
Mathematical 

and Computational 

Applications

Article

Data Augmentation and Feature Selection for Automatic Model
Recommendation in Computational Physics

Thomas Daniel 1,2,* , Fabien Casenave 1 , Nissrine Akkari 1 and David Ryckelynck 2

����������
�������

Citation: Daniel, T.; Casenave, F.;

Akkari, N.; Ryckelynck, D. Data

Augmentation and Feature Selection

for Automatic Model

Recommendation in Computational

Physics. Math. Comput. Appl. 2021, 26,

17. https://doi.org/10.3390/

mca26010017

Received: 12 January 2021

Accepted: 11 February 2021

Published: 16 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 SafranTech, Rue des Jeunes Bois, Châteaufort, 78114 Magny-les-Hameaux, France;
fabien.casenave@safrangroup.com (F.C.); nissrine.akkari@safrangroup.com (N.A.)

2 Centre des matériaux (CMAT), MINES ParisTech, PSL University, CNRS UMR 7633, BP 87,
91003 Evry, France; david.ryckelynck@mines-paristech.fr

* Correspondence: thomas.daniel@mines-paristech.fr

Abstract: Classification algorithms have recently found applications in computational physics for
the selection of numerical methods or models adapted to the environment and the state of the
physical system. For such classification tasks, labeled training data come from numerical simulations
and generally correspond to physical fields discretized on a mesh. Three challenging difficulties
arise: the lack of training data, their high dimensionality, and the non-applicability of common data
augmentation techniques to physics data. This article introduces two algorithms to address these
issues: one for dimensionality reduction via feature selection, and one for data augmentation. These
algorithms are combined with a wide variety of classifiers for their evaluation. When combined with
a stacking ensemble made of six multilayer perceptrons and a ridge logistic regression, they enable
reaching an accuracy of 90% on our classification problem for nonlinear structural mechanics.

Keywords: machine learning; classification; automatic model recommendation; feature selection;
data augmentation; numerical simulations

1. Introduction

Classification problems can be encountered in various disciplines such as handwritten
text recognition [1], document classification [2], and computer-aided diagnosis in the
medical field [3], among many others. In numerical analysis, classification algorithms
are getting increasingly more attention for the selection of efficient numerical models
that can predict the behavior of a physical system with very different states or under
various configurations of its environment [4–11]. Classifiers have been used as reduced-
order model (ROM) selectors in [4,5,8,9,11] in computational mechanics, enabling the
computation of approximate solutions at lower cost by replacing a generic high-fidelity
numerical model by a specific (or local) ROM adapted to the simulation’s context. Reduced-
order modeling [12,13] consists in identifying an appropriate low-dimensional subspace
on which the governing equations are projected in order to reduce the number of degrees
of freedom of the solution. In [11], the combination of a classifier with a dictionary of
local ROMs has been termed dictionary-based ROM-net. Such approaches are promising
numerical methods using both physics equations and a collection of latent spaces to
compute approximations of solutions lying in nonlinear manifolds.

Dictionary-based ROM-nets use a physics-informed automatic data labeling procedure
based on the clustering of numerical simulations. Due to the cost of numerical simulations,
training examples for classification are limited in number. Moreover, the dimensionality of
input data can be very high, especially when dealing with physical fields discretized on a
mesh (e.g., finite-difference methods [14], finite-element method [15], and finite-volume
method [16]) or with bond graphs modeling engineering systems [17].

When classification data are high-dimensional, dimensionality reduction techniques
can be applied to reduce the amount of information to be analyzed by the classifier. For
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classification problems where the dimension of the input data is higher than the number
of training examples, dimensionality reduction is crucial to avoid overfitting. In addition,
when considering physical fields discretized on a mesh, the dimension of the input space
can reach 106 to 108 for industrial problems. In such cases, the input data are too hard
to manipulate, which dramatically slows down the training process for the classifier and
thus restrains the exploration of the hyperparameters space, as it requires multiple runs
of the training process with different values for the hyperparameters. Applying data
augmentation techniques to increase the number of examples in the training set is also
impossible, as it would cause memory problems. Therefore, dimensionality reduction is
recommended not only for reducing the risk of overfitting, but also for facilitating the
training phase and enabling data augmentation.

Feature selection [18] aims at decreasing the number of features by selecting a subset
of the original features. It differs from feature extraction, where new features are created
from the original ones (e.g., Principal Component Analysis (PCA), and more generally
encoders taken from undercomplete autoencoders [19]). Feature selection can be seen as
applying a mask to a high-dimensional random vector to get a low-dimensional random
vector containing the most relevant information. It is preferred over autoencoders when
interpretability is important [20]. Furthermore, contrary to undercomplete autoencoders
trained with the mean squared error loss, most feature selection algorithms do not intend
to find reduced features enabling the reconstruction of the input: features are selected for
the purpose of predicting class labels, which makes these algorithms more goal-oriented
for supervised learning tasks.

Among the existing feature selection algorithms, univariate filter methods consist
in computing a score for each feature and ranking the features according to their scores.
The score measures how relevant a feature is for the prediction of the output variable.
If N f is the target number of features, then the N f features with the highest scores are
selected, and the others are discarded. The major drawback of univariate filter methods
is that they do not account for relations between the selected features. The resulting
set of selected features may then contain redundant features. To address this issue, the
minimum redundancy maximum relevance (mRMR) algorithm [21,22] tries to find a trade-off
between relevance and redundancy. However, for very large numbers of features like in
computational physics, evaluating the redundancy is very computationally demanding.
Fortunately, working on physics data provides other possibilities to define a redundancy
measure. In this paper, we propose a new feature selection algorithm suitable for features
coming from the same physical quantity but corresponding to different points in a space-
time discretization. It is assumed that this physical quantity, defined as a function of space
and/or time, has some smoothness properties. This is often the case in physics, where the
physical quantity satisfies partial differential equations and boundary conditions. In [23],
it is shown that the solution of Poisson’s equation on a Lipschitz domain in R3 with a
L2 source term and Dirichlet or Neumann boundary conditions is continuous. Poisson’s
equation is well known in physics, and can be found, for example, in electrostatics, in
Gauss’s law for gravity, in the stationary heat equation, and in the stationary particle
diffusion equation. If the features of a random vector contain the discretized values of a
smooth function of space and time, then their correlations are related to their proximities
on the space-time grid. The approach presented in this paper is depicted as a geostatistical
variant of mRMR algorithm, in the sense that it consists in modeling the redundancy as a
function of space and time.

Once the dimension of the input space is reduced, another challenge of the classifi-
cation problems encountered in computational physics must be addressed: the lack of
training data. Data augmentation refers to techniques aiming at enlarging the training
set by generating new examples from the original ones. For image classification, many
class-preserving operations can be used to create new images, such as translations; rota-
tions; cropping; scaling; and changes in colors, brightness, and contrast. Unfortunately,
these common techniques cannot be used when considering physics data. For this type of
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data, new examples can be generated using generative adversarial networks (GAN [24];
see in [25] for the use of deep convolutional GANs in computational fluid dynamics).
However, training GANs is quite complex in practice and may also be made more difficult
by the lack of training examples. More simply, new data can be generated by convex
combinations of the original examples. SMOTE [26] takes convex combinations of input
data with their nearest neighbors in the input space. ADASYN [27] uses the same idea
but focuses more on examples that are hard to learn, i.e., those having examples of a
foreign class in their neighborhoods. Both data augmentation algorithms use k-nearest
neighbors algorithm and thus compute Euclidean distances in the input space. When
working on high-dimensional physics data, this approach may suffer from the curse of
dimensionality [28]. In addition, defining neighborhoods with the Euclidean distance in the
input space is not always appropriate, as dictionary-based ROM-nets use physics-aware
dissimilarities to label the data, such as distances on the primal variable or on a quantity of
interest. The data augmentation algorithm developed in this article consists in growing
sets around original examples by incrementally adding nearest neighbors in terms of the
dissimilarity measure used for the automatic data labeling procedure. These sets are used
to generate new data by convex combinations. Contrary to SMOTE and ADASYN, the risk
of generating new data with wrong labels is controlled by checking that the convex hulls
of the growing sets do not contain any example belonging to a foreign class.

