
Mathematical

and Computational

Applications

Article

Effectiveness of Floating-Point Precision on the Numerical
Approximation by Spectral Methods

José A. O. Matos 1,2,† and Paulo B. Vasconcelos 1,2,∗,†

����������
�������

Citation: Matos, J.A.O.; Vasconcelos,

P.B. Effectiveness of Floating-Point

Precision on the Numerical

Approximation by Spectral Methods.

Math. Comput. Appl. 2021, 26, 42.

https://doi.org/10.3390/mca26020042

Academic Editor: Fernando Casas

Received: 7 April 2021

Accepted: 23 May 2021

Published: 26 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center of Mathematics, University of Porto, R. Dr. Roberto Frias, 4200-464 Porto, Portugal; jamatos@fep.up.pt
2 Faculty of Economics, University of Porto, R. Dr. Roberto Frias, 4200-464 Porto, Portugal
* Correspondence: pjv@fep.up.pt
† These authors contributed equally to this work.

Abstract: With the fast advances in computational sciences, there is a need for more accurate compu-
tations, especially in large-scale solutions of differential problems and long-term simulations. Amid
the many numerical approaches to solving differential problems, including both local and global
methods, spectral methods can offer greater accuracy. The downside is that spectral methods often
require high-order polynomial approximations, which brings numerical instability issues to the prob-
lem resolution. In particular, large condition numbers associated with the large operational matrices,
prevent stable algorithms from working within machine precision. Software-based solutions that
implement arbitrary precision arithmetic are available and should be explored to obtain higher accu-
racy when needed, even with the higher computing time cost associated. In this work, experimental
results on the computation of approximate solutions of differential problems via spectral methods are
detailed with recourse to quadruple precision arithmetic. Variable precision arithmetic was used in
Tau Toolbox, a mathematical software package to solve integro-differential problems via the spectral
Tau method.

Keywords: floating-point arithmetic; variable precision arithmetic; IEEE 754-2008 standard; quadru-
ple precision accuracy; spectral methods

MSC: 68N01; 68N19; 65M70; 47G20

1. Introduction

Two of the main goals when implementing numerical algorithms are correctness and
speed—that is, to have the results with the required precision and as fast as possible. It is,
in general, possible to improve one of these features at the cost of the other. Thus, in order
to use better precision, we naturally lose performance because the number/complexity of
computation is increased, with the opposite happening if we require less precision. From
the 2008 revision [1], the IEEE 754 standard introduced a quadruple precision floating-point
format (binary128).

Currently, this 128-bit floating-point type is mostly available only in software im-
plementations. In general, there is a cost in computing performance when using higher
precision numerical types (be it quadruple or others larger than double precision), because
software-based solutions are being used, e.g., studies indicated that quadruple precision
can be up to four orders of magnitude slower than double precision.

Seldom are stable numerical algorithms hindered from working within machine
precision since double precision arithmetic is not sufficient. This is the case, among others,
when facing ill-conditioned problems. By exploring floating point arithmetic with higher
precision, for instance quadruple, the required accuracy can be achieved.

The different precision types can be available at the software or hardware level.
Eventually it is fair to consider that hardware-based solutions are software written at a low
level and fixed/imprinted on the processors, while software solutions can change and are,

Math. Comput. Appl. 2021, 26, 42. https://doi.org/10.3390/mca26020042 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0003-0570-7913
https://orcid.org/0000-0002-7132-880X
https://www.mdpi.com/article/10.3390/mca26020042?type=check_update&version=1
https://doi.org/10.3390/mca26020042
https://doi.org/10.3390/mca26020042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mca26020042
https://www.mdpi.com/journal/mca

Math. Comput. Appl. 2021, 26, 42 2 of 13

thus, more flexible since they use the general architecture and, therefore, are not as fast as
the hardware supported precision formats/types. Other than the usual precision formats,
like single or double IEEE precision, current hardware already supports other extended
formats, such as the x87 80-bit precision format (that C/C++ refers as long double). In
the near future, hardware supporting multiprecision arithmetic, not only higher than
double but also half precision, will have a huge impact on the performance whenever it
can be explored.

