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Abstract: Most real-world problems require the optimization of multiple objective functions simulta-
neously, which can conflict with each other. The environment of these problems usually involves
imprecise information derived from inaccurate measurements or the variability in decision-makers’
(DMs’) judgments and beliefs, which can lead to unsatisfactory solutions. The imperfect knowledge
can be present either in objective functions, restrictions, or decision-maker’s preferences. These
optimization problems have been solved using various techniques such as multi-objective evolution-
ary algorithms (MOEAs). This paper proposes a new MOEA called NSGA-III-P (non-nominated
sorting genetic algorithm III with preferences). The main characteristic of NSGA-III-P is an ordinal
multi-criteria classification method for preference integration to guide the algorithm to the region
of interest given by the decision-maker’s preferences. Besides, the use of interval analysis allows
the expression of preferences with imprecision. The experiments contrasted several versions of the
proposed method with the original NSGA-III to analyze different selective pressure induced by the
DM’s preferences. In these experiments, the algorithms solved three-objectives instances of the DTLZ
problem. The obtained results showed a better approximation to the region of interest for a DM when
its preferences are considered.

Keywords: incorporation of preferences; multi-criteria classification; decision-making process; multi-
objective evolutionary optimization; outranking relationships

1. Introduction

Many industrial domains are concerned with multi-objective optimization problems
(MOPs), which in general have conflicting objectives to handle [1]. To solve optimally, a
MOPs is to find a set of solutions defined as Pareto optimal solutions. They represent the
best compromise between the conflicting objectives. A promising alternative is solving
MOPs with metaheuristics, like multi-objective evolutionary algorithms (MOEAs); they
obtain an approximation of the Pareto optimal set. This approach solves the problem
partially. The decision-maker (DM) has to choose the best compromise solution, which
satisfies his preferences, from the set of solutions obtained (non-dominated by each other).
For practical reasons, the DM needs to choose one solution to implement it.

MOEAs face various problems when dealing with many objectives—exponential
growth in the number of non-dominated solutions and high computational cost to maintain
population diversity [2–4], among others. In addition to the previous problems, decision-
making becomes difficult when the number of objectives increases.
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One way to reduce the DM’s cognitive effort is to consider the preferences to guide the
MOEA to the region of interest (ROI). Incorporating DM’s preferences requires considering
non-trivial aspects—defining the DM’s preferences, determining the ROI and determining
the relevance of a solution [5]. The preferences incorporation methods have used the fol-
lowing representation structures [6,7]—weights, ranking of solutions, ranking of objective
functions, reference point, trade-offs between objective functions, desirability thresholds,
outranking relations. This paper incorporates preferences using outranking relations.

In many real-world situations, the MOPs environment implicates imprecise infor-
mation derived from inaccurate measurements or the variability in DMs’ judgments and
beliefs. Not considering these imprecisions can lead to unsatisfactory solutions and, in
consequence, to a poor choice between the existing alternatives due to imperfect knowledge
of the problem [8]. Imprecise information may be present in different MOP components;
for example, it can be either in objective functions, restrictions, or a decision-maker’s
preferences. Obtaining the preferential model parameters is a difficult task that increases
with the objective number, only possible when the handle of imprecision is allowed [9]. The
simplest approach to handling imprecise information is to estimate this information’s mean
value to solve the problem as a deterministic one [10]. The interval numbers are a natural,
simple, and effective approach to express imperfect knowledge. This paper incorporates
interval analytics to express the parameters of a preferential model.

On the other hand, when we apply MOEAs to solve problems with many objectives,
they face challenges such [2–4]:

1. The exponential growth of the number of non-dominated solutions, making it harder
to obtain representative samples of the Pareto front.

2. The increase in the number of poor solutions that are difficult to dominate (at least
one of your objectives has a value, and the rest are close to optimal).

3. The solutions in the variable space become more distant as more objectives are added
to the problem [11]. In such a case, when two distant parent solutions are recombined,
the generated offspring solutions likely are also distant [12]; therefore, the efficiency
of the genetics operators is questionable.