In sum, the contributions of this paper are motivated by difficulties encountered in
our previous work on ROM-nets [11]. These difficulties are inherent to classification tasks
on simulation data and can be summarized in three main issues:

• the lack of training data due to the expensive data labeling procedure involving
simulations with a high-fidelity model (risk of overfitting),

• the high dimensionality of input data (risk of overfitting), and
• most common data augmentation techniques are not applicable to physics data.

The feature selection and data augmentation strategies introduced in this paper are de-
veloped to tackle these difficulties. Classification problems encountered in computational
physics are described in Section 2. Section 3 presents the classification problem studied
in this paper. The feature selection algorithm is described in Section 4 and is shown to
efficiently remove irrelevant and redundant features. Section 5 presents the data augmen-
tation algorithm, which successfully generates a large amount of new data with correct
labels. Section 6 evaluates both algorithms in conjunction with 14 different classifiers.
On our classification task, the average accuracy gain due to data augmentation is 4.98%.
Using ensemble methods on classifiers combined with our algorithms enables reaching a
classification accuracy of 90%. Finally, Section 7 explains to what extent our algorithms can
be applied to other types of problems.

2. Classification in the Context of Numerical Modeling
2.1. Classification: A Brief Review

Supervised learning is the task of learning the correspondence between input data
X and outputs Y from a training set of input–output pairs {(xi, yi)}1≤i≤N . Supervised
machine learning problems fall into two categories: regression problems, for which the
outputs take continuous values, and classification problems, consisting in the prediction
of categorical labels. This paper focuses on the latter, with the additional assumptions
that X is a continuous multivariate random variable having a probability density function
pX : X → R+, and that any observation x ∈ X is associated to a single label y. The discrete
random variable Y follows a categorical distribution (or multinoulli distribution) whose
probability mass function is defined by

∀y ∈ R, pY(y) =
K

∑
k=1

PY(k)δ(y− k) (1)
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where K is the number of categories (or classes), δ is the Dirac delta function, and PY(k)
denotes the probability of the event Y = k for a given label k ∈ [[1; K]]. The labeled training
data are drawn from the joint probability distribution pX,Y, called the data-generating
distribution. As X is continuous and Y is discrete, pX,Y is a mixed joint density and can be
obtained with the formula

pX,Y(x, y) = pY(y) pXY(x | y) =
K

∑
k=1

PY(k)δ(y− k)pXY(x | y) (2)

with pXY being the class-conditional probability distribution.
In the present paper, we are interested in single-label multiclass problems. Therefore,

the classification problem considered here reads: given an integer K ≥ 2 and a training set
{(xi, yi)}1≤i≤N ⊂ X × [[1; K]], train a classifier C( . ; θ) : X → [[1; K]] to assign any observation
x ∈ X to the correct class, with θ denoting the parameters of the classifier. However, reaching the
highest possible accuracy on the training set is not the objective to be pursued, as it usually
leads to overfitting. Indeed, the classifier is supposed to be applied to new unseen data, or
test data, after the training phase. Therefore, the generalization ability of the classifier is at
least as important as its performance on the training set. A classifier with high capacity
(ability to learn classes with complex boundaries, related to model complexity) perfectly
fits training data but is very sensitive to noise, leading to high test error and thus overfitting.
On the other hand, a classifier with low capacity can produce smaller error gaps between
training and test predictions, but such a classifier may not be able to fit the data, which is
called underfitting. This dilemma is known as the bias-variance trade-off : low model capacity
leads to high bias, while high model capacity leads to high variance.

For a given observation x ∈ X , probabilistic classification algorithms estimate the
membership probabilities Pmodel(y x; θ) for each class y ∈ [[1; K]]. The classifier C returns
the index of the class with the highest membership probability:

C(x; θ) = arg max
y∈[[1;K]]

(Pmodel(y x; θ)) (3)

The parameters θ must be optimized to minimize the expected risk J (θ) defined by

J (θ) = E(X,Y)∼pX,Y
[L(C(X; θ), Y)] (4)

where L is the per-example loss function quantifying the error between the predicted class
C(X; θ) and the true class Y. However, as the true data-generating distribution pX,Y is
unknown, the expected risk must be estimated by computing the expectation with respect
to the empirical distribution p̂X,Y:

p̂X,Y(x, y) =
1
N

N

∑
i=1

δ(x− xi, y− yi) (5)

Therefore, the training process consists in minimizing the empirical risk:

Ĵ (θ) = E(X,Y)∼ p̂X,Y
[L(C(X; θ), Y)] =

1
N

N

∑
i=1

L(C(xi; θ), yi) (6)

This is known as the empirical risk minimization (ERM) principle [29]. Common choices
for the function L are the hinge loss (defined for multiclass problems in [30]) used by
support vector machines (SVMs), and the log loss or negative log-likelihood

L(C(x; θ), y) = − log Pmodel(y x; θ) (7)

that is widely used for classifiers based on artificial neural networks (ANNs) and for
logistic regression. When L is the negative log-likelihood, the objective function Ĵ (θ) is
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the cross-entropy loss and the optimal set of parameters θ∗ minimizing Ĵ is the maximum
likelihood estimator [31]. Usually, a regularization term is added to the empirical risk to
penalize the model complexity in order to reduce overfitting.

The boundaries between classes in the input space are called decision boundaries.
Linear classifiers are classification algorithms for which the decision boundaries are de-
fined by linear combinations of the features of X. Linear classifiers are appropriate when
the classes are linearly separable in X , which means that the decision boundaries corre-
spond to portions of hyperplanes. Linear classifiers include logistic regression [32–34],
linear discriminant analysis (LDA [31]), and the linear support vector classifier (linear
SVM [35,36]).

Many algorithms exist for nonlinear classification problems, each of them having
its own advantages and drawbacks. As a kernel method, the linear SVM is extended to
nonlinear classification problems using the kernel trick based on Mercer’s theorem [37].
Artificial neural networks [38,39] (see in [40] for a historical review) have become very
popular due to their performances in numerous classification contests. Decision trees (e.g.,
CART algorithm [41]) and naive Bayes classifiers [42,43] are well-known for their inter-
pretability. Other nonlinear classifiers include the k-nearest neighbors algorithm (kNN [44])
and quadratic discriminant analysis (QDA [31]). In [45], the most common classifiers
are compared on eleven binary classification problems. Short reviews of classification
algorithms can be found in [46,47].

Usually, combining several models to form a meta-estimator results in more robust
predictions and reduces overfitting. This idea is used in ensemble methods such as bag-
ging (or bootstrap aggregating) [48], feature bagging (or random subspace method) [49],
stacking [31,50], boosting (including the well-known AdaBoost algorithm [51,52]), gradi-
ent boosting [53–56], and voting classifiers based on either a majority vote or a soft vote
(technique known as ensemble averaging [57]). Random forests [58] combine bagging and
feature bagging to build an ensemble of decision trees. All these methods are designed
to reduce overfitting. For instance, when using ensemble averaging, the final estimates
for membership probabilities are obtained by averaging predictions of several classifiers
or instances of a classifier, which results in a regularization of the boundaries between
the classes.

2.2. Classification for Numerical Simulations

Classification algorithms have recently found applications in numerical simulations,
and more specifically for the selection of numerical models adapted to the context of the
simulation. In this case, the class labels are used to identify the models.

Applications to turbulence modeling in computational fluid dynamics can be found
in [7,10]. In large eddy simulations (LES; see in [59]), the Navier–Stokes equations are
filtered to avoid resolving small-scale turbulent structures whose effects are taken into
account either by sub-grid scale models (explicit LES closures) or via the dissipation
induced by numerical schemes (implicit LES). In [7], sub-grid statistics obtained from direct
numerical simulations enable training a fully connected deep neural network to switch
between different explicit LES closures at any point of the grid. This classifier is reused
in [10], this time for switching between different numerical schemes in implicit LES. In
both cases, the classifier is used to increase the accuracy of numerical predictions.