Even for multiprecision based in software, the more general the implementation is,
like arbitrary precision, the slower it is. Implementations of fixed multiprecision formats,
like the quadruple precision, can take advantage of this by trading some generality for
speed (e.g., [2,3]). One example of implementing a quadruple precision type (that is similar
but not equal to IEEE quadruple precision) uses two double precision numbers to represent
one quadruple precision, also known as double-double arithmetic.

Software-based solutions that implement arbitrary precision arithmetic are available
in several environments, such as MATLAB with the symbolic math toolbox [4], Octave
with the symbolic package [5], or other multiprecision packages, some of which are based
on GNU GMP [6] or GNU MPFR underlying libraries [7].

More importantly is to notice that the 128-bit, or higher, floating-point arithmetic
is not only needed for applications requiring higher precision but likewise to allow the
computation of double precision results and to more accurately mitigate the round-off
errors at intermediate calculation steps. Depending on the type of the problem being
studied, the higher precision only needs to be applied at selected precision bottlenecks
and, thus, only paying the speed penalty for precision where strictly required. This already
happens in libraries, such as the C math library (like the GNU libc) where some of the
calculations for the functions are done internally in extended double precision or higher
with the results of the calculations being returned in double precision.

Another interesting use of multiprecision implementations in numerical algorithms
with higher precision than double, is to benchmark the accuracy of results obtained using
different internal implementations as well as the speed of each. That allows us to assess
the goodness of each implementation both in terms of the speed and accuracy and, thus, to
select the best candidate even if the usual/production implementation will be performed
exclusively using the standard double precision.

Relevant research lines include the possibility of using higher precision to overcome
inherent ill-conditioning only in parts of the code (e.g., polynomial evaluations) working
as mixed-precision arithmetic to minimize the computational efforts. In comparison to our
approach, accuracy is improved only when needed, not affecting the overall computational
effort as much. For this approach, the Infinity Computer is an adequate computational
environment where this arithmetic can be implemented [8], and in [9], some work on the
solution of initial value problems by Taylor-series-based methods have already been made
within this setup.

The use of such an approach for spectral methods is clearly an interesting line to
investigate. Closely related to this line of research is the sinking-point [10], a floating point
numerical system that tracks the precision dynamically through calculations. This works
in contrast with IEEE 754 floating-point where the numerical results do not, inherently,
contain any information about their precision. With this tracking mechanism, the system
ensures the meaningfulness of the precision in the calculated result. The detection of
unreliable computations on recursive functions based on interval extensions was addressed
in [11].

In this work, experimental results on the computation of approximate solutions of
differential problems via spectral methods will be exposed with recourse to multipreci-
sion arithmetic via the variable-precision arithmetic (arbitrary-precision arithmetic) freely
available in MATLAB and Octave.

Math. Comput. Appl. 2021, 26, 42 3 of 13

2. The Tau Spectral Method

Finding accurate approximate solutions of differential problems is of crucial im-
portance, particularly when facing large integration domains or on dynamical systems.
Spectral-type methods, like the Tau method, provide excellent error properties: when the
solution is smooth, exponential convergence can be expected. For a detailed explanation
on the Tau method, we suggest, e.g., [12].

The Tau method attempts to express the sought solution as a linear combination of
orthogonal polynomials that form the base functions. The coefficients of such a combination
are the exact solution of a perturbed differential problem. In the Tau method, we obtain
an nth degree polynomial approximation yn to the differential problem’s solution y by
imposing that yn solves exactly the differential problem with a polynomial perturbation
term τn in the differential equation, or system of differential equations. To achieve good
minimization properties for the error, τn is projected onto an orthogonal polynomial basis.