4. The high computational cost to determine the degree of diversity of the population.

Even though incorporating preferences in MOEAs is a challenging problem, the
outranking approach handles it appropriately and aids in reducing the DM’s cognitive
effort required to choose a final solution [13]. Considering the lack of research devoted to
studying the convenience of using the outranking approach in the optimization process,
this work proposes a further analysis to observe the performance of a novel strategy of
incorporating outranking in a MOEA. Unlike Cruz et al. [6], which requires representative
solutions of two classes from the DM, this work proposes to incorporate two classes for
internal use to guide the search process and establish greater differentiation between
solutions, exerting selective pressure to find the ROI, but with the same cognitive load for
the DM.

According to the reviewed literature [2–4,11], and as was mentioned before, MOEAs
present difficulties when the number of objectives grows. For example, the classical
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [14] presents issues with the
diversity-controlling operators [12]; authors extended this algorithm in NSGA-III to replace
the crowding distance operator with the generation of well-spread reference point. In this
paper, we propose a new method to integrate the DM’s preferences to NSGA-III, which can
deal with many objectives and is based on non-dominated fronts’ ordering.

To the best of our knowledge, few of the previous studies has incorporated the pres-
ence of imperfect knowledge, nor have used the INTERCLASS-nC [15] as a classifier in
the non-dominated-sorting process or employed more of two of inner classes to guide
the search process towards the region of interest, and this work focuses on these issues.
This research seeks to evaluate the proposed method’s performance when incorporating
preferences in the presence of imperfect knowledge with various versions of the pro-
posed algorithm.
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The remain of this paper is organized as follows—Section 2 includes reviewing the
literature and some definitions of INTERCLASS-nC. Section 3 details the proposed method
present. Section 4 specifies the benchmark to be solved, which includes seven problem
instances. Section 5 shows and discusses the experimental results. Finally, Section 6
presents the conclusions of this paper and future work.

2. Literature Review

Two main approaches are distinguished in the area of Multi-Criteria Decision-Making
(MCDM) [16]:

a The French approach, based on outranking relationships built through comparisons
between pairs of solutions to determine, for each pair of solutions, if there is relevant
information (preference, indifference, or incompatibility) among them.

b The American Multi-Attribute Utility Theory (MAUT) works based on the formula-
tion of an overall utility function, and an interactive process can obtain this.

In the case of outranking relationship, indicators of dominance or preference are
defined given some thresholds. This approach’s main criticism is the difficulty to obtain
the model parameters [6]; however, there are methods to solve it [17]. On the other hand,
MAUT does not work when intransitivity exists between the preferential model [16]. The
intransitivity phenomenon occurs in many real cases when exist a looping between the
alternatives to select. It is important to consider this property to avoid possible incoherent
solutions [18].

The incorporation of interactive and a priori preferences can reduce the search space
because the information is used to guide MOEAs to reach the ROI, which is the region of
the Pareto frontier preferred by the DM’s. Expressing a DM’s preference could be a more
difficult cognitive process. According to Cruz et al. [6], the following characteristics are
desirable for a preference incorporation method:

1. Easy interaction between the DM and the solution algorithm involves minimizing the
cognitive effort of a DM when making a judgment about the solutions.

2. There should be no requirement for comparability and transitivity of preferences.
3. The preference aggregation model must be compatible with the relevant characteristics

of the real DMs.
4. There should be techniques to infer the decision model parameters from examples

provided by the DM.

In Cruz et al. [6], the multicriteria ordinal classification requires the DM to separate
solutions into two categories. In a preference incorporation method with this classifier, the
human categorization is the stage with the lowest cognitive demand of the entire process.
Assigning solutions to the class “good” or “not good” does not require the DM to worry
about the transitivity between them in the same way; the DM only compares the solutions
between “good” and “not good”.

Using outranking relationships allows handling the characteristics of many DMs
facing real-world problems [6]. Being good that used preference incorporation methods
meet the desirable characteristics described above, related to interaction with the DM,
compatibility between the preferential model and the DM, properties of the preferences,
and parameters’ inference.