The idea of locally switching between different simulation strategies can also be
found in [6] for the multiscale modeling of composite materials. In the multilevel finite-
element method (FE2 [60]), the quantities of interest at every integration point of the
macroscopic finite-element mesh are given by a microscopic finite-element computation of
an elementary cell representing the material’s microstructure. The multi-fidelity surrogate
model presented in [6] relies on two surrogate models replacing the microscopic finite-
element model: a reduced-order model taken from [61] and an artificial neural network
based regression model. At each integration point of the macroscopic mesh, the classifier
(a fully connected network) analyzes the effective strains and predicts whether the error
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of the regression model would be acceptable, enabling the selection of either the purely
data-driven regression model or the more sophisticated physics-driven ROM. This time,
automatic model recommendation by a classifier is used to adapt the model complexity
and reduce the computation time.

In [8,9], optimal classification trees (OCTs [62]) are used as model selectors in a data-
driven physics-based digital twin of an unmanned aerial vehicle (UAV). The OCTs enable
the update of the digital twin according to sensor data by selecting a model from a prede-
fined model library. In this context, the training procedure for the classifier corresponds
to an inverse problem. Indeed, training examples are generated by running simulations
with all the models in the library and evaluating their predictions at the sensors’ locations.
Therefore, for a given model y ∈ [[1; K]], the data x are obtained by means of numerical
simulations performed with y. This corresponds to the forward mapping. The classifier
must learn the inverse mapping giving y as a function of x. In this example, data labeling is
straightforward: the label of a training example x is given by the index y of the model which
was used to generate x. It is also noteworthy that generating training examples is not too
expensive, because numerical simulations are performed with reduced-order models ob-
tained by the Static-Condensation Reduced-Basis-Element method (SCRBE [63–66]). In this
application, automatic model recommendation gives the UAV the ability to dynamically
evaluate its flight capability and replan its mission accordingly.

Another example of classifier used to accelerate numerical simulations can be found
in [4]. Contrary to the works in [8,9], the data labeling procedure relies on the clustering of
simulation data. In this framework, the model library is made of cluster-specific Discrete
Empirical Interpolation Method (DEIM) [67] models that are faster than the high-fidelity
model. The high-fidelity model computes a prediction ui for each input xi in the database
{xi}1≤i≤N , resulting in a dataset {ui}1≤i≤N on which a clustering algorithm is applied.
The predicted variable u is the discretization of a continuous field on a finite-element mesh,
thus living in a high-dimensional space. To avoid the so-called curse of dimensionality [28],
a DEIM-based feature selection technique is used before applying k-means clustering [68].
Alternatively, the clusters can be obtained with a variant of k-means using the DEIM
residual as clustering criterion. Then, for a given training example xi, the class label yi is
defined by the index of the cluster that ui is assigned to. In the exploitation phase, when
dealing with test data, the best DEIM model is selected by a nearest neighbor classifier.
The input data given to the classifier are either parameters of the problem or the variable u
obtained at the previous time increment. A similar methodology is described in [5], where
the concept of model library is termed model dictionary, which is the terminology adopted
in this paper. The model dictionary is made of hyper-reduced-order models [69], and
the input data {xi}1≤i≤N are images of a mechanical experiment. The dimensionality of
simulation data is reduced by Principal Component Analysis (PCA) before using k-means
clustering. A convolutional neural network [70] is trained to return class labels without
computing the intermediate variable u in order to avoid time-consuming operations. This
classifier is an approximation of the true classifier K returning the correct label for any
input x.

3. Definition of the Classification Problem

Notations: The j-th feature of a random vector X is the real-valued random variable
denoted by X j. Its observations are denoted by xj, or xj

i when indexing is necessary, for
example, when considering training data. When X is obtained by discretizing a random
field on a mesh, the feature X j corresponds to the value taken by the random field at the
j-th node. In the numerical application presented in this work, a random temperature field
is considered. The spatial coordinates of the j-th node are stored in a vector ξ j ∈ R3. The
categorical variable Y indicates which model should be used.

In this paper, input data {xi}1≤i≤N correspond to several instances or variabilities of
a physical field discretized on a mesh. Let N be the number of nodes in the mesh. If the
physical field is scalar and defined at the nodes, then each observation xi is a vector of
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RN . For relatively small problems, N is in the order of 104 to 105. For some industrial
problems, N can be in the order of 106 to 108. The dataset {xi}1≤i≤N may come from
experiments, numerical simulations, statistical models, or a combination of them, and
contains from 102 to 104 observations. It is assumed that all features of all observations are
known, contrary to some classification tasks in other disciplines encountering the problem
of missing values. This assumption is clearly satisfied when data come from numerical
simulations or statistical models. For experimental data, numerous techniques provide
space-distributed measurements that can be projected onto the mesh, such as particle
image velocimetry [71] in fluid dynamics, digital image correlation [72] and photoelastic
experiments [73] in solid mechanics, and temperature-sensitive paints [74] measuring
surface temperatures.

The framework considered in this paper is the same as in [11] for ROM-nets, where the
input variabilities are supposed to be used for an uncertainty propagation study in a physics
problem P , for which a high-fidelity model mHF is available. The physics problem P is
a time-dependent problem. As the high-fidelity model is too computationally expensive,
dictionary-based ROM-nets have been introduced to reduce the computation time by means
of a reduced-order model dictionary and a classifier playing the role of a model selector.
The dictionary-based ROM-net is trained on the available dataset {xi}1≤i≤N . For a given
observation xi, the class label yi indicates the most appropriate model in the dictionary
to be used for fast simulations with limited errors with respect to the high-fidelity model
mHF. Class labels are obtained by the following data labeling procedure.

• Step 1: For each observation xi in the dataset, use the high-fidelity model mHF to
solve a simplified version P ′ of the physics problem P (for example, the problem P ′
can consist in solving P for a few time increments only). The primal solution of P ′
computed for xi is denoted by ui. It consists of a collection {un

i }1≤n≤nt of nt fields
defined on the mesh, with nt being the number of time increments in problem P ′.

• Step 2: Given {ui}1≤i≤N , compute the dissimilarity matrix δ ∈ RN×N with the
following formula:

δij = δ(xi, xj) = dGr(∞,∞)

(
span({un

i }1≤n≤nt), span({un
j }1≤n≤nt)

)
with dGr(∞,∞) being the Grassmann metric defined in [75]. The coefficient δij is a
dissimilarity measure between xi and xj.

• Step 3: k-medoids clustering [76–78] is applied to the dissimilarity matrix δ. In this
paper, we consider K = 4 clusters. The label yi = K(xi) ∈ [[1; K]] is given by the index
of the cluster containing ui.

This procedure gives N = 1000 examples of input–label pairs {(xi, yi)}1≤i≤N . This
dataset is split into a training set, a validation set, and a test set with cardinalities 600,
200, and 200, respectively, enabling the supervised training and evaluation of a classifier
C. For the sake of simplicity, the labeled data are renumbered so that the Ntrain = 600 first
input–output pairs {(xi, yi)}1≤i≤Ntrain form the training set on which the feature selection
and data augmentation algorithms presented in this paper are trained.