LetD = ∑ν
k=0 pk

d
dxk represent an order ν linear differential operator acting on the space

of polynomials P, where pk = ∑nk
i=0 pkixi are polynomial coefficients, nk ∈ N0, pk,i ∈ R,

and we let f ∈ P with finite degree λ. An approximate polynomial solution yn for the
linear differential problem {

Dy = f
ci(y) = si, i = 1, . . . , ν

, (1)

is obtained in the Tau sense by solving the perturbed system{
Dyn = f + τn

ci(yn) = si, i = 1, . . . , ν
. (2)

A matrix representation of (2) can be obtained as

Ta = b, with T =

[
C
D

]
and b =

[
s
f

]
(3)

where
C = [cij]ν×∞ = ci(Pj−1), i = 1, . . . , ν, j = 1, . . . ,

D =
ν

∑
k=0

pk(M)Nk, pk(M) =
nk

∑
i=0

pk,iM
i . (4)

s = [s1, . . . , sν]T and f = [f1, . . . , fn−ν, 0, 0, . . .]T represent, respectively, the boundary
conditions and the coefficients of the differential equation on the basis P . Matrices M and
N stand, respectively, for the multiplication and differentiation operators.

This is known as an operational formulation of the Tau method and represents a
convenient framework for the implementation of the method. All operations are translated
into matrix formulations, like the multiplication (M) of polynomials and derivatives (N).
The solution of the differential problem is obtained by solving a linear system of equations,
where the infinite system (3) is truncated to order equal to the wanted polynomial degree
approximation. If the problem is nonlinear, a linearization process is built.

The Tau Toolbox [13–15] provides a robust and stable numerical library for the solu-
tion of integro-differential problems using the Tau method. In particular, the operational
matrices M and N are computed directly on the orthogonal basis, thus, avoiding the usual
similarity transformation. Indeed, building those matrices on the orthogonal basis is de-
manding and tricky in contrast with the power basis, which is intuitive and trivial. The
drawback is that the latter requires a change of basis (twice) introducing stability issues.
The Tau Toolbox provides these matrices via explicit and/or recursive relations.

The operations involving changes of the polynomial basis and powers of matrices must
be numerically tackled with expertise, otherwise the overall approach may not be stable. Let

Math. Comput. Appl. 2021, 26, 42 4 of 13

P = [P0(x), P1(x), . . .] be an orthogonal basis satisfying xPj = αjPj+1 + β jPj + γjPj−1, j ≥
0, P0 = 1, P−1 = 0.

• A proper polyval function is deployed for orthogonal evaluation. If P∗ are the
corresponding orthogonal polynomials shifted to [a, b] and x is a vector, then the
evaluation of yn(x) = ∑n

i=0 aiPi(x) is directly computed in Pn:
P∗0 = [1, . . . , 1]T

P∗1 =
c1x+(c2−β0)P∗0

α0

P∗i =
(c1x+c2−βi−1P∗0)�P∗i−1−γi−1P∗i−2

αi−1
, i = 2, 3, . . . , n

where � is the element-wise product of two vectors, c1 = 2
b−a and c2 = a+b

a−b .
• No change of basis is used via matrix inversion. If V satisfies aP̂ = VaP , where P and

P̂ are the polynomial basis, then the coefficients of W = V−1 are computed without
inverting V by the recurrence relation{

w1 = e1

wj+1 = Mwj, j = 1, 2, ...
,

where M is such that Px = PM, wj is the jth column of M and e1 the first column of
the identity matrix.

• All similarity transformations are avoided to ensure numerical stable computations.
Recurrence relations to compute the elements of the multiplication and differentiation
operators (matrices M and N) are computed directly on the orthogonal basis:

M =
[
µi,j
]n

i,j=1 =

{
µj+1,j = αj−1, µj,j = β j−1, µj,j+1 = γj−1

µi,j = 0, |i− j| > 1
,

N =
[
ηi,j
]n

i,j=1 =

ηi,j+1 =
αi−1ηj,i−1+(βi−β j)ηj,i+γi+1ηj,i+1−γjηj−1,i

αj

ηj,j+1 =
αj−1ηj,j−1+1

αj

These algorithms, among many others, are implemented in the Tau Toolbox library
to ensure stability. The operational approach of the method, however, gives rise to operator
matrices that can have increased condition numbers with the degree of the approximation.
Solving ill-conditioned problems, even in the presence of a stable method, may lead to
approximate solutions far from the required accuracy. It is at this point that variable
precision can overcome the constraints imposed, inherently, by the data.

