
Mathematical

and Computational

Applications

Review

Surrogate Modeling Approaches for Multiobjective
Optimization: Methods, Taxonomy, and Results

Kalyanmoy Deb *,† , Proteek Chandan Roy † and Rayan Hussein †

����������
�������

Citation: Deb, K.; Roy, P.C.; Hussein,

R. Surrogate Modeling Approaches

for Multiobjective Optimization:

Methods, Taxonomy, and Results.

Math. Comput. Appl. 2021, 26, 5.

https://doi.org/10.3390/mca26010005

Received: 25 October 2020

Accepted: 27 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Computational Optimization and Innovation (COIN) Laboratory, Michigan State University,
East Lansing, MI 48824, USA; royproteekchandan@gmail.com (P.C.R.); husseinr@egr.msu.edu (R.H.)
* Correspondence: kdeb@egr.msu.edu
† These authors contributed equally to this work.

Abstract: Most practical optimization problems are comprised of multiple conflicting objectives and
constraints which involve time-consuming simulations. Construction of metamodels of objectives
and constraints from a few high-fidelity solutions and a subsequent optimization of metamodels to
find in-fill solutions in an iterative manner remain a common metamodeling based optimization strat-
egy. The authors have previously proposed a taxonomy of 10 different metamodeling frameworks
for multiobjective optimization problems, each of which constructs metamodels of objectives and
constraints independently or in an aggregated manner. Of the 10 frameworks, five follow a generative
approach in which a single Pareto-optimal solution is found at a time and other five frameworks
were proposed to find multiple Pareto-optimal solutions simultaneously. Of the 10 frameworks,
two frameworks (M3-2 and M4-2) are detailed here for the first time involving multimodal optimiza-
tion methods. In this paper, we also propose an adaptive switching based metamodeling (ASM)
approach by switching among all 10 frameworks in successive epochs using a statistical comparison
of metamodeling accuracy of all 10 frameworks. On 18 problems from three to five objectives, the
ASM approach performs better than the individual frameworks alone. Finally, the ASM approach is
compared with three other recently proposed multiobjective metamodeling methods and superior
performance of the ASM approach is observed. With growing interest in metamodeling approaches
for multiobjective optimization, this paper evaluates existing strategies and proposes a viable adap-
tive strategy by portraying importance of using an ensemble of metamodeling frameworks for a
more reliable multiobjective optimization for a limited budget of solution evaluations.

Keywords: surrogate modeling; multiobjective optimization; evolutionary algorithms; kriging method;
ensemble method; adaptive algorithm

1. Introduction

Practical problems often require expensive simulation of accurate high-fidelity models.
To get close to the optimum of these models, most multiobjective optimization algorithms
need to compute a large number of solution evaluations. However, in practice, only a
handful of solution evaluations are allowed due to the overall time constraint available to
solve such problems. Researchers usually resort to surrogate models or metamodels con-
structed from a few high-fidelity solution evaluations to replace computationally expensive
models to drive an optimization task [1–3]. For example, Gaussian process model, Kriging,
or response surface method is commonly used. The Kriging method is of particular interest,
since it is able to provide an approximated function as well as an estimate of uncertainty of
the prediction of the function [4].

In extending the metamodeling concept to multiobjective optimization problems,
an obvious issue is that multiple objective and constraint functions are required to be
metamodeled before proceeding with the optimization algorithm. Despite this challenge
of multiple metamodeling efforts, a good number of studies have been made to solve

Math. Comput. Appl. 2021, 26, 5. https://dx.doi.org/10.3390/mca26010005 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0001-7402-9939
https://dx.doi.org/10.3390/mca26010005
https://dx.doi.org/10.3390/mca26010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/mca26010005
https://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/26/1/5?type=check_update&version=4

Math. Comput. Appl. 2021, 26, 5 2 of 27

computationally expensive multiobjective optimization problems using metamodeling
based evolutionary algorithms [5–10]. However, most of these studies ignored constraints
and extending an unconstrained optimization algorithm to constrained optimization is not
trivial [11]. In any case, the structure of most of these methods is as follows. Starting an ini-
tial archive of solutions obtained by an usual Latin-hypercube sampling, a metamodel for
each objective and constraint function is built independently [12,13]. Then, in an epoch–one
cycle of metamodel development and their use to obtain a set of in-fill solutions, an evolu-
tionary multiobjective optimization (EMO) algorithm is used to optimize the metamodeled
objectives and constraints to find one or more in-fill points. Thereafter, the in-fill points
are evaluated using high-fidelity models and saved into the archive. Next, new meta-
models are built using the augmented archive members and the procedure is repeated in
several epochs until the allocated number of solution evaluations is consumed [5,14–19].
Many computationally expensive optimization problems involve noisy high-fidelity simu-
lation models. Noise can come from inputs, stochastic processes of the simulation, or the
output measurements. In this paper, we do not explicitly discuss the effect of noise in
handling metamodeling problems, but we recognize that this is an important matter in
solving practical problems.

In a recent taxonomy study [20], authors have categorized different plausible multiob-
jective metamodeling approaches into 10 frameworks, of which the above-described popu-
lar method falls within the first two frameworks—M1-1 or M1-2, depending on whether
a single or multiple nondominated in-fill solutions are found in each epoch. The other
eight frameworks were not straightforward from a point of view extending single-objective
metamodeling approaches to multiobjective optimization and hence were not explored in
the past. Moreover, the final two frameworks (M5 and M6) attempt to metamodel an EMO
algorithm’s implicit overall fitness (or selection) function directly, instead of metamodeling
an aggregate or individual objective and constraint functions. There is an advantage of
formulating a taxonomy, so that any foreseeable future metamodeling method can also
be categorized to fall within one of the 10 frameworks. Moreover, the taxonomy also
provides new insights to other currently unexplored ways of handling metamodels within
a multiobjective optimization algorithm.

So far, each framework has been applied alone in one complete optimization run
to solve a problem, but in a recent study [21], a manual switching of one framework
to another after 50% of allocated solution evaluations has produced improved results.
An optimization process goes through different features of the multiobjective landscape
and it is natural that a different metamodeling framework may be efficient at different
phases of a run. These studies are the genesis of this current study, in which we propose an
adaptive switching based metamodeling (ASM) approach, which automatically finds one of
the 10 best-performing frameworks at the end of each epoch after a detailed statistical study,
thereby establishing self-adaptive and efficient overall metamodeling based optimization
approach.

In the remainder of the paper, Section 2 briefly describes a summary of recent related
works. Section 3 provides a brief description of each of 10 metamodeling frameworks
for multiobjective optimization. The proposed ASM approach is described in Section 4.
Our extensive results on unconstrained and constrained test problems for each framework
alone and the ASM approach are presented in Section 5. A comparative study of the ASM
approach with three recent existing algorithms is presented in Section 5.5. We summarize
our study of the switching framework based surrogate-assisted optimization with future
research directions in Section 6.

Math. Comput. Appl. 2021, 26, 5 3 of 27

2. Past Methods of Metamodeling for Multiobjective Optimization

We consider the following original multi- or many-objective optimization problem (P),
involving n real-valued variables (x), J inequality constraints (g) (equality constraints, if any,
are assumed to be converted to two inequality constraints), and M objective functions (f):

Minimize (f1(x), f2(x), . . . , fM(x)),
Subject to gj(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n.
(1)

In this study, we assume that all objective and constraint functions are computationally
expensive to compute and that they need to be computed independent to each other for ev-
ery new solution x. To distinguish from the original functions, the respective metamodeled
function is represented with a “tilde” (such as, f̃i(x) or g̃j(x)). The resulting metamodeled
problem is denoted here as MP, which is formed with developed metamodels of individ-
ual objective and constraints or their aggregates. In-fill solutions are defined as optimal
solutions of problem MP. It is assumed here that constructing the metamodels and their
comparisons among each other consume comparatively much less time than evaluating
objective and constraints exactly, hence, if the metamodels are close to the original func-
tions, the process can end up with a huge savings in computational time without much
sacrifice in solution accuracy. Naturally, in-fill solutions (obtained from metamodels) need
to be evaluated using original objective and constraints (termed here as “high-fidelity”
evaluations) and can be used to refine the metamodels for their subsequent use within the
overall optimization approach.

A number of efficient metamodeling frameworks have been proposed recently for mul-
tiobjective optimization [10,22–28], including a parallel implementation concept [29]. These
frameworks use different metamodeling methods to approximate objective and constraint
functions, such as radial basis functions (RBFs), Kriging, Bayesian neural network, support
vector regression, and others [30]. Most of these methods proposed a separate metamodel
for each objective and constraint function, akin to our framework M1. Another study have
used multiple spatially distributed surrogate models for multiobjective optimization [31].
It is clear that this requires a lot of metamodeling efforts and metamodeling errors from
different models can accrue and make the overall optimization to be highly error-prone.
As will be clear later, these methods will fall under our M1-2 framework.

Zhang et al. [14] proposed the MOEA/D-EGO algorithm which metamodeled each
objective function independently. They constructed multiple expected global optimization
(EGO) functions for multiple reference lines of the MOEA/D approach to find a number
of trade-off solutions in each optimization task. No constraint handling procedure was
suggested. Thus, this method falls under our M1-2 framework.

Chugh et al. [23] proposed a surrogate-assisted adaptive reference vectors guided
evolutionary algorithm (K-RVEA) for computationally expensive optimization problems
with more than three objectives. Since all objectives and constraints are metamodeled
separately, this method also falls under our M1-2 framework. While no constraint handling
was proposed with the original study, a later version included constraint handling [32].

Zhao et al. [24] classified the sample data into clusters based on their similarities
in the variable space. Then, a local metamodel was built for each cluster of the sample
data. A global metamodel is then built using these local metamodels considering their
contributions in different regions of the variable space. Due to the construction and
optimization of multiple metamodels, one for each cluster, this method belongs to our
M-3 framework. The use of a global metamodel by combining all local cluster-wise
metamodels qualify this method under the M3-2 framework. No constraint handling
method is suggested.

Bhattacharjee et al. [25] used an independent metamodel for each objective and con-
straint using different metamodeling methods: RBF, Kriging, first and second-order re-

Math. Comput. Appl. 2021, 26, 5 4 of 27

sponse surface models, and multilayer perceptrons. NSGA-II method is used to optimized
metamodeled version of the problem. Clearly, this method falls under our M1-2 category.

Wang et al. [26] used independent metamodeling of objectives but combined them
using a weight-sum approach proposed an ensemble-based model management strategy
for surrogate-assisted evolutionary algorithm. Thus, due to modeling a combined objective
function, this method falls under our M3-1 framework. A global model management
strategy inspired from committee-based active learning (CAL) was developed, searching
for the best and most uncertain solutions according to a surrogate ensemble using a particle
swarm optimization (PSO) algorithm. In addition, a local surrogate model is built around
the best solution obtained so far. Then, a PSO algorithm searches on the local surrogate
to find its optimum and evaluates it. The evolutionary search using the global model
management strategy switches to the local search once no further improvement can be
observed and vice versa.