In this work, the physics problem P is a temperature-dependent mechanical problem.
The structure is made of an elasto-viscoplastic material whose behavior depends on the
local value of the temperature field [79]. The random variable X is a random vector
representing the evaluation of the random temperature field on a finite-element mesh
containingN = 42, 445 nodes (see Figure 1). The structure is subjected to centrifugal forces
and pressure loads. The random temperature fields are generated by a stochastic model
described in [11], where ten fluctuation modes are randomly combined and superposed
to a reference temperature field. The realizations of the random temperature field are
continuous and always satisfy the heat equation. Modeling random fields as random
combinations of deterministic spatial functions is quite common when studying stochastic
partial differential equations [80–82], because a random field can be approximated by
truncating its Karhunen–Loève expansion [83].
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As already stated, the main contributions of this paper are a feature selection strategy
and a data augmentation algorithm adapted to the specificities and difficulties of classi-
fication problems encountered when training dictionary-based ROM-nets. Concerning
feature selection, the main focus is on the fast quantification of features redundancy by
taking advantage of the type of input data. Concerning data augmentation, in addition to
the constraints that have already been mentioned, it is likely that transforming an input
example xi substantially modifies the intermediate variable ui, and thus the class label yi
might no longer be relevant for the transformed input. Avoiding this situation is crucial to
ensure that the augmented data are correctly labeled. Our algorithms are applicable under
the assumptions that the random vector X derives from a random field whose realizations
are continuous with probability one (sample path continuity, see Definition 2.1 in [84])
and belong to a convex domain X related to physics constraints. Last, a comparison of
various classification algorithms is conducted to put into perspective the choice made
in [11] to use an ensemble of deep neural networks trained with different architectures and
loss functions.

Figure 1. Finite-element mesh of the structure considered in this paper.

Remark 1. Another strategy would consist in using a regression algorithm for the classification
task. Indeed, as our data labeling procedure is based on clustering, the classification problem could
be replaced by a regression problem for the prediction of dissimilarities {δ(x, x̃k)}1≤k≤K for x ∈ X ,
with x̃k being the medoid of the k-th cluster. Given these distances for a new observation x, the class
label is obtained by taking the integer k ∈ [[1; K]] associated to the smallest dissimilarity δ(x, x̃k).
However, the data augmentation algorithm presented in this paper is not compatible with regression
algorithms. For this reason, this paper focuses on classifiers rather than regressors.

4. Feature Selection
4.1. Feature Selection Based on Mutual Information

We recall that a projection π is a linear map satisfying π ◦ π = π, with ◦ denoting
function composition. It is entirely defined by its kernel and its image, which are com-
plementary: given two complementary vector subspaces V1 and V2, there is a unique
projection π whose kernel is V1 and whose image is V2, namely, the projection onto V2
along V1. For more details about projections, see in [85], pages 385 to 388. Let us now give
a formal definition of a feature selector:

Definition 1. (Feature selector) Let V be a finite-dimensional real vector space. Given a basis
B = (ei)1≤i≤dim(V) of V and a set of integers S ⊂ [[1; dim(V)]], the feature selector πS,B : V → V

is the projection whose image is span({ei}i∈S) and whose kernel is span
(
{ei}i∈[[1;dim(V)]]\S

)
.

When the choice of the basis B is obvious, the notation πS,B is simply replaced by πS.
In practice,

∀(λi)1≤i≤dim(V) ∈ Rdim(V), πS

(
dim(V)

∑
i=1

λiei

)
= ∑

i∈S
λiei (8)
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Therefore, from a numerical point of view, one can interpret the feature selector
as linear map πS : V → span({ei}i∈S), which enables reducing the size of the vector
representing πS(x) for x ∈ V. In this way, applying a feature selector πS to a vector of
RN consists in masking its features whose indexes are not in S, which gives a reduced
vector in R|S| where |S| denotes the number of elements in S. Feature selection algorithms
build the set S by searching for the most relevant features for the prediction of the output
variable Y. For this purpose, the mutual information can be used to quantify the degree of
the relationship between variables.

Definition 2 (Mutual information [86], eq. 8.47, p. 251). Let Z1 and Z2 be two real-valued
random variables with joint probability distribution p1,2 and marginal distributions p1 and p2. The
mutual information I(Z1, Z2) is defined by

I
(

Z1, Z2
)
=
∫
R2

p1,2(z1, z2) log

(
p1,2(z1, z2)

p1(z1)p2(z2)

)
dz1dz2 (9)

The mutual information measures the mutual dependence between two random
variables. Contrary to correlation coefficients, the information provided by this score
function is not limited to linear dependence. The mutual information is non-negative, and
equals to zero if and only if the random variables are independent. Given Equation (2),
replacing Z1 by a feature Xi of X and Z2 by Y gives

I
(

Xi, Y
)
=

K

∑
k=1

PY(k)
∫

xi∈R
pXi |Y(xi|k) log

(
pXi |Y(xi|k)

pXi (xi)

)
dxi (10)

The mutual information can be used to quantify the redundancy of a set of features S
with cardinality S and its relevance for predicting Y:

Definition 3 (Relevance [22], eq. 4, p. 2). Let X = (Xi)1≤i≤N be a multivariate random
variable, and let Y be a discrete random variable. The relevance of a reduced set S ⊂ [[1;N ]] of
features of X for predicting Y is defined by

D(S, Y) =
1
S ∑

i∈S
I(Xi, Y) (11)

Definition 4 (Redundancy [22], eq. 5, p. 2). Let X = (Xi)1≤i≤N be a multivariate random
variable. The redundancy of a reduced set S ⊂ [[1;N ]] of features of X is defined by

R(S) =
1
S2 ∑

i,j∈S2

I(Xi, X j) (12)

The minimum redundancy maximum relevance (mRMR) algorithm [21,22] builds the set
S by maximizing D(S, Y)− R(S), which is a combinatorial optimization problem. For this
type of optimization problem, a brute-force search is intractable, because the number of
solution candidates is too large. Instead, mRMR searches for a sub-optimal solution by
following a greedy approach. First, the feature having the highest mutual information
with the label variable Y is selected. Then, the algorithm follows an incremental procedure:
given the set Sm−1 obtained at iteration m− 1, form the set Sm such that

Sm = Sm−1 ∪
{

arg max
i∈[[1;N ]]\Sm−1

(
I(Xi, Y)− 1

m− 1 ∑
j∈Sm−1

I(Xi, X j)

) }
(13)

This incremental procedure stops when m reaches the target number of features N f . A
review of feature selection algorithms based on mutual information can be found in [87].
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4.2. A Geostatistical Variant of mRMR Feature Selection

When training dictionary-based ROM-nets, the number of features of the random
vector X scales with the number of nodes N in the mesh. In particular, the number of
features is exactly N if X is the nodal representation of a scalar field. Therefore, there are
too many features to compute all redundancy terms I(Xi, X j). However, one can estimate
the redundancy terms thanks to the proximities of the features on the mesh. Indeed, X is a
regionalized variable: in our example, we recall that ξ i ∈ R3 denotes the position of the
i-th node in the mesh, and that the feature Xi corresponds to the value taken by a random
temperature field at ξ i. If two points ξ i and ξ j of the mesh are close to each other, the
corresponding features Xi and X j are likely to be correlated and thus redundant because of
the smoothness of the temperature field. This idea is also valid when considering physical
variables discretized in time.

In this paper, the random temperature field is modeled by a Gaussian random field [84]
as in [11], which is a common and simple approach when modeling uncertainties on a phys-
ical field. As a consequence, X is a Gaussian random vector and the mutual information
I(Xi, X j) has a simple formula involving the correlation coefficient:

Property 1 (Mutual information of two correlated Gaussian random variables [86], eq. 8.56,
p. 252). Let (X1, X2) be a Gaussian random vector. The mutual information I(X1, X2) reads

I(X1, X2) = −1
2

ln
(

1− ρ2
)

(14)

where ρ denotes the correlation between X1 and X2.

This property implies that, for Gaussian random fields having isotropic correlation
functions ρ (the correlation function ρ(ξ, ξ′) of a random field is isotropic if it only depends
on the distance ||ξ − ξ′||2), the mutual information I(Xi, X j) only depends on the distance
||ξ i − ξ j||2. A wide variety of isotropic correlation functions are given in [84]. More
generally, as Equation (14) is an increasing function of ρ2, any isotropic upper (resp. lower)
bound of the squared correlation function gives an isotropic upper (resp. lower) bound of
the mutual information.