It is worth mentioning here that Tau Toolbox offers a post-processing phase based
on the Frobenius–Padé approximation method to build rational approximations from the
polynomial Tau approximation. This filtering extension improves the accuracy of the
spectral approximation when working on the vicinity of solutions with singularities [16].

3. Numerical Experiments

In this section, we report the numerical results using variable precision arithmetic
(VPA) in Tau Toolbox, mainly quadruple precision, emphasizing the complementary
role that both quadruple and double precision can play in finding accurate approximate
solutions.

In the first example, we illustrate the use of the Tau Toolbox to solve a boundary
value problem, using double and quadruple precisions. The second example explores the
properties of classical orthogonal polynomials to highlight the possibility of copying with
more than the most usual Chebyshev basis and the use of high-level Tau Toolbox functions
to overcome certain implementation technicalities. The third example shows that, for a set
of initial value problems, the floating-point arithmetic together with the ill-conditioning of
the data can lead to unsatisfactory accuracy results. The use of extended precision allows

Math. Comput. Appl. 2021, 26, 42 5 of 13

us to obtain machine double precision, which is a relevant aspect to emphasize, allowing
the circumvention of accuracy bottlenecks.

All the errors illustrated in the examples are true errors, since we are comparing the
results with a known analytical solution. For regular computations, the error is controlled
via the Cauchy relative error (‖yn − yn−`‖/‖yn‖, for a given `).

The machine used for the computations was an AMD Ryzen 7 4800H with 32.0 GB
RAM memory.

3.1. Example 1

In this first example, we consider the solution of a boundary value problem

(k4 − 4k3x + 4k2x2 + 2k2 − 4kx + 1)
d2y
dx2 (x)− k(k2 − 2kx + 1)

dy
dx

(x)− 2k2y(x) = 0,

for y(−1) = 1
1+k , y(1) = 1

1−k , with the algebraic solution y(x) = (1− 2kx + k2)−
1
2 .

The code below shows how to use the Tau method to solve the problem using either
double or quadruple precisions and considering a Chebyshev (of first type) basis. It closely
follows the theoretical framework presented in Section 2, using Tau Toolbox functions to
build the necessary intermediate matrices, e.g., C and D, which internally process the M
and N matrices described in (4).

% differential problem
k = 0.4;
equation = @(x,y) (k^4-4*k^3*x+4*k^2*x^2+2*k^2-4*k*x+1)*...

diff(y, 2)-k*(-2*k*x+k^2+1)*diff(y)-2*k^2*y;
domain = [-1, 1];
conditions = @(y) {y(-1)-1/(1+k); y(1)-1/(1-k)};
options = tau.settings(’degree’, 20, ’quadPrecision’, true);
problem = tau.problem(equation, domain, conditions, options);

% get the conditions and operator matrices
C = tau.matrix(’condition’, problem);
D = tau.matrix(’operator’, problem);

% build Tau matrix and solve the problem
nu = size(C, 1); % number of boundary conditions
T = [C(:, 1:n); D(1:n-nu, 1:n)];
b = zeros(n,1); b(1) = 1/(1+k); b(2) = 1/(1-k);
a = T\b;

The user can use quadruple precision just by setting the quadPrecision flag to be
true (as shown). By default, the precision is double, and the quadPrecision is false.

Results for the error with respect to the known exact solution are shown in Figure 1. In
Figure 1b, for double precision arithmetic, machine precision is almost reached for polyno-
mial degrees of n = 40 or higher. The accuracy is kept near the maximum possible accuracy
for higher values of n. With quadruple precision (Figure 1b) for n = 40, the accuracy is
already under 10−16, and, for increasing values of the degree n, the accuracy increases.

Math. Comput. Appl. 2021, 26, 42 6 of 13

(a) x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

n
o

rm
 o

f
th

e
 t

ru
e

 e
rr

o
r

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

n = 20

n = 40

n = 60

n = 80

n=100

(b) x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

n
o
rm

 o
f
th

e
 t
ru

e
 e

rr
o
r

10
-40

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

n = 20

n = 40

n = 60

n = 80

n = 100

Figure 1. The true error for values of n ranging from 20 to 100: (a) Double precision. (b) Quadruple
precision. The increase in the polynomial degree of the solution of the differential problem leads to
an increase in the accuracy of the solution, which reflects the stability of the Tau method in the Tau
Toolbox; for double precision, a moderate value for the polynomial approximation is sufficient to
reach machine precision and after that, a stagnation occurs, while, for quadruple precision, more
accurate results can be reached for higher polynomial degrees.