Pan et al. [33] proposed a classification based surrogate-assisted evolutionary algo-
rithm (CSEA) for solving unconstrained optimization problems by using an artificial neural
network (ANN) as a surrogate model. The surrogate model aims to learn the dominance re-
lationship between the candidate solutions and a set of selected reference solutions. Due to
a single metamodel to find the dominance structure involving all objective functions,
this algorithm falls under our M3-2 framework.

Deepti et al. [34] suggested a reduced and simplified model of each objective function
in order to reduce the computational efforts.

Recent studies on nonevolutionary optimization methods for multiobjective optimiza-
tion using trust-region method [35,36] and using decomposition methods [37] are proposed
as well.

A recent study [38] reviewed multiobjective metamodeling approaches and suggested
a taxonomy of the existing methods based on whether the surrogate assisted values match
well the original function values. Three broad categories were suggested: (i) algorithms
that do not use any feedback from the original function values, (ii) algorithms that use a
fixed number of feedback, and (iii) algorithms that adaptively decide which metamodeled
solutions must be checked with the original function values. This extensive review reported
that most existing metamodeling approaches used a specific EMO algorithm—NSGA-II [39].
While a check on the accuracy of a metamodel is important for its subsequent use, this
is true for both single and multiobjective optimization and no specific issues related to
multiobjective optmization were discussed in the review paper.

Besides the algorithmic developments, a number of studies have applied metamodel-
ing methods to practical problems with a limited budget of solution evaluations [40–47],
some restricting to a few hundreds [48].

Despite all the above all-around developments, the ideas that most distinguish sur-
rogate modeling in multiobjective optimization from their single-objective counterparts
were not addressed well. They are (i) how to fundamentally handle multiple objectives and
constraints either through a separate modeling of each or in an aggregated fashion? and (ii)
how to make use of the best of different multiple surrogate modeling approaches adaptively
within an algorithm? In 2016, Rayan et al. [5] have proposed a taxonomy in which 10 meta-
modeling frameworks were proposed to address the first question. This paper addresses
the second question in a comprehensive manner using the proposed 10 metamodeling
frameworks using an ensemble method.

Ensemble methods have been used in surrogate-assisted optimization for solving
expensive problems [49–53], but in most of these methods, an ensemble of different meta-
modeling methods, such as RBF, Kriging, response surfaces, are considered to choose
a single suitable method. While such studies are important, depending on the use of
objectives and constraints, each such method will fall in one of the first eight frameworks
presented in this paper. No effort is made to consider an ensemble of metamodeling
frameworks for combining multiple objectives and constraints differently and choosing the
most suitable one for optimization. In this paper, we use an ensemble of 10 metamodeling

Math. Comput. Appl. 2021, 26, 5 5 of 27

frameworks [5,20] described in the next section and propose an adaptive selection scheme
of choosing one in an iterative manner thereafter.

3. A Taxonomy for Multiobjective Metamodeling Frameworks

Having M objective and J constraints to be metamodeled, there exist many plausible
ways to develop a metamodeling based multiobjective optimization methods. Thus, there
is a need to classify different methods into a few finite clusters so that they can be compared
and contrasted with each other. Importantly, such a classification or taxonomy study can
provide information about methods which are still unexplored. A recently proposed taxon-
omy study [20] put forward 10 different frameworks based on the metamodeling objective
and constraint functions based on their individual or aggregate modeling, as illustrated in
Figure 1.

Figure 1. The proposed taxonomy of 10 different metamodeling frameworks for multi- and many-
objective optimization. (Taken from [20]).

We believe most ideas of collectively metamodeling all objectives and constraints can
be classified into one of these 10 frameworks. We describe each of the 10 frameworks below
in details for the first time.

We explain each framework using a two-variable, two-objective SRN problem [54,55]
as an example:

Minimize f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2,
Minimize f2(x) = 9x1 − (x2 − 1)2,
Subject to g1(x) = x2

1 + x2
2 − 225 ≤ 0,

g2(x) = x1 − 3x2 + 10 ≤ 0,
−20 ≤ (x1, x2) ≤ 20.

(2)

The PO solutions are known to be as follows: x∗1 = −2.5 and x∗2 ∈ [2.5, 14.79]. To apply
a metamodeling approach, one simple idea is to metamodel all four functions. The functions
and the respective PO solutions are marked on f1 and f2 plots shown in Figure 2a,b,
respectively. The feasible regions for g1 anf g2 are shown in Figure 2c,d.

Math. Comput. Appl. 2021, 26, 5 6 of 27

 0

−15
−10

−5
 0
 5
 10
 15
 20−20−15−10 −5 0 5 10 15 20

x_2

x_1

f_1 1000

 800

 600

 400

 200

−20

(a) Function f1.

−500

−15
−10

−5
 0
 5
 10
 15
 20−20 −15 −10 −5 0 5 10 15 20

f_2

x_1

x_2

 100

−100

−300

−20

(b) Function f2.

g_1

−15
−10

−5
 0
 5
 10
 15
 20−20−15−10 −5 0 5 10 15 20

x_2

 700
 500
 300
 100

−100
−300

x_1

−20

(c) Function g1.

g_2

−15
−10

−5
 0
 5
 10
 15
 20

x_1

−20−15−10 −5 0 5 10 15 20

x_2

 100
 20

−20
−100

−20

(d) Function g2.

Figure 2. Two objectives and two constraints are shown for SRN problem. The combined fea-
sible region is shown in the contour plot. PO solutions lie on the black line marked inside the
feasible region.

3.1. M1-1 and M1-2 Frameworks

Most existing multiobjective metamodeling approaches are found to fall in these two
frameworks [20]. In M1-1 and M1-2, a total of (M + J) metamodels (M objectives and J
constraints) are constructed. The metamodeling algorithm for M1-1 and M1-2 starts with
an archive of initial population (A0 of size N0) created using the Latin hypercube sampling
(LHS) method on the entire search space, or by using any other heuristics of the problem.
Each objective function (fi(x), for i = 1, . . . , M) is first normalized to obtain a normalized
function f

i
(x) using the minimum (f min

i) and maximum (f max
i) values of all high-fidelity

evaluation of archive members, so that the minimum and maximum values of f
i
(x) is zero

and one, respectively:

f
i
(x) =

fi(x)− f min
i

f max
i − f min

i
. (3)

Then, metamodels are constructed for each of the M normalized objective functions in-
dependently: (f̃

1
(x), . . . , f̃

M
(x)), ∀i ∈ {1, 2, . . . , M} using a chosen metamodeling method.

For all implementations here, we use the Kriging metamodeling method [56] for all frame-
works of this study.

Each constraint function (gj(x), for j = 1, . . . , J) is first normalized to obtain a nor-
malized constraint function (g

j
(x)) using standard methods [57], and then metamodeled

Math. Comput. Appl. 2021, 26, 5 7 of 27

separately to obtain an approximate function (g̃
j
(x)) using the same metamodeling method

(Kriging method is adopted here) used for metamodeling objective functions.
In M1-1, all metamodeled normalized objectives are combined into a single aggregated

function and optimized with all separately metamodeled constraints to find a single in-fill
point using a single-objective evolutionary optimization algorithm (real-coded genetic algo-
rithm (RGA) [54] is used here). In τ generations of RGA (defining an epoch), the following
achievement scalarization aggregation function (ASF12(x, z)) [58] is optimized for every
z vector:

Problem O1-1:
Solution: x∗(z),


Minimize ASF12(x, z) = maxM

j=1

(
f̃

j
(x)− zj

)
,

Subject to g̃
j
(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(4)

where the vector z is one of the Das and Dennis’s [59] point on the unit simplex on the
M-dimensional hyperspace (making ∑M

j=1 zi = 1). Thus, for each of H different z vectors,
one optimization problem (O1-1) is formed with an equi-angled weight vector, and solved
one at time to find a total of H in-fill solutions using a real-parameter genetic algorithm
(RGA). Figure 3a shows the infill solution for z = (0.5, 0.5) for the SRN problem. Notice, the
ASF12 function constitutes a minimum point on the Pareto-optimal (PO) line (black line on
the contour plot) for the specific z-vector. If the exact ASF12 function can be constructed as
a metamodeled function from a few high-fidelity evaluations, one epoch would be enough
to find a representative PO set. However, since the metamodeled function is expected to
have a difference from the original function, several epochs will be necessary to get close to
the true PO set. For a different z-vector, the ASF12 function will have a different optimal
solution, but it will fall on the PO line. The ASF12 model, constructed from metamodeled
objective and constraint functions, will produce optimal solutions on the Pareto set for
different z-vectors. Multiple applications of a RGA will discover a well-distributed set of
multiple in-fill points one at a time.

The RGA procedure uses a trust-region concept, which we describe in detail in
Section 4.3. The best solution for each z is sent for a high-fidelity evaluation. The solution
is then included in the archive (A1) of all high-fidelity solutions. After all H solutions
are included in the archive, one epoch of the M1-1 framework optimization problem is
considered complete. In the next epoch, all high-fidelity solutions are used to normalize
and metamodel all (M + J) objective functions and constraints, and the above process is
repeated to obtain A2. The process is continued until all prespecified maximum solution
evaluations (SEmax) is completed. Nondominated solutions of final archive At is declared
as outcome of the whole multiobjective surrogate-assisted approach.

In M1-2, the following M-objective optimization problem,

Problem O1-2:
Solutions: xi,∗, i = 1, . . . , H


Minimize

(
f̃

1
(x), f̃

2
(x), . . . , f̃

M
(x)
)

,
Subject to g̃

j
(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(5)

constructing (M + J) metamodels in each epoch, is solved to find H in-fill solutions in
a single run with an EMO/EMaO procedure. We use NSGA-II procedure [39] for two-
objective problems, and NSGA-III [60] for three or more objective problems here. All H
solutions are then evaluated using high-fidelity models and are included in the archive for
another round of metamodel construction and optimization for the next epoch. The process
is continued until SEmax evaluations are done. Figure 3b shows that when NSGA-II
optimizes a well-approximated metamodel to the original problem, the obtained solutions
will lie on the true PO front.

Math. Comput. Appl. 2021, 26, 5 8 of 27

z=(0.5,0.5)

 5
 10
 15
 20

x_1

−20−15 −10 −5 0 5 10 15 20

x_2

ASF_12
 900

 700

 500

 300

 100

−20
−15
−10

−5
 0

(a) The ASF solution with z = (0.5, 0.5) in M1-1,
M2-1, M3-1 and M4-1. The solution lies on the true
PO set (black line).

 300

f_
2

−250

−200

−150

−100

−50

 0

 50

 100

 250 0 50 100 150 200

f_1

(b) Efficient solutions in M1-2 and M2-2. For il-
lustration, a few PO solutions are shown in green
circles.

x_2

ASF_34
 0.6
 0.5
 0.4
 0.3
 0.2
 0.1

 0

−20
−15

−10
−5

 0
 5
 10

 15
 20−20−15−10 −5 0 5 10 15 20x_1

(c) minASF34 in M3-2 and M4-2. For illustration,
five z-vectors and their respective PO solutions,
found simultaneously, are shown in red circles.