The ordinal multi-criteria classification can be useful to the DM to determine the best
solution of a discrete set of alternatives, this is due to the existence of ordinally ordered
sets starting with the most preferred alternatives to the least preferred ones [19]. There
is a variety of multi-criteria ordinal classification methods, these can be grouped into the
following classes [15]:

a Methods based on the objective function value.
b Symbolic methods, mainly those belonging to the theory of rough sets.
c Methods based on outranking relationships.
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To our knowledge, the first article that uses multi-criteria ordinal classification based
on outranking was Oliveira et al. [20], which uses the popular ELECTRE-TRI method for
ordinal classification in a three-objective problem, in which preferences are incorporated
a priori, directly setting the parameters of the outranking model. Those methods belong
to the family ELECTRE (Elimination Et Choix Traduisant la Realite) which uses a relation of
outranking to identify if a solution x is at least as good as a y.

The hybrid algorithm proposed by Cruz et al. [13] uses a multi-criteria ordinal
classification based on outranking. During the first phase, a meta-heuristic algorithm
obtains a first approximation to the Pareto frontier. In the second phase, the DM assigns
the solutions to two ordered classes and obtains the parameters of the outranking model.
In the third phase, the THESEUS classification method applies selective pressure towards
“satisfactory” solutions. They test the proposal on project portfolio problems with 4, 9, and
16 objectives; its results surpass the popular NSGA-II and Non-Outranked Ant Colony
Optimization (NOACO) proposed in [21].

Cruz et al. [6] proposed the Hybrid Evolutionary Algorithm guided by Preferences
(HEAP) algorithm, an extension of their previous work [13]. Where, instead of NSGA-II
and NOACO, they use MOEA/D and MOEA/D-DE as metaheuristics for the first phase
of the hybrid algorithm. For evaluating the proposed algorithm, they used instances of
the portfolio optimization problem and the scalable test DTLZ problem, with three and
eight objectives. The DTLZ benchmark are box-constrained continuous n-dimensional
multi-objective problems, scalable in fitness dimension. This experimentation aims to
analyze different in the activation of classification and the restart of solutions. The use of
the DTLZ test suite makes possible assess the closeness to the ROI of a DM and compare
the performance with three and eight objectives. The DM’s preferences are simulated
through an outranking model. In addition to the THESEUS classification method, the
popular ELECTRE-TRI is incorporated, and the results of both methods are compared. In
most cases, the best results were obtained with ELECTRE-TRI.

Additionally, few of the researches in the state of the art consider the imperfect
knowledge in the DM’s preferences and its effect in the function’s objectives to be optimized.
Besides, none has used the classifier INTERCLASS-nC in the non-dominated-sorting
process or employed more inner classes to guide the search process towards the ROI. The
proposed NSGA-III-P incorporates these characteristics.

2.1. Interval Arithmetic

In [22], Moore et al. formally proposed the interval analysis. An interval number can
be viewed as an entity that reflects a quantitative property whose precise value is unknown.
Still, the range within the value lies is known [15]. In this work, the imperfect knowledge
is represented with interval numbers, Moore et al. [23] describes a number in interval as a
range, E = [E, E], where E represents the lower limit while E the upper limit of an interval.
Items in bold are numbers in intervals.

Considering two numbers of intervals D = [D, D] and E = [E, E], the Basic arithmetic
operations can be defined for numbers of intervals as follows:

• addition:
D + E = [D + E, D + E] (1)

• subtraction:
D− E = [D− E, D− E] (2)

• multiplication:

D ∗ E = [ min{DE , DE, DE, DE}, max{DE, DE, DE, DE} ] (3)

• division:

D/E = [D, D] ∗ [ 1
E

,
1
E
]. (4)
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According to Fliedner et al. [24] a realization of an interval number is any real number
e ∈ [E, E]. An order relation is defined in the number of intervals as: let e and d be two
realizations of E and D respectively, we say that E > D if the preposition “e is greater than d”
has greater credibility than “d is greater the an e”.

Fernandez et al. [25] proposes the possibility function:

P(E ≤ D) =


1 if pED > 1,
PED if 0 ≤ PED ≤ 1,
0 if PED < 0,

(5)

where E = [e, e] and D = [d, d] are numbers of intervals and PED = e−d
(e−e)+(d−d)

. The order

relationship between D and E is given by:

a If D = E and D = E, then D = E. Therefore P(E ≥ D) = 0.5.
b If E > D, then E > D. Therefore P(E ≥ D) = 1.
c If E < D, then E < D. Therefore P(E ≥ D) = 0.
d If D ≤ E ≤ D ≤ E or D ≤ E ≤ E ≤ D, when:

(a) P(E ≥ D) > 0.5. Therefore, E is greater than D, (E > D).
(b) P(E ≥ D) < 0.5. Therefore, E is less than D, (E < D).