Figure 2 draws the norm of the true error for several values of n using double and
quadruple precisions. Both provide similar results for polynomial approximations with
degrees smaller than n = 35, as expected. On one hand, the double precision cannot
improve the accuracy of the solution for values larger than 40. On the other hand, quadruple
precision continues to ensure better results until reaching the degree n = 95. In both cases,
it is important to notice the robustness of the implemented method since there is no
degradation of the accuracy for higher values of the polynomial degree.

Math. Comput. Appl. 2021, 26, 42 7 of 13

n

0 20 40 60 80 100 120

n
o
rm

 o
f
th

e
 t
ru

e
 e

rr
o
r

10
-40

10
-30

10
-20

10
-10

10
0

double precision

quadruple precision

Figure 2. The true error for values of n ranging from 10 to 120. Notice the robustness of the imple-
mented Tau method that faces no degradation in accuracy for increasing values of the polynomial
degree with both double and quadruple precision.

The problem is not ill-behaved in terms of the data since the condition numbers
of the Tau coefficient matrices are not very high (see Table 1). Later, we will deal with
ill-conditioned problems.

Table 1. Condition numbers for the coefficient Tau matrix Tn.

n 20 40 60 80 100

cond(Tn) 5.1× 104 8.8× 105 4.5× 106 1.4× 107 3.5× 107

Considering the largest value for n, the times required for parsing and building the
matrix problem were 6 ms and 15.900 s, while those for the solution phase were 6 ms
and 1.788 s, respectively for double and quadruple precision. An order of magnitude
of four was found for the parsing and building process and of three for the solution
phase. The solution phase represents a minor cost and includes the evaluation of the
polynomial coefficients on the orthogonal basis, which is, in turn, more costly than the
solver itself. The most demanding stages are the generation of the building blocks for the
matrix formulation, where finding the operator matrix is, as expected, marginally more
costly than the conditions matrix. This is clearly illustrated in Figure 3.

Math. Comput. Appl. 2021, 26, 42 8 of 13

(a)

Double precision

10 20 30 40 50 60 70 80 90 100 110 120

0

0.05

0.1

0.15

0.2

0.25

s
e

c
o

n
d

s

C

D

(b)

Quadruple precision

10 20 30 40 50 60 70 80 90 100 110 120

0

2

4

6

8

10

12

14

16

18

s
e

c
o

n
d

s

C

D

Figure 3. Time (in seconds) for double and quadruple precision for values of n ranging from 10 to
120: (a) Double precision. (b) Quadruple precision. The pattern of the most time consuming parts of
the code are similar, but building of the operator matrix D is, in relative terms, more demanding for
quadruple precision.

Figure 4 depicts the cost factor for quadruple vs. double precision. Broadly speaking,
this factor can be considered as constant independently of the polynomial degree approx-
imation. The complexity of the algorithm, in all parts examined, is around the same for
both precision types, while slightly changing the multiplicative constant.

This time, analysis is reproduced with other ordinary differential problems, of initial or
boundary conditions, with similar conclusions. Even if the time required for the quadruple
approach is much higher than for double precision, it is moderate and acceptable (bearing
in mind that the double precision computations are very fast). This functionality is to
be used on the limited number of cases when the double precision does not enable good
approximations. For many cases, the double precision is sufficient to ensure almost machine
epsilon double precision (say 10× eps) in Tau Toolbox.

Math. Comput. Appl. 2021, 26, 42 9 of 13

40 50 60 70 80 90 100 110 120

40

50

60

70

80

90

100

110

120

fa
c
to

r

Relative cost of Quadruple vs. Double precision

C

D

Figure 4. The relative cost of quadruple vs. double precision for values of n ranging from 40 to 120.