Figure 3. In-fill solutions for different frameworks for SRN problem. True functions are plotted here,
however, different metamodeling frameworks use different approximations to find in-fill solutions
on the true PO set.

3.2. Frameworks M2-1 and M2-2

For M2-1 and M2-2, a single aggregated constraint violation function (ACV(x)) is first
constructed using the normalized constraint functions (g

j
(x), j = 1, . . . , J) at high-fidelity

solutions from the archive (x ∈ At), as follows:

ACV(x) =

 ∑J
j=1 g

j
(x), if x is feasible,

∑J
j=1〈gj

(x)〉, otherwise,
(6)

where the bracket operator 〈α〉 is α, if α > 0; and zero, otherwise. It is clear from the
above equation that for high-fidelity solutions, ACV(x) takes a negative value for feasible
solutions and a positive value for an infeasible solution. In M2-1 and M2-2, the constraint
violation function (ACV(x)) is then metamodeled to obtain ÃCV(x), instead of every
constraint function (gj(x)) metamodeled in M1-1 and M1-2. This requires a total of (M + 1)
metamodel constructions (M objectives and one constraint violation function) at each
epoch. In M2-1, the following problem

Problem O2-1:
Solution: x∗(z)


Minimize ASF12(x, z) = maxM

j=1

(
f̃

j
(x)− zj

)
,

Subject to ÃCV(x) ≤ 0,
x(L)

i ≤ xi ≤ x(U)
i , i = 1, 2, . . . , n,

(7)

Math. Comput. Appl. 2021, 26, 5 9 of 27

is solved to find one in-fill point for each reference line originating from one of the chosen
Das-Dennis reference points z. Similarly, M2-2 solves the following problem:

Problem O2-2:
Solutions: xi,∗, i = 1, . . . , H


Minimize

(
f̃

1
(x), f̃

2
(x), . . . , f̃

M
(x)
)

,

Subject to ÃCV(x) ≤ 0,
x(L)

i ≤ xi ≤ x(U)
i , i = 1, 2, . . . , n,

(8)

to find H in-fill solutions simultaneously. The rest of the M2-1 and M2-2 procedures are
identical to that in M1-1 and M1-2, respectively. RGA is used to solve each optimization
problem in M2-1 to find one solution at a time, and NSGA-II or NSGA-III is used in M2-2
depending on number of objectives in the problem. Thus, M2-1 requires an archive to store
each solution, whereas M2-2 does not require an archive.

3.3. M3-1 and M3-2 Frameworks

In these two methods, instead of metamodeling each normalized objective function
f

i
(x) for i = 1, . . . , M independently, we first aggregate them to form the following ASF34

function for each high-fidelity solution x:

ASF34(x, z) =
M

max
j=1

(
f

j
(x)− zj

)
, (9)

where z is defined as before. Note this formulation is different from ASF12 in that the ASF
formulation is made with the original normalized objective functions f

j
here. Then, one

ASF34 function (for a specific z-vector) is metamodeled to obtain ÃSF34(x, z), along with J
separate metamodels for J constraints (g̃

j
) to solve the following problem for M3-1:

Problem O3-1:
Solutions: x∗(z)


Minimize ÃSF34(x, z),
Subject to g̃

j
(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n.

(10)

For every z, a new in-fill point is found by solving the above problem using the same
RGA, discussed for M1-1. Every in-fill point is stored in an archive to compare with M∗-2
methods, which creates multiple solutions in one run, thereby not requiring an explicit
archive. In M3-2, the following problem is solved:

Problem O3-2:
Solutions: xi,∗, i = 1, . . . , H


Minimize minASF34(x) = minz ÃSF34(x, z),
Subject to g̃

j
(x) ≤ 0, j = 1, 2, . . . , J,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(11)

in which the objective function of x is computed as the minimum ÃSF34 for all z-vectors at
x. Figure 3c shows the multimodal objective function minASF34(x) for the SRN problem,
clearly indicating multiple local optima on the PO front. Notice how the minASF34 function
has ridges and creates multiple optima on the PO set, one for each reference line. Due to
the complexity involved in this function, it is clear that a large number of high-fidelity
points will be necessary to make a suitable metamodel with a high accuracy. Besides the
need of more points, there is another issue that needs a discussion. Both M3-1 and M3-2
requires H, ÃSF34(x, z) and J constraint functions to be metamodeled, thereby making a
total of (H + J) metamodels in each epoch. Since each of multiple optima of the minASF34
function will finally lead us to a set of PO solutions, we would need an efficient multimodal
optimization algorithm, instead of a RGA, to solve the metamodeled minASF34 function.

We use a multimodal single-objective evolutionary algorithm to find H multimodal
in-fill points of minASF34 simultaneously. We propose a multimodal RGA (or MM-RGA)
which starts with a random population of size N for this purpose. In each generation, the

Math. Comput. Appl. 2021, 26, 5 10 of 27

population (Pt) is modified to a new population (Pt+1) by using selection, recombination,
and mutation operators. The selection operator emphasizes multiple diverse solutions as
follows. First, a fitness is assigned to each population member x by computing ÃSF34(x, z)
for all H, z-vectors and then assigning the smallest value as the fitness. Then, we apply the
binary tournament selection to choose a parent using the following selection function:

SF(x) =

{
minASF34(x), if x is feasible,
minASFmax

34 + ∑J
j=1〈g̃j

(x)〉, otherwise, (12)

where minASFmax
34 is the maximum minASF34(x) value of all feasible population members

of MM-RGA. The above selection function has the following effects. If two solutions
are feasible, minASF34(x) is used to select the winner. If one is feasible and the other is
infeasible, the former is chosen, and for two infeasible members, the one with smaller
constraint violation ∑J

j=1〈g̃j
(x)〉 is chosen. After N offspring population members are thus

created, we merge the population to form a combined population of 2N members. The best
solution to each z-vector is then copied to Pt+1. In the event of a duplicate, the second best
solution for the z-vector is chosen. If H is smaller than N, then the process is repeated to
select a second population member for as many z-vectors as possible. Thus, at the end of
the MM-RGA procedure, exactly H in-fill solutions are obtained.

3.4. Frameworks M4-1 and M4-2

In these two frameworks, constraints are first combined to a single constraint violation
function ACV(x) as in M2-1 (Equation (6)) and then ACV is metamodeled to obtain ÃCV(x).
The following problem is then solved:

Problem O4-1:
Solution: x∗(z)


Minimize ÃSF34(x, z),
Subject to ÃCV(x) ≤ 0,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(13)

to find a single in-fill solution for every z. An archive is built with in-fill solutions. In M4-2,
following problem is solved to find H in-fill solutions simultaneously:

Problem O4-2:
Solutions: xi,∗, i = 1, . . . , H


Minimize minASF34(x) = minz ÃSF34(x, z),
Subject to ÃCV(x) ≤ 0,

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n,

(14)

Both these frameworks require H, ÃSF34(x, z) and one ACV function to be metamodeled,
thereby making a total of (H + 1) metamodels in each epoch. The same MM-RGA is used
here, but the SF function is modified by replacing ∑J

j=1〈g̃j
(x)〉 term with 〈ÃCV(x)〉 in

Equation (12). A similar outcome as in Figure 3c occurs here, but the constraints are now
handled using one metamodeled ÃCV(x) function. M4-2 does not require an archive to be
maintained, as H solutions will be found in one MM-RGA application.

3.5. M5 Framework

The focus of M5 is to use a generative multiobjective optimization approach in which
a single PO solution is found at a time for a z-vector by using a combined selection function
involving all objective and constraint functions together. The following selection function is
first created:

S5(x, z) =
{

ASF34(x, z), if x is feasible,
ASFmax

34 (x, z) + 〈ACV(x)〉, otherwise.
(15)

Math. Comput. Appl. 2021, 26, 5 11 of 27

Here, the parameter ASFmax
34 (x, z) is the worst ASF34 function value (described in Equa-

tion (9)) of all feasible solutions from the archive. The selection function S5(x, z) is then
metamodeled to obtain S̃5(x, z), which is then optimized by RGA (described for M1-1) to
find one in-fill solution for each z-vector. The unconstrained optimization problem with
only variable bounds is given below:

Problem O5:
Solution: x∗(z)

{
Minimize S̃5(x, z),
Subject to x(L)

i ≤ xi ≤ x(U)
i , i = 1, 2, . . . , n.

(16)

Thus, H metamodels of S5(x, z) need to be constructed for M5 in each epoch. Figure 4a
shows the S5 function with z = (0.1, 0.9) for SRN problem. Although details are not
apparent in this figure, Figure 4b, plotted near the optimum, shows optimum more clearly.
The entire surface plot is not shown for clarity, but it is interesting to see how a single
function differentiates infeasible from feasible region and also makes the optimum of the
function as one of the PO solutions.

−15
−10

−5
 0

 5
 10

 15
 20

x_1

−20

 20

−10 −5 0 5 10 15 20

x_2

S_5
 100

 60

−15

−20

(a) Optimal solution with z = (0.1, 0.9) in M5.

−1.5
−1

−0.5
 0

 1
 1.2
 1.4
 1.6
 1.8

 2

 7
 6.5

 6
 5.5

 5

x_1
x_2

S_5

−3
−2.5

−2

(b) The function S5 surface is blown up near the opti-
mum.

Figure 4. In-fill solution for a specific z-vector to be obtained by framework M5 for SRN problem.

Clearly, the complexity of the resulting S5(x, z) function will demand a large number
of archive points for an accurate identification of the PO solution or a large number of
epochs to arrive at the PO solution. However, the concept of metamodeling a selection
function, which is not one of the original objective or constraint function, to find an in-fill
solution of the problem is intriguing and opens up a new avenue for surrogate-assisted
multiobjective optimization studies.

3.6. Framework M6

Finally, M6 framework takes the concept of M5 a bit further and constructs a single
metamodel in each epoch by combining all M objectives and J constraints together. A mul-
timodal selection function having each optimum corresponding to a distinct PO solution is
formed for this purpose:

ASF6(x) = min
z∈Z

M
max
i=1

(
f

i
(x)− zi

)
. (17)

Then, the following selection function is constructed:

S6(x) =
{

ASF6(x), if x is feasible,
ASF6,max + CV(x), otherwise,

(18)

Math. Comput. Appl. 2021, 26, 5 12 of 27

where ASF6,max is the maximum ASF6 value of all feasible archive members. For each
archive member x, S6(x) is first computed. CV(x) is same as ACV(x), except that for
a feasible x, CV is set to zero. Then, the following multimodal unconstrained problem
(with variable bounds) is constructed to find H in-fill solutions simultaneously:

Problem O6:
Solutions: xi,∗, i = 1, . . . , H

{
Minimize S̃6(x),
Subject to x(L)

i ≤ xi ≤ x(U)
i , i = 1, 2, . . . , n.