2.2. INTERCLASS-nC

Fernandez et al. [15] proposed an ordinal classification method, useful when the DM
has a vague idea about the boundaries between adjacent classes but can identify several
(even one) representative solutions in each class.

The DM must provide a model of outranking in terms of:

• Weight, w = [w−, w+]
• Veto threshold, v = [v−, v+]
• Majority threshold λ = [λ−, λ+]
• Credibility threshold β = [β−, β+].

A set of classes C = {C1, ..., Ck, ..., Cm}, (m ≥ 2) is defined, ordered by increasing
preference. Considering a δ > 0.5 and λ > [0.5, 0.5]. Where, δ corresponds to the maximum
probability degree for which the strength of the coalition of agreement exceeds λ.

Rk = {rkj, j = 1, ..., card(Rk)} is a subset of reference solutions that characterize
Ck, k = 1, ..., m and {r0, R1, ..., Rm, rm+1} is the set of all reference solutions, in which r0
and rm+1 are the worst and the ideal reference solution respectively. The elements in
Rk, k = 1, ..., m− 1 must satisfy the conditions defined in Fernandez et al. [15].

Classification is performed using top-down and bottom-up methods jointly. Each
method proposes a class for the assignment of x; in case of not coinciding, these rules
propose a possible range for the assignment of x.

3. Proposed Method

The Nondominated Sorting Genetic Algorithm III proposed in [12] is a genetic algo-
rithm similar to the original NSGA-II. They search the Pareto optimal set performing a
non-dominated sorting. The difference is the maintenance of diversity in the selection stage.
The first uses crowding distances, and the second uses reference points. NSGA-III discrim-
inates between the non-dominated solutions using a utility function, which calculates a
solution’s relevance to approximate a reference point.

To incorporate a DM’s preferences, we propose integrating the ordinal classification
method INTERCLASS-nC into the NSGA-III, we will call this variant NSGA-III-P. The
original work [6] only defines the classes “satisfactory” (Sat) and “unsatisfactory” (Dis);
the DM gives a reference set to generate these classes (with one or more representative
solutions for each class). This classification complements the non-dominated sorting to
increase the capacity to discriminate solutions; this strategy induces a greater selective
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pressure, focusing the search toward the ROI. In this work, two classes are added internally
for giving more precision in the comparison of the solutions:

• The DM is highly satisfied (HSat) with an x solution, if for each action w ∈ R2 it is
true that xPr(β, λ)w.

• The DM is highly dissatisfied (HDis) with an x, if for each action w ∈ R1 it is true that
wPr(β, λ)x.

The steps to follow to generate the Pt+1 of the NSGA-III-P that integrates the
INTERCLASS-nC ordinal classification method are shown in the Algorithm 1. Let Qt
the children population of the current generation with equal number of individual N of Pt.
The first step is to combine the children and parents tending Rt = Pt ∪Qt (of size 2N), the
N individuals that will become Pt+1 will be selected. To do this, Rt will be divided into
multiple fronts not dominated by non-dominated sorting (F1, F2, ..., Fn).

The proposed method of integration of preferences works with the set of previously cre-
ated non-dominated fronts, by classifying all the solutions in F1 and group the solutions in
classes, creating the fronts F′1, F′2, F′3, F′4 corresponding to classes HSat, Sat, Dis, HDis. In the
created fronts are joined with the remaining ones in such a way that F′ = {F′1, F′2, F′3, F′4}∪n

j=2
Fj. This process is illustrated in Figure 1 and corresponds to step 7–18 in Algorithm 1.

Figure 1. The proposed methodology for classifying the F1, grouping, and fronts reordering.