3.2. Example 2

Now, we consider a set of boundary value problems and show how to use high level
Tau Toolbox functions to help formulate and solve the problems with ease.

The family of orthogonal polynomials yn(x) of degree n, in an interval [a, b], satisfies
the relation

g2(x)
d2yn

dx2 (x) + g1(x)
dyn

dx
(x) + anyn(x) = 0 (5)

where g1 and g2 are independent of n and the constant an only depends on n (see [17],
Sections 22.1.3 and 22.6), and yk = Pk, with k = n− 1. For Chebyshev polynomials of the
second type we have g1(x) = (1− x2), g2(x) = −3x, and an = n(n + 2), and for Legendre
g1(x) = (1− x2), g2(x) = −2x, and an = n(n + 1). Problem (5) is fully specified in the
interval [−1, 1] with y(−1) = y(1) = 1 as boundary conditions.

The norm of the characteristic Equation (5) using Chebyshev of the second type and
Legendre basis, for n = 40 is, respectively, 0 and 4.7× 10−13. Thus, whereas for Chebyshev,
the machine precision is reached, for Legendre, that is not the case. For quadruple precision,
the error of the Chebyshev basis is still within the maximum accuracy and, for Legendre,
it is 1.6× 10−36, which allows us to offer an approximate solution with accuracy below
machine precision (double).

The code, using the high level Tau Toolbox function tau.solve, is:

% parameter
n = 10;

% differential problem
equation = @(x,y) (1-x^2)*diff(y,2)-2*x*diff(y)+n*(n+1)*y;
domain = [-1, 1];
conditions = @(y) {y(-1)-1; y(1)-1};
options = tau.settings(’degree’, n, ’basis’, ’LegendreP’);
problem = tau.problem(equation, domain, conditions, options);

% solution via tau method
yn = tau.solve(problem);

The user provides, in ordinary language, the parameters, the problem to be solved
together with the conditions, and the degree of the wanted approximation. Then, the sought

Math. Comput. Appl. 2021, 26, 42 10 of 13

solution is found via tau.solve, which builds the required objects, sets the algebraic Tau
formulation, and solves the problem in the Tau sense.

The solution is given by yn = ∑n
i=0 aiPn,i, where Pn is an orthogonal (in the code

shown Legendre) basis.

3.3. Example 3

This example shows that, for a set of initial value problems, the usual arithmetic
together with the ill-conditioning of the data can lead to unsatisfactory results in terms of
accuracy.

Let us consider the ordinary differential problem

(k−m)!xm dmy
dxm (x)− k!y(x) = 0, m ∈ N, m < k (fixed)

with the initial conditions

y(−1) = (−1)k

y′(−1) = k (−1)k−1

· · ·
y(r)(−1) = k!/(k− r)! (−1)k−r, r = 0, . . . , m− 1.

The analytical solution is xk.
Since the solution is polynomial, the spectral method is expected to deliver the exact

solution for the same polynomial degree approximation. However, this might not be the
case due to the poor condition number of the linear system to be solved.

For this experiment, we tested the numerical approximation for m = 4 and k = 5.
Since the derivative order along with the power exponent are small, a machine precision
accuracy was expected for polynomial degree approximations equal to 5 and beyond.
Figure 5 shows the true error (Figure 5a) and the residual (Figure 5b) for this specification
and for several values of n, for double and quadruple precisions. Indeed, from n = 5 on,
the solution is found within machine precision. The code is stable even when n grows.

(a) n

3 4 5 6 7 8 9 10

e
r
r
o
r

10-40

10-30

10-20

10-10

100

1010

double precision

quadruple precision

Figure 5. Cont.

Math. Comput. Appl. 2021, 26, 42 11 of 13

(b) n

3 4 5 6 7 8 9 10

r
e
s
id
u
a
l

10-40

10-30

10-20

10-10

100

1010

double precision

quadruple precision

Figure 5. Convergence for values of n ranging from 3 to 10: m = 4, k = 5: (a) The error. (b) The
residual. For well conditioned data, the stability of the Tau method and the robustness of its
implementation allows for maximum accuracy according to the working precision.