For the example studied in this paper, Figure 2 shows that the mutual information
I(Xi, X j) decreases as the corresponding distance ||ξ i − ξ j||2 increases. Therefore, our
feature selection algorithm builds a metamodel Ĩ replacing I(Xi, X j) by a function of the
distance ||ξ i − ξ j||2, which drastically reduces the computational cost of mRMR algorithm
for our particular problem. First of all, one must build a design of experiments (DOE) to
select a few terms I(Xi, X j) to be computed exactly. The metamodel Ĩ is calibrated to fit the
corresponding precomputed redundancy terms. Then, mRMR feature selection is applied
by replacing I(Xi, X j) with Ĩ(||ξ i − ξ j||2). The feature selection algorithm is described
in Algorithm 1. We call this algorithm geostatistical mRMR, as geostatistics is the branch
of statistics that deals with regonalized variables. A stopping criterion is added to the
incremental procedure used in mRMR, enabling an automatic selection of the number
of features to be kept for the classification task: the algorithm stops when the value of
arg max

i∈[[1;N ]]\Sm

(
I(Xi, Y)− 1

m ∑j∈Sm Ĩ
(∥∥ξ i − ξ j

∥∥
2

))
has not changed much during a number of

iterations. A condition on the mutual information I(Xi, Y) can also be added to avoid
selecting quasi-irrelevant features. It should be noted that the number of selected features
does not depend on the number of nodes N in the mesh. In addition, for stage 1 of
Algorithm 1, computing all the terms

∥∥ξ j1 − ξ j2

∥∥
2 of the matrix of pairwise mesh nodes

distances is not necessary: only a few lines of this matrix corresponding to randomly
selected nodes are evaluated, which is sufficient to build the DOE. In other words, one
computes the distances between a few nodes and all the mesh nodes.
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Figure 2. Mutual information I(Xi, X j) as a function of the distance ||ξ i − ξ j||2.

Algorithm 1 Geostatistical mRMR

Input: training set {(xi, yi)}1≤i≤Ntrain , set of mesh nodes {ξ i}1≤i≤N , stopping criterion.
Output: set of selected features.

1: Stage 1 (design of experiments):
2: Select distance values rj.
3: For each rj, draw nj pairs of mesh nodes (ξ j1 , ξ j2) such that

∥∥ξ j1 − ξ j2

∥∥
2 ≈ rj.

4: Stage 2 (metamodel for redundancy terms):
5: Compute the mutual information I(Xi, X j) for each pair selected in Stage 1.
6: Train a metamodel Ĩ such that I(Xi, X j) ≈ Ĩ

(∥∥ξ i − ξ j
∥∥

2

)
.

7: Stage 3 (compute relevance terms):
8: Compute I(Xi, Y) for all i ∈ [[1;N ]].
9: Stage 4 (greedy feature selection):

10: S1 := arg max
i∈[[1;N ]]

I(Xi, Y)

11: m := 1
12: while stopping criterion not satisfied do
13: Sm+1 := Sm ∪ { arg max

i∈[[1;N ]]\Sm

(
I(Xi, Y)− 1

m ∑j∈Sm Ĩ
(∥∥ξ i − ξ j

∥∥
2

))
}

14: m := m + 1
15: end while
16: return Sm

Remark 2. A parallel can be drawn between our feature selection strategy and hyper-reduction
methods [69,88–90] used to accelerate complex nonlinear problems in physics (see in [91] for design
optimization and [92] for large-scale simulations). Hyper-reduction methods aim at finding a
reduced set of integration points in the finite-element mesh that is sufficient to predict the behavior
of the physical system. The constitutive equations are solved on this reduced integration domain
only, while the values of quantities of interest at the remaining integration points can be recovered
with the Gappy-POD [93]. In short, hyper-reduced solvers make predictions from a reduced number
of points in a mesh, like the classifiers used in this paper do when combined with the geostatistical
mRMR. Although the objectives are different, both hyper-reduction and geostatistical mRMR feature
selection benefit from the properties of physics data to reduce the complexity of numerical tasks.
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4.3. Numerical Results

The red curve on Figure 2 corresponds to the metamodel estimating redundancy
terms. In this example, we choose

Ĩ(r) = I∞ + γ1(r1 − r)α1 H(r1 − r) + γ2(r2 − r)α2 H(r2 − r) (15)

where H is the Heaviside step function and I∞, γ1, γ2, r1, r2, α1, α2 are calibration parameters
that are adjusted manually. In the DOE, the step between distances rj is smaller for small
distances, in order to better capture the evolution of the mutual information in its high
gradient regime. The number nj of pairs of nodes separated by a distance of rj selected in the
DOE also depends on rj: as higher variances were expected for small distances, nj decreases
when rj increases. In total, 749 terms I(Xi, X j) are computed, which takes 5.12 s using
Scikit-learn [94]. Building the DOE takes only 0.33 s. Then, the greedy procedure takes
303 s and selects 87 features among the 42,445 original ones. The first iteration is the longest
one with 276 s, because it includes the computation of all the relevance terms I(Xi, Y). As
a comparison, the original mRMR algorithm takes 6469 s to compute 7 iterations only. We
did not let mRMR algorithm go further, as the per-iteration computation time grows with
the iteration number. For a fair comparison, our implementations of mRMR and stages 3
and 4 of the geostatistical mRMR are the same except that redundancy terms are evaluated
with Scikit-learn for mRMR and with the function Ĩ for the geostatistical mRMR.

Table 1 compares the relevance D(S, Y), the true redundancy R(S), the approximate
redundancy R̃(S) estimated with Ĩ, the true cost function D(S, Y)− R(S), and the approxi-
mate cost function D(S, Y)− R̃(S) for three different feature selection strategies:

• the geostatistical mRMR feature selection (Algorithm 1), selecting a set S∗ of features;
• a univariate filter algorithm selecting the features with the highest mutual information

(MI) scores I(Xi, Y). This algorithms finds a set SMI maximizing the relevance for a
given cardinality; and

• a purely geometric feature selection algorithm, randomly selecting the first feature and
adding features in a greedy manner so that the distance to the closest point ξ i, i ∈ Sm
is maximized. This algorithm tends to select a set SG of well-distributed features in
order to get a low redundancy for a given cardinality.

As the geostatistical mRMR automatically selected 87 features, the two other ap-
proaches are applied with |SG| = |SMI | = 87 as a target. Table 1 shows that the relevance
of the set S∗ selected by our algorithm is in the same order of magnitude as the relevance
of the set SMI . Its redundancy is in the same order of magnitude as the redundancy of
the set SG. These results show that the geostatistical mRMR algorithm does have the
desired behavior: it selects a subset of features S∗ with high relevance and low redundancy.
Figure 3 shows the features selected by the three different algorithms. The classification
accuracies of several classifiers using the reduced features S∗ are given in the last section of
the article.

Table 1. Evaluation of the geostatistical mRMR feature selection algorithm.

Algorithm D(S, Y) R̃(S) R(S) D(S, Y)− R̃(S) D(S, Y)− R(S)

Geostatistical mRMR (S∗) 0.0460 0.0816 0.1111 −0.0356 −0.0651
MI-based filter (SMI) 0.0671 0.9794 0.8129 −0.9124 −0.7458
Geometric filter (SG) 0.0090 0.0788 0.1072 −0.0699 −0.0982

Remark 3. The geometric feature selection algorithm gives rather good results in terms of the
cost function, but it does not mean that it is an appropriate approach. Indeed, one can see that
the relevance of SG is very low, as this algorithm does not use any information concerning the
classification problem.
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Figure 3. Red dots indicate the selected features. From the left to the right: geometric feature selection,
MI-based feature selection, and geostatistical mRMR.