After F′1 the new population is built until the size is N. The last front is called the l-th
front. Therefore, the front l + 1 are rejected; in most situations, l is partially accepted. Only
the solutions that maximize the diversity of l-th are selected in such a case (steps 21–26).
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Algorithm 1 Generation Pt of NSGA-III-P
Input: H structured reference points Zs or supplied aspiration points Za, parent population
Pt, Cx iteration where the algorithm applies the classification, Ry solution replacement rate
Output: Pt+1

1: St ← ∅, i← 1
2: Qt ← Recombination + Mutation(Pt)
3: Rt ← Pt ∪Qt
4: (F1, F2, ..., Fn)← Non− dominated− sort(Rt)
5: // If the rest of the current iteration between Cx equals 0, the classification applies
6: if (iteration mod Cx) == 0 then
7: (F′1, F′2, F′3, F′4)← ∅
8: for s ∈ F1 do // Classify each member of F1 and group by class
9: c← classi f y(s)

10: if c == ”hsat” then
11: F′1 ← F′1 ∪ s
12: if c == ”sat” then
13: F′2 ← F′2 ∪ s
14: if c == ”dis” then
15: F′3 ← F′3 ∪ s
16: if c == ”hdis” then
17: F′4 ← F′4 ∪ s
18: F′ ← {F′1, F′2, F′3, F′4} ∪n

j=2 Fj // Fronts reordering
19: else
20: F′ = (F1, F2, ..., Fn)

21: while |St| ≤ N do // Last front to be included F′l ← F′i
22: St ← St ∪ F′i
23: i← i + 1
24: if |St| == N then
25: if (iteration mod Cx) == 0 then
26: replacement(St, Ry) // Replace the last Ry random individuals
27: Return: St
28: else
29: Pt+1 ← ∪l−1

j=1Fj

30: Points to be chosen from Fl : K ← N − |Pt+1|
31: Normalize objectives & create reference set Zr ← normalize( f n, St, Zr, Zs, Za)
32: Associate each member s ∈ St with a reference point:
33: [π(s), d(s)] = associate(St, Zr)%π(s)
34: Compute niche count of reference point j ∈ Zr : pj = ∑s∈St/Fl

((π(s) = j)?1 : 0)
35: Choose K member one at a time from Fl to construct
36: Pt+1 : niching(K, pj, π, d, Zr, Fk, Pt+1)
37: if (iteration mod Cx) == 0 then
38: replacement(St, Ry) // Replace the last Ry random individuals
39: Return: Pt

The proposed algorithm has two approaches for controlling the selective pressure
generated by the incorporation of preference:

• Apply classification every certain number of iterations (step 6).
• Incorporating a replacement mechanism of Ry individuals from the population (steps

25 and 36), this criterion only applies when classification occurs.

Preference incorporation is, in a certain way, an Intensification approach. The Intensifi-
cation would be reduced by adding new random solutions and generating a diversification,
therefore balancing the search. We analyzed different activation configurations in the
experimental section to observe their impact on the algorithm’s performance.
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4. Experimental Settings

The proposed NSGA-III-P (non-nominated sorting genetic algorithm III with pref-
erences) algorithm’s experimentation was carried out to solve the DTLZ1 - DTLZ7 prob-
lem’s. The algorithm’s performance is observed to evaluate the effect of the intensification-
diversification mechanism.

All the algorithms used in this experimentation were executed 50 times for each
instance on an Intel Core i7-10510U CPU @ 1.80GHz × 8 with 16 GB of RAM. We developed
the algorithms in Java using the OpenJDK 11.0.10 64-Bit.

The DTLZ problem’s instances configuration is summarized in the Table 1. For his
solution, the algorithm has a population size n = 92 individuals, the algorithm uses the
SBX crossover operator and the polynomial mutation operator. The Table 2 shows the
configurations of these operators.

Table 1. Parameters Used for Three-Objective DTLZ Problem’s instances.

Problem Number of Variables Iterations

DTLZ1 7 400
DTLZ2 12 250
DTLZ3 12 1000
DTLZ4 12 600
DTLZ5 12 500
DTLZ6 12 500
DTLZ7 12 500

Table 2. Crossover and mutation parameters used for NSGA-III-P.

Parameter Value

Polynomial mutation probability pm
1
n

Polynomial mutation index nm 20
SBX crossover probability pc 1

SBX crossover index nc 30

We analyzed the NSGA-III-P algorithm’s versions named CxRy, where x is the percent-
age of iterations to activate the classification. In contrast, y is the percentage of replacement
of solutions. Considering the classification increase intensification, less classification re-
duces the intensification, and restart of solutions increases the diversification; these variants
are higher to lower intensification: C100R0, C1R0, C1R2, C10R0, and C0R0 (see Table 3).