For larger values of m and/or k, problems can occur, mainly due to ill-conditioning.
Figure 6 shows the results of similar experiments but with considering m = 11 and k = 13.
The reciprocal condition estimator of the condition number is also drawn for each n tested.
The condition number of the problems to be solved is high, and thus the approximate
solutions may not be computed accurately. It is clear that, for increasing values of n, the
condition number increases (the reciprocal decreases).

(a)
20 30 40 50 60 70 80 90 100

10-60

10-50

10-40

10-30

10-20

10-10

100

double precision

quadruple precision

double rcond

quadruple rcond

Figure 6. Cont.

Math. Comput. Appl. 2021, 26, 42 12 of 13

(b)
20 30 40 50 60 70 80 90 100

10-60

10-50

10-40

10-30

10-20

10-10

100

double precision

quadruple precision

double rcond

quadruple rcond

Figure 6. Convergence for values of n ranging from 20 to 100: m = 11, k = 13. The reciprocal
condition estimators: (a) The error. (b) The residual. The double precision floating-point arithmetic
operating on the ill-conditioning of data disables the ability to achieve accurate results; the use of
enlarged precision allows us to obtain results with machine double precision.

For double precision arithmetic, the quality of the approximate solution is poor since
the error is, for all cases considered, high: the approximation cannot be delivered with
more than two or three significant digits, thus, strongly under single precision accuracy.

On the other hand, with quadruple precision arithmetic, the approximation was
obtained with machine double precision (10−16). Even for the larger n, where the condition
number is higher than 1050, an approximate solution can be obtained within machine
double precision.

4. Conclusions

In this work, we extended the Tau Toolbox to work with variable precision arithmetic.
This possibility is crucial to (i) accommodate ill-conditioned problems, which prevent
stable algorithms from working within machine precision and (ii) distinguish between two
different computational implementations of the same mathematical expression in terms of
both the accuracy and speed. We compared both approaches for double and quadruple
precision for several examples, including ill-conditioned problems. In those problems,
the use of quadruple precision, used internally in the evaluations, allowed the method
to achieve double precision, whereas lower than single precision was attained when the
internal calculations were performed using double precision.

Spectral methods can deliver accurate approximation solutions, and thus the possi-
bility to work with greater precision is a remarkable aspect. The Tau Toolbox allows the
exploration of variable precision arithmetic with a single parameter specification. This is
possible because the software package was built internally supporting different precision
types and using naturally default double precision arithmetic.

The experimental results shown illustrate the efficiency of the use of quadruple
precision on the computation of approximate solutions of differential problems via the
spectral Tau method, in terms of the accuracy of the solution. Clearly, there is a time
penalty that must be paid. In the near future, we expect that more widely used machine
architectures will provide, natively, quadruple precision, which will mitigate the cost and,
therefore, make its use more appealing. When that occurs, Tau Toolbox will be able to
take immediate advantage since it is already prepared for this possibility.

Math. Comput. Appl. 2021, 26, 42 13 of 13

Author Contributions: Conceptualization, J.A.O.M. and P.B.V.; methodology, J.A.O.M. and P.B.V.;
software, J.A.O.M. and P.B.V.; writing—original draft preparation, J.A.O.M. and P.B.V.; writing—
review and editing, J.A.O.M. and P.B.V. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors were partially supported by CMUP, which is financed by national funds
through FCT—Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2020.

Acknowledgments: We thank the reviewers for their careful reading of the manuscript and for
providing very constructive comments that significantly improved the presentation quality.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. 754-2008 IEEE standard for floating-point arithmetic. IEEE Comput. Soc. Std. 2008, 2008, 517. [CrossRef]
2. Higham, N. A Multiprecision World. SIAM News 2017. Available online: https://sinews.siam.org/Details-Page/a-multiprecision-

world (accessed on 23 May 2021).
3. Higham, N.J. The rise of multiprecision arithmetic. In Proceedings of the 2017 IEEE 24th Symposium on Computer Arithmetic

(ARITH), London, UK, 24–26 July 2017.
4. The MathWorks, Inc., Natick, MA, USA. Available online: https://www.mathworks.com/ (accessed on 23 May 2021).
5. Meurer, A.; Smith, C.P.; Paprocki, M.; Čertík, O.; Kirpichev, S.B.; Rocklin, M.; Kumar, A.; Ivanov, S.; Moore, J.K.; Singh, S.; et al.