(19)

A single metamodel needs to be constructed in each epoch in M6 framework. Due to
the complexity involved in the S6-function, we employ a neural network S̃6(x) to meta-
model this selection function. A niched RGA [7] similar to that described in Section 3.4
is used here to find H in-fill solutions corresponding to each local optimum of the meta-
modeled S̃6(x) function. No explicit archive needs to be maintained to store H solutions.
Figure 5a shows S6 function for SRN function on the entire search space. The detail inside
the feasible region and near the optimal solutions shown in Figure 5b makes it clear that
this function creates six optima on the PO front, corresponding to six z-vectors. Although
the function is multimodal, the detail structure from Figure 5a to Figure 5b can be modeled
gradually with iterations of a carefully designed optimization algorithm.

S_6

−15−10 −5 0 5 10 15 20x_1

x_2

 600

 400

 200

 0

−20
−15

−10
−5

 0
 5
 10

 15
 20−20

(a) Multimodal optimal solutions in M6. For illustra-
tion, six z-vectors are used in Equation (15).

 1.8
 2

x_1

S_6

−5

−4

−3

−2

−1

 0

 2 4 6 8 10 12 14
x_2

 1
 1.2
 1.4
 1.6

(b) The function S6 surface is blown up near the opti-
mal region showing six optima.

Figure 5. The function S6 surface is blown up near the optimal region showing six optima.

3.7. Summary of 10 Frameworks

A summary of metamodeled functions and the optimization algorithms used to
optimize them for all 10 frameworks is provided in Table 1. The relative computational cost
for each framework can be derived from this table. M3-1 and M3-2 require to construct the
maximum number of metamodels (assuming the number of desired PO solutions H > M)
among all the frameworks, and M6 requires the least, involving only one metamodel in
each epoch.

The evolutionary algorithm used to solve each optimization problem is also provided
in the table.

Math. Comput. Appl. 2021, 26, 5 13 of 27

Table 1. Summary of metamodeled functions and optimization algorithms needed in each epoch for
all 10 frameworks.

Frame- Metamodeling #Metamodels Optimization #Opt.
Work Functions Method Runs

M1-1 (f
1
, . . . , f

M
) M + J RGA H

(g
1
, . . . , g

J
)

M1-2 Same as above M + J NSGA-II/III 1
M2-1 (f

1
, . . . , f

M
) & ACV M + 1 RGA H

M2-2 Same as above M + 1 NSGA-II/III 1
M3-1 ASF34 & (g

1
, . . . , g

J
) H + J RGA H

M3-2 Same as above H + J MM-RGA 1
M4-1 ASF34 & ACV H + 1 RGA H
M4-2 Same as above H + 1 MM-RGA 1
M5 S5 H RGA H
M6 S6 1 N-RGA 1

4. Adaptive Switching Based Metamodeling (ASM) Frameworks

Each metamodeling framework in our proposed taxonomy requires building meta-
models for either each objective and constraint or their aggregations. Thus, it is expected
that each framework may be most suitable for certain function landscapes that produce
a smaller approximation error, but that framework may not be good in other landscapes.
During an optimization process, an algorithm usually faces different kinds of landscape
complexities from start to finish. Thus, no one framework is expected to perform best
during each step of the optimization process. While each framework was applied to dif-
ferent multiobjective optimization problems in another study [6,20] from start to finish,
different problems were found to be solved best by different frameworks. To determine the
best performing framework for a problem, a simple-minded approach would be to apply
each of the 10 frameworks to solve each problem independently using SEmax high-fidelity
evaluations, and then determine the specific framework which performs the best using
an EMO metric, such as hypervolume [61] or inverse generational distance (IGD) [62].
This will be computationally expensive, requiring 10 times more than the prescribed SEmax.
If each framework is allocated only 1/10-th of SEmax, they may be insufficient to find
comparatively good solutions. A better approach would be to use an adaptive switching
strategy that chooses the most suitable framework at each epoch.

As mentioned in the previous section, in each epoch, exactly H new in-fill solutions
are created irrespective of the metamodeling framework used, thereby consuming H high-
fidelity SEs. Clearly, the maximum number of epochs allowable is Emax = d SEmax−N0

H e with
a minor adjustment on the SEs used in the final epoch. At the beginning of each epoch
(say, t-th epoch), we have an archive (At) of Nt high-fidelity solutions. For the first epoch,
these are all N0 Latin hypercube sampled (LHS) solutions, and in each subsequent epoch,
H new in-fill solutions are added to the archive. At the start of t-th epoch, each of the 10
frameworks is used to construct its respective metamodels using all Nt archive members.
Then, a 10-fold cross-validation method (described in Section 4.2) is used with a suitable
performance metric (described in Section 4.1) to determine the most suitable framework for
the next epoch. Thereafter, the best-performing framework is used to find a new set of H
in-fill solutions. They are evaluated using high-fidelity evaluations and all 10 frameworks
are statistically compared to choose a new best-performing framework for the next epoch.
This process is continued until SEmax evaluations are made. A pseudocode of the proposed
ASM approach is provided in Algorithm 1.

Math. Comput. Appl. 2021, 26, 5 14 of 27

Algorithm 1: Adaptive Swithing Framework
Input : Objectives: [f1, . . . , fm]T , Constraints: [g1, . . . , gJ]

T , frameworksMi with parameter Γi for
i ∈ {1 . . . , S} where S is number of frameworks, Number of initial samples, allowed
high-fidelity solution evaluations, solutions per epoch and cross-validation partitions are N0,
SEmax , u and K respectively.

Output : PT
1 t, Pt, Ft, Gt, e← 0, ∅, ∅, ∅, N0;
2 Pnew ← LHS(ρ)// Initial sampling
3 while True do
4 Fnew = { fi(Pnew), ∀i ∈ {1, . . . , M}}// high-fidelity objectives eval.
5 Gnew = {gj(Pnew), ∀j ∈ {1, . . . , J}}// high-fidelity constraints eval.
6 Pt+1, Ft+1, Gt+1 ← (Pt ∪ Pnew), (Ft ∪ Fnew), (Gt ∪Gnew)// merge pop
7 e← e + |Pnew|// number of high-fidelity evaluations
8 break if e ≥ SEmax// termination
9 Calculate {ASF(.), ACV(.), S5, S6} etc. from Pt+1, Ft+1 & Gt+1 as per requirements ofMi , ∀i;

10 Create random K partition (training and test set) Qk
t+1 from Pt+1, ∀k ∈ {1, . . . , K};

11 for k=1 to K do
12 for i=1 to S do
13 mi ← Build corresponding metamodels for frameworkMi using training set of Qk

t+1;
14 SEP(k, i)← Calculate selection-error probability for mi with test set of Qk

t+1;

15 MB ← Identify best frameworks from SEP;
16 Mb ← Randomly choose a framework fromMB;
17 Pnew ← Optimize frameworkMb(mb, Γb);
18 if |Pt+1|+ |Pnew| > SEmax then
19 Pnew ← Randomly pick SEmax − |Pt+1| solutions from Pnew;

20 t← t + 1;
// end of epoch

21 return PT ← filter best solutions from Pt+1

4.1. Performance Metric for Framework Selection

To compare the performances among multiple surrogate models, mean squared error
(MSE) has been widely used in literature [30]. For optimization algorithms, the regression
methods that use MSE are known to be susceptible to outliers. For multiple objectives,
different objectives and constraints may have different scaling. Our pilot study shows that
even with the normalization of the objectives and constraints, the MSE metric does not
always correctly evaluate the metamodels. Here, we introduce a selection error probability
(SEP) metric which is more appropriate for an optimization task than MSE metric or even
other measures, such as, the Kendal rank correlation coefficient [63] metric. The usual
metrics may be better for a regression task, but for an optimization task, the proposed SEP
makes a more direct evaluation of pair-wise comparisons of solutions.

SEP is defined as the probability of making an error in correctly predicting the better
of two solutions compared against each other using the constructed metamodels. Con-
sider Figure 6, which illustrates an minimization task and comparison of three different
population members pair-wise. The true function values are shown in solid blue, while
the predicted function values are shown in dashed blue. When points x1 and x2 are com-
pared based on predicted function, the prediction is correct, since f ((x1) < f (x2) and
also f̃ (x) < f̃ (x2). However, when points x1 and x3 are compared against each other, the
prediction is wrong. Out of the three pairwise comparisons, two predictions are correct
and one is wrong, thereby making a selection error probability of 1/3 for this case. We
argue that in an optimization procedure, it is the SEP which provides a better selection
error than the actual function values, as the relative function values are important than the
exact function values.

Math. Comput. Appl. 2021, 26, 5 15 of 27

~

1

x1f()

x1f()

x2
x3

x3f()
~

x3f()

x2f()

x2f()
~

~

f(x)

x

Samples

f

f

x

Figure 6. Selection Error Probability (SEP) concept is illustrated.

Mathematically, the SEP metric can be defined for n points as follows. For each of
N = (n

2) pairs of points (p and q), we evaluate the selection error function (E(p, q)), which is
one, if there is a mismatch between predicted winner and actual winner of p and q; zero,
otherwise. Then, SEP is calculated as follows:

SEP =
1
N

n−1

∑
p=1

n

∑
q=p+1

E(p, q). (20)

The definition of a “winner” can be easily extended to multiobjective and con-
strained multiobjective optimization by considering the domination [64] and constraint-
domination [54] status of two points p and q.

4.2. Selecting a Framework for an Epoch

Frameworks having least SEP value are considered to be the best for performing
the next epoch. We have performed 10-fold cross-validation in order to identify the best
frameworks. After each epoch, H new in-fill points are evaluated using high-fidelity
evaluations and added to the archive. In each fold of cross-validation, 90% solutions are
used for constructing metamodels with respect to the competing frameworks. Then the
corresponding frameworks are used to compare every pair (p and q) of the remaining
10% of archive points using the SEP metric. We apply constrained domination checks to
identify the relationship between these two solutions. We then compare this relationship
with the true relationship given by their high-fidelity values with the same constrained
domination check. We calculate the selection error function (E(p, q)) for each pair of test
archive solutions. The above process is repeated 10 times by using different blocks of
90% points to obtain 10 different SEP values for each framework. This cross-validation
procedure does not require any new solution evaluations, as the whole computations are
performed based on the already-evaluated archive points and their predicted values from
each framework. Thereafter, the best framework is identified based on the median SEP
value of frameworks.

Finally, the Wilcoxon rank-sum test is performed between the best framework and
all other frameworks. All frameworks within a statistical insignificance (having p > 0.05)
are identified to obtain the best-performing setMB. Then a randomly chosen framework
(Mb) is selected fromMB for the next epoch. Since each of these frameworks performs
similarly in a sense of median performance, the choice of a random framework makes the
ASM approach diverse with the probability of using different metamodeling landscapes
in successive epochs. This procedure, in practice, prohibits the overall approach from
getting stuck in similar metamodeling frameworks for long, even it is one of the best
performing frameworks.