Table 3. Experimental configurations carried out.

Name Description

C0R0 NSGA-III reported in the literature.
C100R0 NSGA-III-P with classification in each iteration with 0% replacement.
C10R0 NSGA-III-P with classification every 10% iterations with 0% replacement.
C1R0 NSGA-III-P with classification every 1% iterations with 0% replacement.
C1R2 NSGA-III-P with classification every 1% iterations with 2% replacement.

4.1. Creation of the ROI

Let T′ be a sample of non-dominated solutions taken from a large set T of solutions
(≥100 thousand) generated analytically at the Pareto frontier of a standard problem. The
solutions that integrate the ROI identified with the following sets and measures in T′.
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• Outranking weakness of a solution x. A low value of this measure provides positive
arguments for selecting x.

Do(x) = {y|σ(y, x) > β, σ(x, y) < 0.5, y ∈ T′{x}} (6)

• Net score measure used to identify DM preferred solutions.

Fn(x) = ∑
y∈T′

σ(x, y)− σ(y, x) (7)

where Fn(x) > Fn(y) indicates a certain preference of x over y.
• Best compromise solution set more preferred by the DM.

x∗ = {x|D(x) = 0, Fn(x) = maxy∈T′(Fn(y)), x ∈ T′} (8)

• Region of interest made up of the best compromise solutions x∗

ROI(T′) = x∗ ∪ {maxx∈T′(Fn(x) ≥ 0, K)}, (9)

where K are the largest Fn values of x.

4.2. Indicators of Performance

Each algorithm is executed 50 times to the result of a complete run of the NSGA-III-P
algorithm configurations, and applying the following indicators:

a Minimum, mean, and maximum Euclidean distance among the obtained non domi-
nated solutions and the ROI (also called Min Euclid, Mean Euclid, Max Euclid)

b Conservation of Dominance: creates a set of non-dominated solutions from the solu-
tions obtained from all configurations. Counting the solutions of each configuration.

c Conservation of Satisfaction: the non-nominated solutions belonging to the HSat and
Sat classes (classified by the INTERCLASS-nC) are counted.

4.3. Description of the Instance

The DTLZ problems instance used contains the characterization of the DM preferences
(elements 3–6). It has the following elements:

1. objectives number: integer
2. variable number: integer
3. weight vector: Interval
4. veto vector: Interval
5. lambda: Interval
6. references solutions: a vector of solutions is expected.

5. Results

Table 4 shows the reached performance for each algorithm when solving each DTLZ
problem. For space reasons, these results are only presented for two performance mea-
sures. The first two columns show the result for the original NSGA-III algorithm. The next
columns present eight variants of NSGA-III with preferences. The first six columns corre-
spond to variants without activating the solutions restarting strategy. The last two columns
correspond to variants that use restarting to reduce the effect of incorporate preferences.
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Table 4. Average algorithm performance evaluated with two measures for DTZL problems.

Problem
NSGA-III NSGA-III-P (with Preferences)

