors have the opinion that a 3-D modeling
could be too onerous in terms of computational time, compared to the added gains in terms
of accuracy. Also, Bouchekara gives his opinion about the dimensionality in modeling
(2008) “1D models are generally based on a porous regenerator where all thermal and
hydraulic interactions between the solid and fluid domains, such as heat transfer, are
characterized by correlations from literature. Many 2D models are developed specifically
for flat plate regenerators assuming infinitely wide plates with equal spacing and some
have incorporated demagnetization losses” [56].

Therefore, the 1-D modeling is very limited for studying different types of regenerators.
It can be concluded that the 2-D modeling offers a good compromise between accuracy,
computational time and complexity. In the paper of Plait (2018), a 3-D FEM magnetostatic
model is replaced by a 2-D semi-analytical magnetostatic model to earn computational
time: “To achieve the simulation of 5 AMRR cycles applied to the whole system within
only 5 min, instead of 4 h with 3-D FEM” [86]. The computation time can be reduced by
changing the modeling type. For the same dimension, an analytical model will be faster
than a numerical model. This means that instead of a 1-D numerical model, we can use
a 3-D model to increase the precision and have a (semi-)analytical solution to reduce the
computational time.

The solving method is also an important element to consider how to design a model.
The FDM is the most common method to solve a semi-analytical model. However, other
methods such as the reluctance networks exist. The subdomains method has never been
used in this field and could be an interesting solution to propose 3-D models with fast
computation time resolutions. There are almost no exact analytical models to study the
AMRR cycle and the analytic part in semi-analytical modeling of the whole models are still
simple and often similar.

4. Conclusions

This paper brings a comprehensive introduction on the MCE effect and presents its
applications and the magneto-thermic modeling. A large range of (semi-)analytical models
used to study AMRR technology have been reviewed. All the cited authors are listed in the
Table 1 to provide a global view on all the realized works. Models are classified by type
and geometrical dimension. A description for each model was made to understand how
they work. Other models made by the authors are also briefly mentioned and described.
Most of the studied models are in 1-D and do not properly consider the magnetic aspect,
although it is an important factor of performances as shown by the magneto-thermal model
(§ introduction). A 1-D model is indeed simpler to make and faster but less accurate. Often,
2-D and 3-D models are not investigated because of the complexity and computational time.
On the other hand, in recent years, heat losses are increasingly considered by the developed
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models. In general, there are fewer assumptions, which leads to an increase in the accuracy of
each model. The greater complexity of the models also leads to an increase in computation
time. This aspect is rarely highlighted in the studies. However, the computational time can be
considerably reduced if the model is (semi-)analytical rather than numerical.

The competition for the best prototype (efficiency) is an important part for the improve-
ment of this technology. However, a breakthrough should be achieved. It is needed to obtain
a design tools improvement. A 2-D semi-analytical model with an intuitive interface to create
specific geometry and with efficient results could be a promising idea for future works.
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