Math. Comput. Appl. 2021, 26, 5 16 of 27

4.3. Trust-Region Based Real-Coded Genetic Algorithms

Before we present the results, we need to discuss one other algorithmic aspect, which is
important. Since the metamodels are not error-free, predictions of solutions close to high-
fidelity solutions are usually more accurate than predictions far from them. Therefore,
we use a trust-region method [65] in which predictions are restricted within a radius
Rtrust from each high-fidelity solution in the variable space. Trust region method is used in
nonevolutionary metamodeling studies [35,36]. Another parameter Rprox is also introduced
which defines the minimum distance with which any new solution should be located from
an archive member to provide a diverse set of in-fill solutions. We simulate a feasible
search region Rsearch around every high-fidelity solution: Rprox ≤ Rsearch ≤ Rtrust. Using
the concepts of trust-region method from the literature [66], we reduce the two radii at
every epoch by constant factors: Rnew

trust = 0.75Rold
trust and Rnew

prox = 0.1Rnew
trust. A reduction of

two radii helps in achieving more trust on closer to high-fidelity solutions with iterations.
These factors are found to perform well on a number of trial-and-error studies prior to
obtaining the results presented in the next section.

The optimization methods for metamodels are modified as follows. At generation t,
parent population Pt is applied by a standard binary constrained tournament selection
on two competing population members using the metamodeled objectives, constraints,
or selection criteria described before to choose the winner. Standard recombination and
mutation operators (without any care for trust region concept) are used to create an
offspring population, which is then combined with the parent population Pt and then
better half is chosen for the next generation as parent population Pt+1 using the trust region
concept. We first count the number of solutions in the combined population within the
two trust regions. If the number is smaller than or equal to N, then they are copied to Pt+1
and remaining slots are filled with solutions which are closest to the high-fidelity solutions
in the variable space. On the other hand, if the number is larger than N, the same binary
constrained tournament selection method is applied to pick N solutions from them and
copied to Pt+1.

5. Results and Discussion

We present the results of the ASM approach on 18 different test and engineering
problems. The problems include two to five-objective, constrained, and unconstrained
problems. In order to get robust performance, we have included all 10 frameworks as op-
tions for switching in our ASM approach. The performance of ASM approach is compared
with each framework alone. We then compare ASM’s performance with three recently
suggested multiobjective metamodeling methods: MOEA/D-EGO [14], K-RVEA [23], and
CSEA [33].

5.1. Parameter Settings

For two-objective problems, we use NSGA-II [39] for M1-2 and M2-2 frameworks.
For problems with higher number of objectives, we use NSGA-III [60] procedure. Note that,
other multiobjective evolutionary algorithms (e.g., MOEA/D [14] or RVEA [23]) can also
be used. A population of size (N = 100) is used when the number of reference lines (H)
is less than 100. Otherwise, the population size is set identical to H. Initial archive size is
set according to Table 2. Other parameter settings are as follows: number of generations
τ = 300, SBX crossover probability pc = 0.95, polynomial mutation probability pm = 1/n
(where n is the number of variables), distribution indices for SBX and mutation operators
are ηc = 20 and ηm = 20, respectively. Initial value of Rtrust is set to be

√
n for the

normalized problems having variable domain [0, 1]n. The number of reference points,
SEmax, resulting epochs for each problem are presented in Table 2.

Math. Comput. Appl. 2021, 26, 5 17 of 27

Table 2. Parameter values for 18 problems.

Problem n M J N0 SEmax H #Epochs

ZDT1 10 2 0 100 500 21 20
ZDT2 10 2 0 100 500 21 20
ZDT3 10 2 0 100 500 21 20
ZDT4 5 2 0 100 1000 21 43
ZDT6 10 2 0 100 500 21 20
OSY 6 2 6 200 800 21 29
TNK 2 2 2 200 800 21 29
SRN 2 2 2 200 800 21 29
BNH 2 2 2 200 800 21 29
WB 4 2 4 300 1000 21 39

DTLZ2 7 3 0 500 1000 91 6
C2DTLZ2 7 3 1 700 1500 91 9

CAR 7 3 10 700 2000 91 15
DTLZ5 7 3 0 500 1000 91 6
DTLZ4 7 3 0 700 2000 91 15
DTLZ7 7 3 0 500 1000 91 6

DTLZ2-5 7 5 0 700 2500 210 9
C2DTLZ2-5 7 5 1 700 2500 210 9

5.2. Two-Objective Unconstrained Problems

First, we apply our proposed methodologies to two-objective unconstrained problems:
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. Table 3 presents the median IGD values of 11 runs
for each framework applied standalone from start to end. In the absence of any constraint
or having a single constraint, M1-1 and M2-1 are identical frameworks; so are M1-2 and
M2-2, M3-1 and M4-1, M3-2, and M4-2. This is why we keep a blank under M2-1, M2-2,
M4-1, M4-2 entries for unconstrained and single-constraint problems in the table. The best
performing method is first identified based on the median IGD values and is marked in
bold. A p-value from an Wilcoxon rank sum test of each other method is then computed
for 11 runs with the 11 runs of the best-performing method. If any algorithm produces a
p-value greater than 0.05, it indicates that the algorithm has produced a statistically similar
performance to the best-performing method and its median IGD value is then marked in
italics. It is clear from the table that the ASM approach (right-most column), being mostly
in bold, performs better or equivalent to all frameworks for all five ZDT problems, whereas
M1-1 performs the best in the first four problems. M1-2 and M3-1 performs well in three
test problems, whereas M6 performs the best in ZDT6 problem. Obtained nondominated
solutions of two-objective constrained and unconstrained problems of the median run
are presented in Figure 7. We also show performance of other comparing algorithms:
MOEA/D-EGO [14], K-RVEA [23], and CSEA [33] in the figure.

It is apparent that ASM approach is able to find a better distributed and converged set
of points than other methods for an identical number of SEs.

The epoch-wise proportion of usage of each framework over 11 runs of the ASM
approach is shown in Figure 8 for all five ZDT problems. For ZDT1, standalone M1-
1, M2-1, M3-1, and M4-1 perform in a statistically similar manner as shown in Table 3,
but the ASM approach mostly restricts its epoch-wise choice on M1-1, M1-2, M2-1, and
M2-2 and produces a similar performance in most epochs. Since multiple frameworks
can appear with a similar performance in an epoch, the proportions (shown in Figure 8)
need not sum up to one at each epoch. For ZDT2, only M1-1 and M1-2 perform well
as a standalone framework (Table 3), and the ASM approach is able to pick these two
frameworks to produce the best performing result. Notice that since ZDT1 and ZDT2 do
not have any constraint, M1-1 and M2-1 are identical frameworks and M1-2 and M2-2 are
identical frameworks. Except in ZDT6, M1-1, M1-2, M1-2, and M2-2, for which objectives
are independently metamodeled, turn to be dominating frameworks. However, for ZDT6,
M3-2, M4-2, and M6 show their dominance. In ZDT4, almost all the frameworks are found
to be switching between them early on but settles with M1 and M2 frameworks at the latter

Math. Comput. Appl. 2021, 26, 5 18 of 27

part of the optimization runs. Switching among different frameworks performs well on all
five problems.

The switching patterns of frameworks for the median performing run for ZDT1, ZDT4,
and ZDT6 are shown in Figure 9. Although multiple frameworks may exist at the end of
each epoch, the figure shows the specific framework which was chosen for this specific run.
For ZDT2, the ASM approach juggles mostly between M1 and M2 variants and produce
the best performing result, even better than M1 and M2 alone. In ZDT4, the ASM approach
alternates between eight frameworks in the beginning and settles with four of them (M3
and M4 variants) in the middle and then uses M3 variants at the end to produce statistically
equivalent result to M1-1 alone. Interestingly, while as a standalone framework from start
to end, M1-1 performs the best performance, the ASM approach does not use M1-1 in any
of the epochs. The switching of different frameworks from epoch to epoch is clear from
these plots.

0 0.2 0.4 0.6 0.8 1
f
1

0

0.2

0.4

0.6

0.8

1

1.2

f 2

ZDT1

MOEAEGO
CSEA
KRVEA
ASM
PF

0 0.2 0.4 0.6 0.8 1
f
1

0

0.4

0.8

1.2

1.6

f 2

ZDT2
MOEAEGO
CSEA
KRVEA
ASM
PF

0 0.2 0.4 0.6 0.8 1
f
1

-1

-0.5

0

0.5

1

1.5

f 2

ZDT3
MOEAEGO
CSEA
KRVEA
ASM
PF

0 0.2 0.4 0.6 0.8 1
f
1

0

5

10

15

20

25

30

f 2

ZDT4
MOEAEGO
CSEA
KRVEA
ASM
PF

0.2 0.4 0.6 0.8 1
f
1

0

3

6

9

12

f 2

ZDT6 MOEAEGO
CSEA
KRVEA
ASM
PF

-300 -200 -100 0
f
1

0

20

40

60

80

f 2

OSY
ASM
PF

0 50 100 150 200 250
f
1

-250

-200

-150

-100

-50

0

50

f 2

SRN
ASM
PF

0 50 100 150
f
1

0

10

20

30

40

50
f 2

BNH
ASM
PF

0 0.3 0.6 0.9 1.2
f
1

0

0.3

0.6

0.9

1.2

f 2

TNK
ASM
PF

0 10 20 30 40 50
f
1

0

0.003

0.006

0.009

0.012

0.015

f 2

WB

ASM
PF

Figure 7. Non-dominated solutions of the final archive for the median run of ASM approach for two-objective ZDT and
constrained problems. In all cases, a well-diversified set of near PO solutions is obtained with a limited solution evaluations.

5.3. Two-Objective Constrained Problems

Next, we apply ASM approach and all the frameworks separately to standard two-
objective constrained problems: BNH, SRN, TNK, OSY, and the welded beam problem
(WB) [54]. The ASM approach performs the best on three of the five problems, followed
by M1-1 which performed best in two problems; however, both these methods perform
the best statistically on all five problems. Other individual frameworks do not perform so
well. Figure 8 shows the epoch-wise utilization of different frameworks for TNK and WB

Math. Comput. Appl. 2021, 26, 5 19 of 27

in 11 runs. The plots for TNK shows that ASM almost always chooses M1-1 or M1-2 as the
best-performing frameworks as supported by IGD values in Table 3.

However, on WB problem, ASM approach selects M1-1, M5, and M6 in most of the
epochs, despite poor performance of the latter two when applied in a stand-alone manner
from start to end.

ZDT1

1 5 10 15 20

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e
li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1
ZDT2

1 5 10 15 20

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e
li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1

ZDT3

1 5 10 15 20

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e
li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1
ZDT6

1 5 10 15 20

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e
li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

ZDT4

1 5 10 15 20 25 30 35 40 43

Number of Epochs

M11

M12

M21

M22

M31

M32

M41

M42

M5

M6

M
e

ta
m

o
d

e
li

n
g

 F
ra

m
e

w
o

rk
s

0

0.2

0.4

0.6

0.8

1

TNK

1 5 10 15 20 25 29

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e
li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1

Welded Beam

1 5 10 15 20 25 30 35 39

Number of Epochs

M11

M12

M21

M22

M31

M32

M41

M42

M5

M6M
e
ta

m
o

d
e
li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1

Figure 8. Epoch-wise proportion of appearance of 10 frameworks within MB in 11 runs of the ASM
approach for ZDT problems, TNK, and welded beam design problems indicates the use of multiple
frameworks during optimization. Some problems uses some specific frameworks more frequently.