without Restart with Restart

C0R0 C100R0 C10R0 C1R0 C1R2
%C

CHSat Min Euc %C
CHSat Min Euc %C

CHSat Min Euc %C
CHSat Min Euc %C

CHSat Min Euc

DTLZ 1 1.9463.5 0.0074563.0 92.7691.0 0.0019123.0 1.5893.5 0.0052153.0 1.5653.5 0.0104373.0 2.1313.5 0.0118743.0

DTLZ 2 0.8433.5 0.0074593.0 97.2601.0 0.0038023.0 0.6253.5 0.0089523.0 0.6043.5 0.0141823.0 0.6683.5 0.0137543.0

DTLZ 3 8.4343.5 0.0299055.0 76.4771.0 0.0292693.0 5.5243.5 0.0670643.0 4.4813.5 0.0496075.0 5.0833.5 0.0643645.0

DTLZ 4 2.6613.5 0.0001313.0 78.9741.0 0.0000013.0 2.5673.5 0.0000013.0 11.0923.5 0.0007963.0 4.7063.5 0.0000023.0

DTLZ 5 0.3653.5 0.0018883.0 56.0651.0 0.0016353.0 0.8523.5 0.0054143.0 25.5493.5 0.0008643.0 17.1693.5 0.0008193.0

DTLZ 6 1.2593.5 0.0048933.0 52.8871.0 0.0009375.0 1.6143.5 0.0045855.0 23.7933.5 0.0015545.0 20.4463.5 0.0012133.0

DTLZ 7 12.1483.5 0.0391963.5 42.9881.0 0.0061551.0 11.0443.5 0.0391663.5 17.7443.5 0.0271633.5 16.0753.5 0.0284753.5

Average 3.95086 0.01299 71.06 0.00624 3.40214 0.01863 12.11829 0.03318 9.46829 0.01827

%C-CHSat: conservation percentage of highly satisfactory solutions; MinEuc: min Euclidean distance.

Table 5 shows the first summary of a statistical comparison of five variants of NSGA-III
using the configurations reported in Table 4. We applied the Friedman Test, followed by the
Hollman Post-hoc Test. The best and the worst algorithm are identified with the algorithms’
ranking considering two measures: the percentage of conservation of highly satisfactory
solutions (CHSat) and the minimum Euclidean distance (MinEuc).

Table 5. Best and worst algorithms resulting from their statistical comparison evaluated with
two measures.

PROBLEM Best Variants for Worst Variants for

CHSat Min CHSat Min

DTLZ1 C100R0 C0R0 C1R0 C1R2
DTLZ2 C100R0 C100R0 C1R0 C1R2
DTLZ3 C100R0 C100R0 C1R0 C10R0
DTLZ4 C100R0 C100R0 C10R0 C1R2
DTLZ5 C100R0 C1R2 C0R0 C10R0
DTLZ6 C100R0 C1R2 C0R0 C0R0
DTLZ7 C100R0 C100R0 C10R0 C0R0

In this paper, the main measure to evaluate algorithms is related to the counting of
highly satisfactory solutions because preferences elicitation is aligned with this measure.
But considering other DM could be interested in the closeness to the ROI, the Euclidean
distance is an alternative because it is frequently used in decision-making. For a DM
interested in highly satisfactory solutions, the best variant for all DTLZ problems is C100R0.
In contrast, if the DM is interested in solutions closer to the ROI, we cannot find a unique
variant as the best; They are dependent on the problem. The C100R0 variant offers solutions
close to the ROI in four of the seven problems evaluated (DTLZ2–DTLZ4, DTLZ7); For
the DTLZ5 and DTLZ6 problems, C1R2 has a better performance. The original NSGA-III
algorithm offers solutions closer to the ROI for the DTLZ1 problem. It is noteworthy. that
C100R0 is never the worst option; the other variants are the worst at least once.

Table 6 shows the algorithms’ average performance for all DTLZ problems. After
applying statistical tests to compare algorithms (Friedman aligned and Hollman posthoc).
We identify pairwise comparisons with significant differences. Using these pairs, for each
algorithm, a set of statistically no better algorithms was obtained. Finally, the algorithms
are ranked instead of Hierarchical using the well-known Borda count to accumulate
their positioning overall instances for a given measure. The superscript corresponds
to ranking Borda.

There are significant statistical differences in 3 of the 5 metrics evaluated (CHSAT,
Mean Euclidean, Max Euclidean). For the percentage of conservation of solutions for which
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the DM is highly satisfied (CHSat), the best algorithm is C100R0. In contrast, the rest of
the algorithms have a similar behavior according to Borda’s ranking. The indicator of the
percentage of solutions for which the DM is satisfied (CSat) does not significantly differ.
That is expected because CHSAT gets better well-solutions.

Table 6. The average and standard deviation of the algorithms over 50 independent runs in terms of percentage of
conservation and Euclidean distance for the DTLZ family of problems.