5. Data Augmentation
5.1. Pure Sets

Definition 5 (Convex set [95], p. 10). Let V be a real vector space. A non-empty set S ⊂ V is
convex if

∀(x1, x2) ∈ S2, ∀λ ∈ [0; 1], λx1 + (1− λ)x2 ∈ S (16)

Definition 6 (Convex combination [95], p. 11). Let {xi}1≤i≤n be a finite set of elements of a
real vector space V. A convex combination of {xi}1≤i≤n is a vector x ∈ V such that

∃ (λi)1≤i≤n ∈ Rn
+ |

n

∑
i=1

λi = 1 and x =
n

∑
i=1

λixi (17)

Definition 7 (Convex hull of a set [95], p. 12). Let V be a real vector space and S a non-empty set
included in V. The convex hull or convex envelope E(S) of S is the smallest convex set containing
S . Equivalently, the convex hull E(S) can be defined as the set of all convex combinations of all
finite subsets of S .

Property 2 (Image of a convex hull by a linear map). Let V and W be two real vector spaces,
and let L : V →W be a linear map. Let S be a non-empty set included in V. Then,

L(E(S)) = E(L(S)) (18)

Proof. Let z ∈ E(L(S)). Following the definition of a convex hull, there exists n ∈ N∗
such that

∃ (wi)1≤i≤n ∈ L(S)n, ∃ (λi)1≤i≤n ∈ Rn
+ |

n

∑
i=1

λi = 1 and z =
n

∑
i=1

λiwi (19)

For all i ∈ [[1; n]], as wi ∈ L(S), there exists vi ∈ S such that wi = L(vi). By linearity
of L:

z =
n

∑
i=1

λiL(vi) = L
(

n

∑
i=1

λivi

)
∈ L(E(S)) (20)

so E(L(S)) ⊂ L(E(S)). The other inclusion can be shown using exactly the same argu-
ments. Thus, L(E(S)) = E(L(S)).
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This property has a very simple yet important consequence for the data augmentation
algorithm presented in this paper.

Property 3. Let V and W be two real vector spaces, and let L : V →W be a linear map. Let S be
a non-empty set included in V. Then, for all x ∈ V:

L(x) /∈ E(L(S))⇒ x /∈ E(S) (21)

Proof. By contraposition, x ∈ E(S)⇒ L(x) ∈ L(E(S)) = E(L(S)).

Our data augmentation strategy uses this property in the particular case where the lin-
ear map is a projection. As a reminder, the notationK stands for the true classifier assigning
any input x to a single label y ∈ [[1; K]]. Before giving the description of the algorithm, let
us introduce the definition of pure sets in a labeled dataset and a characterization theorem:

Definition 8 (Pure set). Let n be a positive integer, and let S = {xi}1≤i≤n be a finite set of
elements of a real vector space V labeled by K. Let SI = {xi}i∈I⊂[[1;n]] be a non-empty subset of S .
The set SI is pure in S if K(S ∩ E(SI )) is a singleton, which means that the set SI is pure in S if
all of the points of S that belong to the convex hull of SI have the same label.

Let S = {xi}1≤i≤n be a finite set of elements of a finite-dimensional real vector space
V labeled by integers {yi}1≤i≤n in [[1; K]], with K ≤ n. For all k ∈ [[1; K]], Ck denotes the set
of elements of S labeled by k:

Ck = {xi ∈ S | yi = k} (22)

For any subset Sk of Ck with cardinality |Sk|, ÂSk ∈ Rdim(V)×|Sk | denotes the matrix
whose columns contain the coordinates of the elements of Sk. The matrix denoted by
ASk is obtained by adding a row of ones below the matrix ÂSk , giving a matrix of size
(1 + dim(V))× |Sk|.

Theorem 1 (Pure set characterization). Let Sk be a subset of Ck with cardinality |Sk|. The set Sk
is pure in S if and only if for all x in S \ Ck the linear system:

ASk w =

(
x
1

)
(23)

has no non-negative solution w ∈ R|Sk |
+ .

Proof. Let x ∈ S \ Ck. Equation (23) has no non-negative solution if and only if

@ w ∈ R|Sk |
+ |

|Sk |

∑
i=1

wi = 1 and ÂSk w = x (24)

⇐⇒ x /∈ E(Sk) (25)

which ends the proof.

Corollary 1 (Pure set testing). Let Sk be a subset of Ck with cardinality |Sk|, and let L : V →W
be a linear map, where W is a finite-dimensional real vector space. If for all x in S \ Ck the
linear system

AL(Sk)
w =

(
L(x)

1

)
(26)

has no non-negative solution in R|Sk |
+ , then Sk is pure in S .
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Proof. Equation (26) characterizes the purity of L(Sk) in L(S) (Theorem 1), which implies
that Sk is pure in S (Property 3).

Figure 4 illustrates the concept of pure sets. On this figure, the set C1 is made of all
the elements represented by dots, while the crosses form the set C2 = S \ C1. On the left,
the subset formed by the six black dots is pure since its convex hull delimited by dashed
lines contains only dots. The subset made of the six black dots on the right-hand side of
the figure is not pure because of the presence of a cross in its convex hull. Equation (23)
has a non-negative solution when using the coordinates of this cross in its right-hand side.

Figure 4. Illustration of the concept of pure sets on a binary classification problem.

5.2. The Data Augmentation Algorithm

The objective is to generate new data points x ∈ X in a given class y ∈ [[1; K]] from
the preexisting observations in that class. To this end, one must apply class-preserving
transformations on the training examples. New examples can be created by taking convex
combinations of some subsets of the training set, for example. One way of controlling the
risk that newly generated examples have wrong labels is to take convex combinations of
subsets only if they are pure. Indeed, if the k-th class Ck contains a set Sk that is pure in
the training set, one can expect that the probability P(Y = k | X ∈ E(Sk)) is high enough
to get new examples of class Ck by drawing samples in E(Sk). In addition, the third
Hadamard well-posedness condition states that the solution of a physics equation changes
continuously with respect to the parameters of the problem. In the neighborhood of a point
x0 belonging to a pure set Sk, the primal solution u stays in the neighborhood of the solution
u0 obtained with x0 and is thus likely to have the same label. Therefore, the objective of
our algorithm is to find pure sets in the training set in order to generate new examples
by convex combinations with a limited risk of getting incorrectly labeled examples. The
pure sets detected by the algorithm are listed in a matrix S such that S [k, i] contains the
indices of the training points forming the i-th pure set of the k-th class. The pure sets are
grown from different starting points or seeds in the training set by iteratively adding the
seeds’ nearest neighbors in terms of the precomputed dissimilarity measure δ used for
clustering in the data labeling procedure. The growth stops before losing the purity of
the subsets. However, checking the purity in the high-dimensional input space can cause
difficulties, even when training the data augmentation algorithm after a first dimensionality
reduction like in this paper. For this reason, the algorithm checks the purity after having
applied a feature selector πS with a small random subset of features S containing d features.
Let us apply Property 3 with V = W being the input vector space containing X and
with the linear map L being the feature selector πS. As Property 3 states, if no point
of πS

(
{xm}1≤m≤Ntrain \ Ck

)
belongs to the convex hull of πS

(
{xm}m∈S [k,i]

)
, then the set

E
(
{xm}m∈S [k,i]

)
does not contain any point labeled with k′ 6= k. As a set can lose its purity

after projection, the algorithms tries pmax random feature selectors πS before considering
that the set is not pure. In practice, the purity of πS

(
{xm}m∈S [k,i]

)
in πS

(
{xm}1≤m≤Ntrain

)



Math. Comput. Appl. 2021, 26, 17 16 of 25

is numerically tested by solving a non-negative least squares (NNLS [96]) problem. If for
all points x ∈ {xm}1≤m≤Ntrain \ Ck the inequality

min
w∈R|S [k,i]|

+

||AπS({xm}m∈S [k,i])
w− π̃S(x)||2 ≥ εDA||π̃S(x)||2 (27)

is satisfied with π̃S(x) = (πS(x)T 1)T and with εDA being the tolerance of the data aug-
mentation algorithm, then Corollary 1 implies that {xm}m∈S [k,i] is pure in {xm}1≤m≤Ntrain .
Algorithm 3 describes the data augmentation algorithm. It calls Algorithm 2 to find n
well-distributed seeds per class before growing pure sets. It is noteworthy that using few
pure sets to generate many examples would increase the distribution gap [97] between
augmented data and original data. To avoid this issue, one had better use many well-
distributed seeds to distribute data augmentation efforts between the pure sets and thus
limit the divergence between the augmented distribution and the true data-generating
distribution.