ZDT2

1 5 10 15 20

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e

li
n

g
 F

ra
m

e
w

o
rk

s

ZDT4

1 5 10 15 20 25 30 35 40 43

Number of Epochs

M11

M12

M21

M22

M31

M32

M41

M42

M5

M6M
e

ta
m

o
d

e
li

n
g

 F
ra

m
e

w
o

rk
s

ZDT6

1 5 10 15 20

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e

li
n

g
 F

ra
m

e
w

o
rk

s

Figure 9. Switching among frameworks for the median IGD run of the ASM approach for ZDT2,
ZDT4, and ZDT6 indicates that many frameworks are used during the optimization process.

Math. Comput. Appl. 2021, 26, 5 20 of 27

Table 3. IGD values obtained from all the individual frameworks and proposed switching algorithm on different test problems are presented. The best performing framework and other statistically
similar frameworks are marked in bold with their p-values in the second row. For problems without any constraint, the framework Mi-1 is identical to Mi-2, hence a “-” is provided for the latter. For
unconstrained problems, M5 and M6 are also identical.

Problem M1-1 M2-1 M1-2 M2-2 M3-1 M4-1 M3-2 M4-2 M5 M6 ASM

ZDT1 0.00090 - 0.00555 - 0.00447 - 0.00537 - - 0.01337 0.00130
- - p = 0.4701 - p = 0.4702 - p = 0.7928 - - p = 8.1×10−5 p = 0.091

ZDT2 0.00065 - 0.00062 - 0.00568 - 0.00910 - - 0.72366 0.00055
p = 0.2372 - p = 0.2372 - p = 8.1×10−5 - p = 8.1×10−5 - - p = 8.1×10−5 -

ZDT3 0.00531 - 0.00212 - 0.17123 - 0.19050 - - 0.08315 0.00391
p = 0.325 - - - p = 8.1×10−5 - p = 8.1×10−5 - - p = 8.1×10−5 p = 0.369

ZDT4 0.28900 - 5.43450 - 0.29300 - 0.43450 - - 6.15510 0.39992
- - p = 8.1×10−5 - p = 0.4307 - p = 0.0126 - - p = 8.1×10−5 p = 0.1310

ZDT6 0.37058 - 0.48360 - 0.24192 - 0.47159 - - 0.21327 0.24440
p = 0.2934 - p = 8.1×10−5 - p = 0.8438 - p = 0.0013 - - - p = 0.3933

OSY 0.15323 24.57940 0.18806 22.99990 6.26550 18.49200 4.77670 18.33760 45.18110 57.15870 0.12110
p = 0.2301 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p=8.1×10−5 -

TNK 0.00073 0.04383 0.00082 0.02849 0.01180 0.03332 0.01121 0.03743 0.03077 0.03990 0.00080
- p = 8.1×10−5 p = 0.206 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.494

SRN 0.13191 4.17160 1.00930 0.92614 1.06120 1.20480 1.51360 1.48870 1.28450 2.41710 0.13406
- p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.1891

BNH 0.07885 0.74425 0.04630 0.04457 0.23728 0.23923 0.32874 0.36600 0.23699 0.71300 0.04176
p = 0.0865 p = 8.1×10−5 p = 0.5114 p = 0.5994 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 -

WB 0.13794 0.55529 0.23159 0.84746 0.16909 0.88586 1.39250 3.40770 0.96166 1.41110 0.08960
p = 0.2933 p = 8.1×10−5 p = 0.0126 p = 8.1×10−5 p = 0.1007 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 -

Math. Comput. Appl. 2021, 26, 5 21 of 27

Table 3. Cont.

Problem M1-1 M2-1 M1-2 M2-2 M3-1 M4-1 M3-2 M4-2 M5 M6 ASM

DTLZ2 0.07870 - 0.03340 - 0.05377 - 0.05040 - - 0.07736 0.03701
p = 8.1×10−5 - - - p = 8.1×10−5 - p = 8.1×10−5 - - p = 8.1×10−5 p = 0.562

C2DTLZ2 0.05130 - 0.03355 - 0.03493 - 0.03190 - 0.12403 0.04410 0.03062
p = 8.1×10−5 - p = 0.115 - p = 0.008 - p = 0.148 - p = 8.1×10−5 p = 8.1×10−5 -

CAR 0.43510 0.43145 0.50119 0.29817 0.39809 0.42223 0.40494 0.44251 0.50061 0.55569 0.40110
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 - p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5

DTLZ5 0.01960 - 0.00948 - 0.01352 - 0.01537 - - 0.05421 0.01252
p = 8.1×10−5 - - - p = 8.1×10−5 - p = 8.1×10−5 - - p = 8.1×10−5 p = 0.0605

DTLZ4 0.05840 - 0.09024 - 0.20668 - 0.12570 - - 0.08731 0.07934
- - p = 0.1203 - p = 8.1×10−5 - p = 8.1×10−5 - - p = 0.3933 p = 0.425

DTLZ7 0.11808 - 0.07664 - 0.87172 - 1.26300 - - 0.82989 0.06529
p = 0.0187 - p = 0.2122 - p = 8.1×10−5 - p = 8.1×10−5 - - p = 8.1×10−5 -

DTLZ2-5 0.21450 - 0.03981 - 0.14401 - 0.14403 - - 0.11028 0.04918
p = 8.1×10−5 - - - p = 8.1×10−5 - p = 8.1×10−5 - - p = 8.1×10−5 p = 0.595

C2DTLZ2-5 0.17341 - 0.03676 - 0.15388 - 0.11669 - 0.29291 0.20842 0.03441
p = 8.1×10−5 - p = 0.8541 - p = 8.1×10−5 - p = 8.1×10−5 - p = 8.1×10−5 p = 8.1×10−5 -

Math. Comput. Appl. 2021, 26, 5 22 of 27

5.4. Three and More Objective Constrained and Unconstrained Problems

Next, we apply all ten frameworks and ASM approach to three-objective optimization
problems (DTLZ2, DTLZ4, DTLZ5, and DTLZ7) and also to two three-objective constrained
problem (C2DTLZ2 and the car side impact problem CAR [60]). Table 3 shows that while
M2-2 works uniquely the best on CAR, M1-2 and M3-2 on C2-DTLZ2, and M1-1, M1-2, and
M6 on DTLZ4, the performance of ASM approach is better or equivalent compared to all
10 problems.

The epoch-wise proportion of utilization of 10 frameworks in 11 runs are shown in
Figure 10 for three and five-objective problems. It can be clearly seen that M3-1 to M6
frameworks are not usually chosen by the ASM approach on most of these problems, except
for complex problems, such as DTLZ4. Switching has been confined between M1-1 to
M2-2 for most problems, except in DTLZ4, in which all generative frameworks are found
to be useful in certain stages during the optimization process. DTLZ7 works better with
simultaneous frameworks M1-2 and M2-2.

DTLZ2-3

1 2 3 4 5 6

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6

M
e
ta

m
o

d
e
li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1
C2DTLZ2-3

1 5 9
Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e

li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1
DTLZ4

1 5 10 15

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e

li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1

DTLZ5

1 2 3 4 5 6

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e

li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1
DTLZ7

1 2 3 4 5 6

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6

M
e
ta

m
o

d
e
li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1
DTLZ2-5

1 5 9

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e

li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1

C2DTLZ2-5

1 5 9
Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6M

e
ta

m
o

d
e

li
n

g
 F

ra
m

e
w

o
rk

s

0

0.02

0.04

0.06

0.08

Car Side

1 5 10 15

Number of Epochs

M11
M12
M21
M22
M31
M32
M41
M42
M5
M6

M
e
ta

m
o

d
e
li
n

g
 F

ra
m

e
w

o
rk

s

0

0.2

0.4

0.6

0.8

1

Figure 10. Epoch-wise proportion of usage of 10 frameworks in 11 runs of the ASM approach for
three and five-objective problems.

On two five-objective unconstrained DTLZ2 and constrained C2-DTLZ2 problems,
M1-2 alone and ASM approach perform the best with statistically significant difference
with other frameworks. Constrained C2DTLZ2 problems use similar a switching pattern
for three and five-objective version of the problem.

Table 4 calculates the rank of each of the 10 frameworks for solving 18 problems. The
table shows that the ASM approach performs the best overall, followed by M1-2, M2-2, and
M3-1 respectively. It indicates that overall, metamodeling of objectives independently is a
better approach for these problems. M6, although being the most efficient in the number of
metamodels, performs the worst.

Math. Comput. Appl. 2021, 26, 5 23 of 27

Table 4. Average rank of 10 frameworks and the ASM approach on 18 problems based on Wilcoxon
rank-sum test.

M1-1 M2-1 M1-2 M2-2 M3-1 M4-1 M3-2 M4-2 M5 M6 ASM

3.66 6.16 2.88 3.00 4.55 5.44 6.22 6.94 6.33 8.55 1.11

5.5. Comparison with Existing Methods

Next, we examine the performance of our adaptive switching metamodeling (ASM)
strategy by comparing them with a few recent algorithms, namely, MOEA/D-EGO [14],
K-RVEA [23], and CSEA [33]. Algorithms are implemented in PlatEMO [67]. Since these
three competing algorithms can only be applied to unconstrained problems, only ZDT
and DTLZ problems are considered here. We plan to compare our constrained approach
with existing constraint handling methods [32]. Identical parameters settings as those used
with the ASM approach are used for the three competing algorithms. Table 5 presents the
mean IGD value of each algorithm. The Wilcoxon rank-sum test results are also shown.
It is clearly evident that ASM approach outperforms three competing methods, of which
K-RVEA performs well only on two of the nine problems.

Table 5. Median IGD on unconstrained problems using ASM approach, and MOEA/D-EGO, K-
RVEA, and CSEA algorithms. DNC is denoted as “Did not converge” within given time.