SymPy: Symbolic computing in Python. PeerJ Comput. Sci. 2017, 3, e103. [CrossRef]
6. Granlund, T. GNU MP: The GNU Multiple Precision Arithmetic Library. Available online: http://gmplib.org/ (accessed on 23

May 2021).
7. Zimmermann, P. Reliable computing with GNU MPFR. In Proceedings of the International Congress on Mathematical Software,

Kobe, Japan, 13–17 September 2010; Springer: Berlin, Germany, 2010; pp. 42–45.
8. Amodio, P.; Brugnano, L.; Iavernaro, F.; Mazzia, F. On the use of the Infinity Computer architecture to set up a dynamic precision

floating-point arithmetic. Soft Comput. 2020, 24, 17589–17600. [CrossRef]
9. Amodio, P.; Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M.; Sergeyev, Y. A generalized Taylor method of order three for the

solution of initial value problems in standard and infinity floating-point arithmetic. Math. Comput. Simul. 2017, 141, 24–39.
[CrossRef]

10. Zorn, B.; Grossman, D.; Tatlock, Z. Sinking Point: Dynamic Precision Tracking for Floating-Point. In Proceedings of the Conference
for Next Generation Arithmetic 2019 (CoNGA’19), Singapore, 13–14 March 2019; Association for Computing Machinery: New
York, NY, USA, 2019. [CrossRef]

11. Nepomuceno, E.G.; Martins, S.A.; Silva, B.C.; Amaral, G.F.; Perc, M. Detecting unreliable computer simulations of recursive
functions with interval extensions. Appl. Math. Comput. 2018, 329, 408–419. [CrossRef]

12. Ortiz, E.L. The Tau method. SIAM J. Numer. Anal. 1969, 6, 480–492. [CrossRef]
13. Trindade, M.; Matos, J.M.; Vasconcelos, P.B. Towards a Lanczos’ τ-Method Toolkit for Differential Problems. Math. Comput. Sci.

2016, 10, 313–329. [CrossRef]
14. Vasconcelos, P.B.; Matos, J.M.; Matos, J.A. Tau Toolbox: Spectral Package for the Solution of Integro-Differential Problems.

Available online: https://cmup.fc.up.pt/tautoolbox (accessed on 23 May 2021).
15. Vasconcelos, P.B.; Matos, J.M.; Trindade, M.S. Spectral Lanczos’ Tau method for systems of nonlinear integro-differential

equations. In Integral Methods in Science and Engineering, Volume 1; Springer: Berlin, Germany, 2017; pp. 305–314.
16. Matos, J.C.; Matos, J.A.; Rodrigues, M.J.; Vasconcelos, P.B. Approximating the solution of integro-differential problems via the

spectral Tau method with filtering. Appl. Numer. Math. 2020, 149, 164–175. [CrossRef]
17. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Govt. Print:

Washington, DC, USA, 2006.

http://doi.org/10.1109/IEEESTD.2008.4610935
https://sinews.siam.org/Details-Page/a-multiprecision-world
https://sinews.siam.org/Details-Page/a-multiprecision-world
https://www.mathworks.com/
http://dx.doi.org/10.7717/peerj-cs.103
http://gmplib. org/
http://dx.doi.org/10.1007/s00500-020-05220-z
http://dx.doi.org/10.1016/j.matcom.2016.03.007
http://dx.doi.org/10.1145/3316279.3316283
http://dx.doi.org/10.1016/j.amc.2018.02.020
http://dx.doi.org/10.1137/0706044
http://dx.doi.org/10.1007/s11786-016-0269-x
https://cmup.fc.up.pt/tautoolbox
http://dx.doi.org/10.1016/j.apnum.2019.05.025

	Introduction
	The Tau Spectral Method
	Numerical Experiments
	Example 1
	Example 2
	Example 3

	Conclusions
	References