Remark 4. Realizations of the random variable X belong to a convex domain X related to physics
constraints. When considering surface random temperature fields defined on the boundaries of a
solid, X is a hypercube consisting of all the fields taking values between zero Kelvin degree and the
material’s melting point. These random fields can be used as Dirichlet boundary conditions for the
nonlinear heat equation. The assumption of a linear thermal behavior is added when considering
three-dimensional random temperature fields defined inside the solid, so that the set X remains
convex when adding the constraint that the random field must satisfy the heat equation. More
generally, convex combinations respect physics constraints defined by linear operators, such as
linear partial differential equations and Dirichlet, Neumann, and Robin boundary conditions.

Algorithm 2 Seeds selection for data augmentation. Note: all the dissimilarities have
already been computed in the data labeling procedure.

Input: training set {(xi, yi)}1≤i≤Ntrain , class label k, class center x̃k, dissimilarity matrix δ,
target number of seeds n, preselection parameters (ε1, ε2) ∈ [0; 1]2.

Output: List lk of n indices of seeds candidates for the k-th class.
1: Stage 1 (filter the data):
2: Find the minimum dissimilarity δk

ref separating the class center x̃k from a point belong-
ing to another class.

3: Remove points having neighbors belonging to foreign classes within a distance of
ε1δk

ref.
4: Remove isolated points having no neighbor within a distance of ε2δk

ref.
5: Ik := set of the indices of the remaining points in class k.
6: Stage 2 (maximin greedy selection):
7: Initialize lk with the index of the class center x̃k.
8: for i ∈ [[2; min(n, |Ik| − 1)]] do
9: j := arg max

l∈Ik\lk
min
m∈lk

δlm

10: Append j to lk.
11: end for
12: return lk
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Algorithm 3 Data augmentation algorithm

Input: training set {(xi, yi)}1≤i≤Ntrain , dissimilarity matrix δ, per-class number of seeds
n, maximum number of pure set testings pmax, dimension d of subspaces for pure set
testings, number of augmented data NDA.

Output: augmented data {(x̃i, ỹi)}1≤i≤NDA and matrix S listing pure sets.
1: Stage 1 (find pure sets in the training set):
2: for k ∈ [[1; K]] do
3: Apply Algorithm 2 to get the list lk of n indices of seeds candidates.
4: for i ∈ [[1; n]] do
5: S1 := {lk[i]}
6: neighbors := argsort(δ[lk[i], :])
7: j := 1
8: setPurity := True
9: while setPurity do

10: Sj+1 := Sj ∪ {neighbors[j]}
11: j := j + 1
12: p := 1
13: Select a random subset S of d features.
14: while {πS(xm)}m∈Sj is not pure in {πS(xm)}1≤m≤Ntrain and p ≤ pmax do
15: Select a new random subset S of d features.
16: p := p+1
17: end while
18: if p = pmax + 1 then
19: setPurity := False
20: end if
21: end while
22: S [k, i] := Sj−1
23: end for
24: end for
25: Stage 2 (generate new data):
26: Generate NDA random convex combinations {x̃i}1≤i≤NDA of the pure sets listed in S .

Convex combinations x̃i of the pure set described in S [k, j] are labeled by ỹi = k.
27: return {(x̃i, ỹi)}1≤i≤NDA and S

5.3. Numerical Results

Linear discriminant analysis (LDA), commonly used for classification tasks, can also
be used for supervised dimensionality reduction by projecting the data onto the subspace
maximizing the between-class variance, as explained in [31]. For the classification problem
presented in this paper, the training data are visualized in the two-dimensional subspace
obtained by LDA in Figure 5. Although this subspace is the one that best separates the
classes, one can see that the training examples do not form well-separated groups. For
this reason, testing the purity of subsets of training data before generating new examples
by convex combinations is necessary to reduce the risk of getting incorrectly labeled
augmented data.
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Figure 5. Data visualization in the 2D subspace maximizing the separation between classes (super-
vised linear dimensionality reduction using linear discriminant analysis (LDA)).

The data augmentation algorithm finds about 60 pure sets per class with an average
population of five training examples, using random subspaces of dimension 5 to test the
purity. Note that two pure sets are merged only when one is included in the other, as the
union of two pure sets is not always pure. The computation time for the data augmentation
training phase is 40 minutes. Once pure sets have been found, one can generate as many
augmented examples as necessary. Generating 5400 examples to multiply the size of the
training set by 10 takes less than a second. Among the augmented data, 400 examples are
taken for the evaluation of the data augmentation algorithm. The data labeling procedure
involving numerical simulations is applied for these 400 examples in order to estimate the
percentage of incorrectly labeled data. It turns out that none of these examples is incorrectly
labeled, which validates the algorithm for our problem. The benefits of data augmentation
for the classification task are evaluated in the final section.

6. Validation of Our Feature Selection and Data Augmentation Algorithms
6.1. Classification Performances of Various Classifiers

In this section, 14 different classifiers are trained and evaluated on our classification
problem. To evaluate whether the features selected by geostatistical mRMR are relevant
for classification purposes, each classifier is tested twice: once in combination with the
geostatistical mRMR and once with principal component analysis (PCA) with 10 modes.
As the random temperature fields derive from a Gaussian random field involving only
10 modes, the database obtained after applying PCA contains all the information of the
original data. Each combination of one of the 14 classifiers with PCA or feature selection is
trained twice: once on the true training set containing Ntrain = 600 examples, and once on
the augmented training set made of 6000 examples.

All the classifiers are trained with Scikit-learn [94], except multilayer perceptrons
(MLPs; i.e., fully-connected feedforward deep neural networks) and radial basis function
networks (RBFNs) which are trained with PyTorch [98]. We train the RBFNs in a fully super-
vised manner with Gaussian radial basis functions, which means that the parameters of the
radial basis functions are learned by gradient descent like the weights of the fully-connected
layers. In addition, we use only one hidden layer for RBFNs, as these artificial neural
networks generally have shallow architectures, as explained in [99]. Deeper architectures
have been tested for MLPs, with dropout [100], batch normalization [101], ReLU activation
functions, and with the number of hidden layers ranging from 2 to 8 with a maximum of
500 neurons per layer. The architectures and the values of some hyperparameters such
as the learning rate for Adam optimizer [102], batch size, number of epochs, and dropout
rate are calibrated by evaluating the classifier on the validation set after each training
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attempt. Scikit-learn’s MLP classifier has also been tested; it is called simple MLP in this
paper, because its architecture is only made of fully-connected layers and does not include
dropout nor batch normalization. All the classifiers based on artificial neural networks are
trained with Tikhonov regularization (or L2 regularization of the network’s parameters)
and early stopping [19]. Logistic regression is trained with elastic net regularization [103]
consisting in a weighted average of L1 and L2 penalties of the model’s parameters. Kernels
used for support vector machines (SVMs) are obtained by combining several polynomial
kernels with different hyperparameters. Kernel design could be optimized using multiple
kernel learning algorithms [104], but we simply build our kernels by evaluating different
combinations on the validation set, just as when we look for a good architecture for artificial
neural networks. For all of the classifiers using regularization terms in their loss functions,
namely, neural networks, SVMs, and logistic regression, hyperparameters such as the
regularization strength (weight of the regularization term in the loss function) or the elastic
net mixing coefficient are also calibrated using the validation set. For tree-based classifiers,
model capacity is controlled by adjusting the maximum depth of the tree and the minimum
number of samples at a leaf node. Given the instability of decision trees and their known
tendency to overfit, our analysis includes random forests, as well as AdaBoost and gradient
boosting with decision trees as base estimators, whose hyperparameters are calibrated on
the validation set. Finally, this comparative study also includes the k-nearest neighbors
classifier whose number of nearest neighbors must be calibrated, and three generative
classifiers that have (almost) no hyperparameter to calibrate, namely, Gaussian naive Bayes,
LDA and QDA classifiers.