Problem MOEA/D-EGO K-RVEA CSEA ASM

ZDT1 0.05611 0.07964 0.95330 0.00130
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.0910

ZDT2 0.04922 0.03395 1.01060 0.00055
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 -

ZDT3 0.30380 0.02481 0.94840 0.00391
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 -

ZDT4 73.25920 4.33221 12.71600 0.39992
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 -

ZDT6 0.51472 0.65462 5.42620 0.24440
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.0612

DTLZ2 0.33170 0.0548 0.11420 0.03701
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.157

DTLZ4 0.64533 0.0449 0.08110 0.07934
p = 8.1×10−5 - p = 0.0022 p = 0.0380

DTLZ5 0.26203 0.0164 0.03081 0.01252
p = 8.1×10−5 p = 8.1×10−5 p = 8.1×10−5 p = 0.211

DTLZ7 5.33220 0.0531 0.70520 0.06529
p = 8.1×10−5 - p = 8.1×10−5 p = 0.1930

DTLZ2-5 0.31221 0.23031 DNC 0.04918
p = 8.1×10−5 p = 8.1×10−5 DNC -

6. Conclusions

In this paper, we have provided a brief review of existing metamodeling methods
for multiobjective optimization, since there has been a surge in such studies in the recent
past. Since this calls for modeling multiple objectives and constraints in a progressive
manner, a recently proposed taxonomy of 10 frameworks involving metamodeling of
independent or aggregate functions of objectives and constraints have been argued to cover
a wide variety such methods. Each framework has been presented in detail, comparing
and contrasting them in terms of the number of metamodeling functions to be constructed,
the number of internal optimization problems to be solved, and the type of optimization
methods to be employed, etc. We have argued that each metamodeling framework may
be ideal at different stages during an optimization run on an arbitrary problem, hence,
an ensemble use of all 10 frameworks becomes a natural choice. To propose an efficient

Math. Comput. Appl. 2021, 26, 5 24 of 27

multiobjective metamodeling algorithm, we have proposed an adaptive switching based
metamodeling (ASM) methodology which automatically chooses the most appropriate
framework epoch-wise during the course of an optimization run. In order to choose the
best framework in every epoch, we perform statistical tests based on a newly proposed
acceptance criterion—selection error probability (SEP), which counts the correct pairwise
relationships of objectives between two test solutions in a k-fold cross-validation test,
instead of calculating the usual mean-squared error of metamodeled objective values from
true values. We have observed that SEP is less sensitive to outliers and is much better
suited for multiobjective constrained optimization. In each epoch, the ASM approach
switches to an appropriate framework which then creates a prespecified number of in-fill
points by using either an evolutionary single or multiobjective algorithm or by using a
multimodal or a niche-based real-parameter genetic algorithm. On 18 test and engineering
problems having two to five objectives and multiple constraints, the ASM approach has
been found to perform much better compared to each framework alone and also to three
other existing metamodeling multiobjective algorithms.

It has been observed that in most problems a switching between different M1 and
M2 frameworks, in which objectives are independently metamodeled, has performed the
best. Metamodeling of constraints in an aggregate manner or independently is not an
important matter. However, for more complex problems, such as ZDT3, ZDT6, ZDT4,
DTLZ4, and engineering design problems, all 10 frameworks, including M5 and M6, have
been involved at different stages of optimization. Interestingly, certain problems have
preferred to pick generative frameworks (Mi-1 and M5) only, while some others have
preferred simultaneous frameworks (Mi-2 and M6). Clearly, further investigation is needed
to decipher a detail problem-wise pattern of selecting frameworks, but this first study on
statistics-based adaptive switching has clearly shown its advantage over each framework
applied alone.

While in this paper, Kriging metamodeling method has been used for all frameworks,
this study can be extended to choose the best metamodeling method from an ensemble
of RBF, SVR, or other response surface methods to make the overall approach more com-
putationally efficient. In many practical problems, some functions may be relatively less
time-consuming, thereby creating a heterogeneous metamodeling scenario [16,68,69]. A
simple extension of this study would be to formulate a heterogeneous MP (for example,
M1-1’s objective function for a two-objective problem involving a larger evaluation time
for f1 can be chosen as

(
f̃

1
(x), f

2
(x)
)

, in which the objective f2 has not been metamodeled
at all). However, more involved algorithms can be tried for to handle such pragmatic
scenarios. Another practical aspect comes from the fact that a cluster of objectives and
constraints can come at the end of a single expensive evaluation procedure (such as, com-
pliance objective and stress constraint comes after an expensive finite element analysis on a
mechanical component design problem), whereas other functions come from a different
time-scale evaluation procedure. The resulting definition of an epoch and the overall
metamodeling approach need to be reconsidered to make the overall approach efficient.
Other tricks, such as, the use of a low-fidelity evaluation scheme for expensive objective
and constraints early on during the optimization process using a multifidelity scheme
and the use of domain-informed heuristics to initialize population and repair offspring
solutions must also be considered while developing efficient metamodeling approaches.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cassioli, A.; Schoen, F. Global optimization of expensive black box problems with a known lower bound. J. Glob. Optim. 2013, 57,

177–190. [CrossRef]
2. Jin, Y. Surrogate-assisted evolutionary computation: Recent advances and future challenge. Swarm Evol. Comput. 2011, 1, 61–70.

[CrossRef]

http://dx.doi.org/10.1007/s10898-011-9834-7
http://dx.doi.org/10.1016/j.swevo.2011.05.001

Math. Comput. Appl. 2021, 26, 5 25 of 27

3. Ponweiser, W.; Wagner, T.; Biermann, D.; Vincze, M. Multiobjective Optimization on a Limited Budget of Evaluations Using
Model-Assisted S-Metric Selection. In Parallel Problem Solving from Nature–PPSN X; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 784–794.

4. Jones, D.R. A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 2001, 21, 345–383. [CrossRef]
5. Hussein, R.; Deb, K. A Generative Kriging Surrogate Model for Constrained and Unconstrained Multi-objective Optimization.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’16), Denver, CO, USA, 20–24 July 2016; ACM
Press: New York, NY, USA, 2016.

6. Deb, K.; Hussein, R.; Roy, P.; Toscano, G. Classifying Metamodeling Methods for Evolutionary Multi-objective Optimization:
First Results. In Evolutionary Multi-Criterion Optimization EMO; Springer: Berlin/Heidelberg, Germany, 2017.

7. Roy, P.; Hussein, R.; Deb, K. Metamodeling for multimodal selection functions in evolutionary multi-objective optimization.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’17), Berlin, Germany, 15–19 July 2017; ACM
Press: New York, NY, USA, 2017.

8. Bhattacharjee, K.S.; Singh, H.K.; Ray, T. Multi-objective optimization with multiple spatially distributed surrogates. J. Mech. Des.
2016, 138, 091401. [CrossRef]

9. Bhattacharjee, K.S.; Singh, H.K.; Ray, T.; Branke, J. Multiple Surrogate Assisted Multiobjective Optimization Using Improved
Pre-Selection. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC-2016), Vancouver, BC, Canada,
24–29 July 2016.

10. Emmerich, M.T.M.; Giannakoglou, K.C.; Naujoks, B. Single- and multiobjective evolutionary optimization assisted by Gaussian
random field metamodels. IEEE Trans. Evol. Comput. 2006, 10, 421–439. [CrossRef]

11. Byrd, R.H.; Nocedal, J.; Waltz, R.A. Knitro: An Integrated Package for Nonlinear Optimization. In Large-Scale Nonlinear
Optimization; Springer US: Boston, MA, USA, 2006.

12. Jin, Y.; Oh, S.; Jeon, M. Incremental approximation of nonlinear constraint functions for evolutionary constrained optimization.
In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC-2010), Barcelona, Spain, 18–23 July 2010; pp. 1–8.

13. Datta, R.; Regis, R.G. A surrogate-assisted evolution strategy for constrained multi-objective optimization. Expert Syst. Appl.
2016, 57, 270–284. [CrossRef]

14. Zhang, Q.; Liu, W.; Tsang, E.; Virginas, B. Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model.
IEEE Trans. Evol. Comput. 2010, 14, 456–474. [CrossRef]

15. Knowles, J. ParEGO: A Hybrid Algorithm with On-line Landscape Approximation for Expensive Multiobjective Optimization
Problems. IEEE Trans. Evol. Comput. 2006, 10, 50–66. [CrossRef]

16. Allmendinger, R.; Emmerich, M.T.; Hakanen, J.; Jin, Y.; Rigoni, E. Surrogate-assisted multicriteria optimization: Complexities,
prospective solutions, and business case. J. Multi-Criteria Decis. Anal. 2017, 24, 5–24. [CrossRef]

17. Roy, P.C.; Deb, K. High Dimensional Model Representation for Solving Expensive Multi-objective Optimization Problems. In
Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016.

18. Rahat, A.A.M.; Everson, R.M.; Fieldsend, J.E. Alternative Infill Strategies for Expensive Multi-objective Optimisation. In Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO ’17), Berlin, Germany, 15–19 July 2017; ACM: New York,
NY, USA, 2017; pp. 873–880. [CrossRef]

19. Gómez, R.H.; Coello, C.A.C. A Hyper-heuristic of Scalarizing Functions. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’17), Berlin, Germany, 15–19 July 2017; ACM: New York, NY, USA, 2017; pp. 577–584.
[CrossRef]

20. Deb, K.; Hussein, R.; Roy, P.C.; Toscano, G. A Taxonomy for Metamodeling Frameworks for Evolutionary Multi-Objective
Optimization. IEEE Trans. Evol. Comput. 2018, 23, 104–116. [CrossRef]

21. Hussein, R.; Roy, P.C.; Deb, K. Switching between Metamodeling Frameworks for Efficient Multi-Objective Optimization.
In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November
2018; pp. 1188–1195.

22. Viana, F.A.C.; Haftka, R.T.; Watson, L.T. Efficient global optimization algorithm assisted by multiple surrogate techniques. J. Glob.
Optim. 2013, 56, 669–689. [CrossRef]

23. Chugh, T.; Jin, Y.; Miettinen, K.; Hakanen, J.; Sindhya, K. A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm
for Computationally Expensive Many-Objective Optimization. IEEE Trans. Evol. Comput. 2018, 22, 129–142. [CrossRef]

24. Zhao, D.; Xue, D. A multi-surrogate approximation method for metamodeling. Eng. Comput. 2011, 27, 139–153. [CrossRef]
25. Bhattacharjee, K.; Singh, H.; Ray, T. Multi-Objective Optimization Using an Evolutionary Algorithm Embedded with Multiple

Spatially Distributed Surrogates. Am. Soc. Mech. Eng. 2016, 138, 135–155.
26. Wang, H.; Jin, Y.; Doherty, J. Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive

Problems. IEEE Trans. Cybern. 2017, 47, 2664–2677. [CrossRef]
27. Gaspar-Cunha, A.; Vieira, A. A Multi-Objective Evolutionary Algorithm Using Neural Networks to Approximate Fitness

Evaluations. Int. J. Comput. Syst. Signal 2005, 6, 18–36.
28. Rosales-Perez, A.; Coello, C.A.C.; Gonzalez, J.A.; Reyes-Garcia, C.A.; Escalante, H.J. A hybrid surrogate-based approach for

evolutionary multi-objective optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC-2013),
Cancun, Mexico, 20–23 June 2013; pp. 2548–2555.

http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1115/1.4034035
http://dx.doi.org/10.1109/TEVC.2005.859463
http://dx.doi.org/10.1016/j.eswa.2016.03.044
http://dx.doi.org/10.1109/TEVC.2009.2033671
http://dx.doi.org/10.1109/TEVC.2005.851274
http://dx.doi.org/10.1002/mcda.1605
http://dx.doi.org/10.1145/3071178.3071276
http://dx.doi.org/10.1145/3071178.3071220
http://dx.doi.org/10.1109/TEVC.2018.2828091
http://dx.doi.org/10.1007/s10898-012-9892-5
http://dx.doi.org/10.1109/TEVC.2016.2622301
http://dx.doi.org/10.1007/s00366-009-0173-y
http://dx.doi.org/10.1109/TCYB.2017.2710978

Math. Comput. Appl. 2021, 26, 5 26 of 27

29. Akhtar, T.; Shoemaker, C.A. Efficient Multi-Objective Optimization through Population-based Parallel Surrogate Search. arXiv
2019, arXiv:1903.02167v1.