% of Conservation Euclidean Distance

Configuration CHSat CSat Min Mean Max
C0R0 4.6592.0

0.124 4.8773.0
0.053 0.0022892.0

0.003 0.7795364.0
0.396 2.6434081.0

2.801 ↑

C100R0 62.1691.0
0.259 ↑ 6.7363.0

0.105 0.0007231.0
0.001 ↑ 0.1793971.0

0.095 ↑ 0.7246941.0
0.448 ↑

C10R0 4.2392.0
0.109 7.3552.0

0.061 0.0011572.0
0.001 0.7905134.0

0.403 1.5266002.0
0.881

C1R0 15.9512.0
0.279 38.0981.0

0.356 ↑ 0.0013373.0
0.002 0.6762942.0

0.410 1.4471902.0
0.935

C1R2 12.9812.0
0.230 42.9341.0

0.424 ↑ 0.0021352.0
0.005 0.6970333.0

0.422 1.4970782.0
0.899

Statistical test: Friedman of aligned ranks with a significance level of 0.05. The superscript indicates the position in which it was ranked by
the Borda method. The subscript indicates the standard deviation of the results. The upper arrow indicates the top-ranked algorithm.

The C100R0 configuration is the one with the greatest contribution of solutions closer
to the ROI according to the minimum Euclidean distance indicator. This indicator does
not have significant differences. For the average, significant differences were found, and
the algorithm C100R0 is the one that provides the closest solutions. The algorithms that
provide the least distant solutions are C100R0 and C0R0 based on the maximum of the
Euclidean distance.

This global analysis gives the best rank for the C100R0, meaning that it is a good
alternative for all analyzed problems. However, C1R2 produces solutions closer to the ROI
in some problems. They are extreme variants concerning intensification and diversification,
meaning that the balance between them depends on the problem; we need to conduct
extensive experimentation to confirm.

To illustrate the superiority of the proposed NSGA-III-P concerning NSGA-III,
Figures 2 and 3 shows the non-dominated solutions obtaining when solving the DTLZ3
problem. Figure 2 is for NSGA-III (C0R0) and Figure 3 is for NSGA-III-P with preferences
all time and without a restart (C100R0). The variant C100R0 performs a better exploration
of the region of interest with highly satisfactory solutions. At the same time, C0R0 scans the
entire solution space, but most solutions are highly unsatisfactory. The solutions belonging
to the ROI are illustrated in black, the solutions classified as highly satisfactory (HSat) in
green, satisfactory solutions (Sat) in blue, unsatisfactory solutions orange (Dis), and highly
unsatisfactory solutions (HDis) in red.
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Figure 2. Non-dominated NSGA-III(C0R0) solutions of the DTLZ3 problem.

Figure 3. Non-dominated NSGA-III-P(C100R0) solutions of the DTLZ3 problem.

6. Conclusions

This article presents a novel method for incorporating DM’s preferences into the
NSGA-III algorithm, named NSGA-III-P. INTERCLASS-NC is a multi-criteria and outrank-
ing ordinal classifier that allows incorporating preference, giving the algorithm the capacity
to improve the discrimination of solutions and intensify the search toward the region of
interest. Excessive intensification can diminish the algorithm’s effectiveness. To regulate
this selective pressure, we add two complementary strategies to the search in NSGA-III-P:
control the activations of the classification and control the restarts of solutions.

Experiments with different configurations of NSGA-III-P were proposed to study
different levels of intensification and diversification. NSGA-III-P solve the DTLZ test suite,
including the preferences of DM with imperfect knowledge.

Based on computational experimentation, the best alternative to the DTLZ problems is
the C100R0 (always classify without restarts) when the DM is looking for highly satisfactory
solutions. When the DM prefers solutions closer to the ROI, the variants C1R2 (classify and
sometimes restart) and C100R0 have the best performance with two and four problems,
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respectively. In general, the proposed method NSGA-III-P outperforms NSGA-III because
it allows obtaining better approximations to the ROI using the principal performance
measures; only in one case, the NSGA-III is the best option for the DTLZ1 problem using
the Max Euclidean distance.

These preliminary results open a research line to determine the extent to which the
selective pressure induced by preferences improves the algorithm performance concerning
the closeness to the ROI and the factors that affect it.

As future work, we will evaluate the proposal with a greater number of objectives for
the DTLZ problems. Also, the proposal will be integrated into at least one other algorithm
representative of the state of the art. We aim to develop a method that dynamically adjusts
the diversification and intensification levels required for each problem.
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