The classification accuracies on test data are given in Table 2 for classifiers trained
with PCA and in Table 3 for those trained with feature selection. Of course, this ranking
is specific to the classification problem presented in this paper, no general conclusion
can be drawn from this particular numerical application. On this classification problem,
when using augmented data in the training phase, the highest test accuracy reached with
linear classifiers is 43.5%, obtained with the linear SVM combined with PCA. The fact that
k-nearest neighbors classifiers barely exceed 50.0% of accuracy on this problem is related to
an observation that was made in [11]: there is no simple correlation between the Euclidean
distance and the physics-informed dissimilarity measure used in dictionary-based ROM-
nets. MLPs get the best results, reaching 87.0% of accuracy when combined with our
data augmentation and feature selection algorithms. Interestingly, quadratic discriminant
analysis (QDA) gives excellent results while having no hyperparameter to tune, contrary
to the two other families of classifiers obtaining the best results: MLPs and multiple kernel
SVMs. This makes QDA the best compromise between accuracy and training complexity
for this specific classification task.

Although PCA perfectly describes the input data in this example, the geostatistical
mRMR feature selection algorithm enables reaching higher accuracies with some classi-
fiers. Not only does it behave as the original mRMR when selecting features, but it also
gives satisfying results when combined with a classifier. Concerning data augmentation,
Tables 2 and 3 show that our algorithm significantly improves classification results. The
accuracy gain due to data augmentation is 4.98% on average and ranges from −2.5% to
10.5%, increasing the accuracy in 25 cases out of 28.
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Table 2. Test accuracies of different classifiers with dimensionality reduction by principal component
analysis (PCA), with and without data augmentation (DA).

Classifier Acc. with DA Acc. without DA

Stacking (6 MLPs and logistic regression) 89.5% −
Ensemble averaging (6 MLPs) 89.0% −

Multilayer perceptron 86.5% 81.5%
Simple multilayer perceptron 85.0% 79.5%
Quadratic discriminant analysis 76.0% 70.0%
Multiple kernel support vector machine 73.0% 68.0%
Radial basis function network 63.5% 62.0%
k-nearest neighbors 51.0% 46.0%
AdaBoost 50.5% 52.5%
Gradient-boosted trees 49.5% 48.0%
Random forest 45.0% 47.5%
Linear support vector machine 43.5% 33.0%
Gaussian naive Bayes 38.5% 31.5%
Penalized logistic regression 38.5% 28.0%
Decision tree 34.0% 36.5%
Linear discriminant analysis 33.5% 29.0%

Table 3. Test accuracies of different classifiers with dimensionality reduction by feature selection (FS),
with and without data augmentation (DA).

Classifier Acc. with DA Acc. without DA

Stacking (6 MLPs and logistic regression) 90.0% −
Ensemble averaging (6 MLPs) 89.0% −

Multilayer perceptron 87.0% 81.0%
Simple multilayer perceptron 84.0% 80.0%
Quadratic discriminant analysis 77.5% 70.5%
Multiple kernel support vector machine 72.5% 66.0%
Random forest 69.0% 63.0%
AdaBoost 68.5% 63.0%
Gradient-boosted trees 68.0% 58.5%
Radial basis function network 62.5% 60.0%
Decision tree 55.5% 43.5%
k-nearest neighbors 50.0% 47.0%
Linear support vector machine 40.5% 34.5%
Gaussian naive Bayes 39.5% 34.5%
Penalized logistic regression 37.0% 29.0%
Linear discriminant analysis 32.5% 29.0%

6.2. How to Further Improve Classification Performances?

Ensemble methods can be used to reduce overfitting and increase the accuracy on
test data. In addition, it enables recycling different variants of a classifier that the user
has trained for different hyperparameters. Using ensemble averaging with classifiers
trained on the augmented dataset with feature selection, we manage to combine six MLPs
with different architectures to reach an accuracy of 89.0%. When stacking these MLPs
with a ridge logistic regression analyzing the predicted membership probabilities, we
get an accuracy of 90.0%. Following the same procedures with six MLPs trained on the
PCA representation of the data, ensemble averaging (resp. stacking with ridge logistic
regression) gives an accuracy of 89.0% (resp. 89.5%). In addition to ensemble learning
methods, one can also use random noise injection to increase noise robustness, as explained
in [19].
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7. Applicability to Other Problems

The feature selection and data augmentation algorithms introduced in this paper
can either be used together like in the previous section, or they can be used separately
and combined with other algorithms. For instance, the data augmentation algorithm can
be used in conjunction with any dimensionality reduction technique. However, feature
selection is recommended when the interpretability of input data is important. In addi-
tion, unsupervised dimensionality reduction techniques such as PCA, sparse PCA, kernel
PCA, and deep autoencoders extract features that are relevant to reconstruct data after
compression, while supervised dimensionality reduction techniques such as mRMR and
geostatistical mRMR select features that are suitable for the specific supervised learning
task that is considered.

Although this paper is motivated by difficulties encountered when training dictionary-
based ROM-nets, our algorithms could be used for other computational methods involving
classifiers for model recommendation, such as the LDEIM [4]. The nature of the models in
the dictionary, the underlying physics describing the problem, and the way input data are
labeled do not matter. It is important to emphasize that our data augmentation algorithm
is dedicated to classification problems, whereas our feature selection algorithm could
be applied to regression problems too as the definition of the relevance D(S, Y) can be
extended to continuous output variables Y. As a consequence, the geostatistical mRMR
feature selection algorithm can be applied before training a metamodel that directly predicts
a quantity of interest, as long as the inputs are regionalized variables. One could also think
of a classifier making qualitative predictions, such as a binary classifier saying whether the
system will fail for a given configuration. Our algorithms are applicable to all these types
of problems on physics data.

8. Conclusions

Classification algorithms are used in computational physics for automatic model
recommendation. Such modeling strategies enable the reduction of the computation time,
or the selection between models with different physics when one wants to improve the ac-
curacy of numerical predictions. This article deals with the specificities of the classification
problems encountered in computational physics, and more particularly for dictionary-
based ROM-nets. These classification problems generally have the three following issues:
the lack of training data, their high dimensionality, and the non-applicability of common
data augmentation techniques to physics data. To tackle these difficulties, two algorithms
are proposed. The first one is a geostatistical variant of the mRMR feature selection algo-
rithm, enabling the identification of a reduced set of relevant but non-redundant features
for high-dimensional regionalized variables. The second one is a data augmentation al-
gorithm controlling the risk of generating new examples with wrong labels by finding
pure subsets in the training set. The performances and benefits of these algorithms are
illustrated on a classification problem for which 14 classifiers are evaluated.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
DA Data Augmentation
DEIM Discrete Empirical Interpolation Method
DOE Design of Experiments
ERM Empirical Risk Minimization
FS Feature Selection
GAN Generative Adversarial Network
HF High-fidelity
kNN K-Nearest Neighbors
LDA Linear Discriminant Analysis
LDEIM Localized Discrete Empirical Interpolation Method
LES Large Eddy Simulation
MI Mutual Information
MLP Multilayer Perceptron
mRMR Minimum Redundancy Maximum Relevance
NNLS Non-negative Least Squares
OCT Optimal Classification Tree
PCA Principal Component Analysis
POD Proper Orthogonal Decomposition
QDA Quadratic Discriminant Analysis
RBFN Radial Basis Function Network
ROM Reduced-Order Model
SCRBE Static-Condensation Reduced-Basis-Element method
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
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