30. Chugh, T.; Sindhya, K.; Hakanen, J.; Miettinen, K. A survey on handling computationally expensive multiobjective optimization
problems with evolutionary algorithms. Soft Comput. 2019, 23, 3137–3166. [CrossRef]

31. Isaacs, A.; Ray, T.; Smith, W. An evolutionary algorithm with spatially distributed surrogates for multiobjective optimization. In
Proceedings of the 3rd Australian Conference on Progress in Artificial Life, Gold Coast, Australia, 4–6 December 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 257–268.

32. Habib, A.; Singh, H.K.; Chugh, T.; Ray, T.; Miettinen, K. A Multiple Surrogate Assisted Decomposition-Based Evolutionary
Algorithm for Expensive Multi/Many-Objective Optimization. IEEE Trans. Evol. Comput. 2019, 23, 1000–1014. [CrossRef]

33. Pan, L.; He, C.; Tian, Y.; Wang, H.; Zhang, X.; Jin, Y. A Classification Based Surrogate-Assisted Evolutionary Algorithm for
Expensive Many-Objective Optimization. IEEE Trans. Evol. Comput. 2018, 23, 74–88. [CrossRef]

34. Chafekar, D.; Shi, L.; Rasheed, K.; Xuan, J. Multiobjective GA optimization using reduced models. IEEE Trans. Syst. Man Cybern.
Part C Appl. Rev. 2005, 35, 261–265. [CrossRef]

35. Peitz, S.; Dellnitz, M. A Survey of Recent Trends in Multiobjective Optimal Control—Surrogate Models, Feedback Control and
Objective Reduction. Math. Comput. Appl. 2018, 23, 30. [CrossRef]

36. Thoman, J.; Eichfelder, G. Trust-Region Algorithm for Heterogeneous Multiobjective Optimization. SIAM J. Optim. 2019,
29, 1017–1047. [CrossRef]

37. Banholzer, S.; Beermann, D.; Volkwein, S. POD-Based Error Control for Reduced-Order Bicriterial PDE-Constrained Optimization.
Annu. Rev. Control 2017, 44, 226–237. [CrossRef]

38. Díaz-Manríquez, A.; Toscano, G.; Barron-Zambrano, J.H.; Tello-Leal, E. A Review of Surrogate Assisted Multiobjective Evolution-
ary Algorithms. Comput. Intell. Neurosci. 2016, 2016, 9420460. [CrossRef] [PubMed]

39. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast and Elitist multi-objective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

40. Singh, P.; Rossi, M.; Couckuyt, I.; Deschrijver, D.; Rogier, H.; Dhaene, T. Constrained multi-objective antenna design optimization
using surrogates. Int. J. Numer. Model. 2017, 30, e2248. [CrossRef]

41. Koziel, S.; Bekasiewicz, A.; Szczepanski, S. Multi-objective design optimization of antennas for reflection, size, and gain variability
using Kriging surrogates and generalized domain segmentation. Int. J. RF Microw. Comput. Eng. 2018, 28, e21253. [CrossRef]

42. Beck, J.; Friedrich, D.; Brandani, S.; Fraga, E.S. Multi-objective optimisation using surrogate models for the design of VPSA
systems. Comput. Chem. Eng. 2015, 82, 318–329. [CrossRef]

43. Liao, X.; Li, Q.; Yang, X.; Zhang, W.; Li, W. Multi-objective optimization for crash safety design of vehicles using stepwise
regression model. Struct. Multidiscip. Optim. 2008, 35, 561–569. [CrossRef]

44. Sreekanth, J.; Datta, B. Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and
modular neural network based surrogate models. J. Hydrol. 2010, 393, 245–256. [CrossRef]

45. Arias-Montaño, A.; Coello, C.A.C.; Mezura-Montes, E. Multi-objective airfoil shape optimization using a multiple-surrogate
approach. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation (CEC-2012), Brisbane, Australia, 10–15 June
2012; pp. 1–8.

46. D’Angelo, S.; Minisci, E.A. Multi-objective evolutionary optimization of subsonic airfoils by Kriging approximation and evolution
control. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC-2005), Scotland, UK, 2–5 September 2005;
pp. 1262–1267.

47. Alvarado-Iniesta, A.; Cuate, O.; Schütze, O. Multi-objective and many objective design of plastic injection molding process. Int. J.
Adv. Manuf. Technol. 2019, 102, 3165–3180. [CrossRef]

48. Knowles, J.; Hughes, E.J. Multiobjective Optimization on a Budget of 250 Evaluations. In Evolutionary Multi-Criterion Optimization;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 176–190.

49. Hüsken, M.; Jin, Y.; Sendhoff, B. Structure optimization of neural networks for evolutionary design optimization. Soft Comput.
2005, 9, 21–28. [CrossRef]

50. Pilát, M.; Neruda, R. Improving many-objective optimizers with aggregate meta-models. In Proceedings of the 2011 11th
International Conference on Hybrid Intelligent Systems (HIS), Melacca, Malaysia, 5–8 December 2011; pp. 555–560. [CrossRef]

51. Le, M.N.; Ong, Y.S.; Jin, Y.; Sendhoff, B. A Unified Framework for Symbiosis of Evolutionary Mechanisms with Application to
Water Clusters Potential Model Design. IEEE Comput. Intell. Mag. 2012, 7, 20–35. [CrossRef]

52. Li, F.; Cai, X.; Gao, L. Ensemble of surrogates assisted particle swarm optimization of medium scale expensive problems. Appl.
Soft Comput. 2019, 74, 291–305. [CrossRef]

53. Jin, C.; Qin, A.K.; Tang, K. Local ensemble surrogate assisted crowding differential evolution. In Proceedings of the 2015 IEEE
Congress on Evolutionary Computation (CEC-2015), Sendai, Japan, 25–28 May 2015; pp. 433–440.

54. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001.
55. Srinivas, N.; Deb, K. Multi-Objective function optimization using non-dominated sorting genetic algorithms. Evol. Comput. J.

1994, 2, 221–248. [CrossRef]
56. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Optimization of Expensive Black-Box Functions. J. Glob. Optim. 1998,

13, 455–492. [CrossRef]

http://dx.doi.org/10.1007/s00500-017-2965-0
http://dx.doi.org/10.1109/TEVC.2019.2899030
http://dx.doi.org/10.1109/TEVC.2018.2802784
http://dx.doi.org/10.1109/TSMCC.2004.841905
http://dx.doi.org/10.3390/mca23020030
http://dx.doi.org/10.1137/18M1173277
http://dx.doi.org/10.1016/j.arcontrol.2017.09.004
http://dx.doi.org/10.1155/2016/9420460
http://www.ncbi.nlm.nih.gov/pubmed/27382366
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1002/jnm.2248
http://dx.doi.org/10.1002/mmce.21253
http://dx.doi.org/10.1016/j.compchemeng.2015.07.009
http://dx.doi.org/10.1007/s00158-007-0163-x
http://dx.doi.org/10.1016/j.jhydrol.2010.08.023
http://dx.doi.org/10.1007/s00170-019-03432-8
http://dx.doi.org/10.1007/s00500-003-0330-y
http://dx.doi.org/10.1109/HIS.2011.6122165
http://dx.doi.org/10.1109/MCI.2011.2176995
http://dx.doi.org/10.1016/j.asoc.2018.10.037
http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1023/A:1008306431147

Math. Comput. Appl. 2021, 26, 5 27 of 27

57. Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods App. Mech. Eng. 2000, 186, 311–338.
[CrossRef]

58. Wierzbicki, A.P. The use of reference objectives in multiobjective optimization. In Multiple Criteria Decision Making Theory and
Application; Springer: Berlin/Heidelberg, Germany, 1980; pp. 468–486.

59. Das, I.; Dennis, J.E. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria
Optimization Problems. SIAM J. Optim. 1998, 8. [CrossRef]

60. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting
approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [CrossRef]

61. Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms—A comparative case study. In Proceedings of
the Conference on Parallel Problem Solving from Nature (PPSN V), Amsterdam, The Netherlands, 27–30 September 1998; pp.
292–301.

62. Coello, C.A.C.; Sierra, M.R. A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In MICAI
2004: Advances in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2004; pp. 688–697.

63. Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [CrossRef]
64. Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer: Dordrecht, The Netherlands, 1999.
65. Roy, P.C.; Blank, J.; Hussein, R.; Deb, K. Trust-region Based Algorithms with Low-budget for Multi-objective Optimization.

In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO ’18), Kyoto, Japan, 15–19 July
2018; ACM: New York, NY, USA, 2018; pp. 195–196.

66. Alexandrov, N.M.; Dennis, J.E.; Lewis, R.M.; Torczon, V. A trust-region framework for managing the use of approximation
models in optimization. Struct. Optim. 1998, 15, 16–23. [CrossRef]

67. Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization. IEEE
Comput. Intell. Mag. 2017, 12, 73–87. [CrossRef]

68. Allmendinger, R.; Knowles, J. ‘Hang on a minute’: Investigations on the effects of delayed objective functions in multiobjective
optimization. In Evolutionary Multi-Criterion Optimization; Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J., Eds.;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 6–20.

69. Blank, J.; Deb, K. Constrained Bi-objective Surrogate-Assisted Optimization of Problems with Heterogeneous Evaluation Times: Expensive
Objectives and Inexpensive Constraints; Technical Report COIN Report 2020019; COIN Laboratory, Michigan State University:
East Lansing, MI, USA, 2020.

http://dx.doi.org/10.1016/S0045-7825(99)00389-8
http://dx.doi.org/10.1137/S1052623496307510
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1093/biomet/30.1-2.81
http://dx.doi.org/10.1007/BF01197433
http://dx.doi.org/10.1109/MCI.2017.2742868

	Introduction
	Past Methods of Metamodeling for Multiobjective Optimization
	A Taxonomy for Multiobjective Metamodeling Frameworks
	M1-1 and M1-2 Frameworks
	Frameworks M2-1 and M2-2
	M3-1 and M3-2 Frameworks
	Frameworks M4-1 and M4-2
	M5 Framework
	Framework M6
	Summary of 10 Frameworks

	Adaptive Switching Based Metamodeling (ASM) Frameworks
	Performance Metric for Framework Selection
	Selecting a Framework for an Epoch
	Trust-Region Based Real-Coded Genetic Algorithms

	Results and Discussion
	Parameter Settings
	Two-Objective Unconstrained Problems
	Two-Objective Constrained Problems
	Three and More Objective Constrained and Unconstrained Problems
	Comparison with Existing Methods

	Conclusions
	References

