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Abstract: A closed-form equation, the Fizzle Equation, was derived from a mathematical model
predicting Severe Acute Respiratory Virus-2 dynamics, optimized for a 4000-student university
cohort. This equation sought to determine the frequency and percentage of random surveillance
testing required to prevent an outbreak, enabling an institution to develop scientifically sound
public health policies to bring the effective reproduction number of the virus below one, halting
virus progression. Model permutations evaluated the potential spread of the virus based on the
level of random surveillance testing, increased viral infectivity and implementing additional safety
measures. The model outcomes included: required level of surveillance testing, the number of
infected individuals, and the number of quarantined individuals. Using the derived equations,
this study illustrates expected infection load and how testing policy can prevent outbreaks in an
institution. Furthermore, this process is iterative, making it possible to develop responsive policies
scaling the amount of surveillance testing based on prior testing results, further conserving resources.

Keywords: COVID-19; SEIR; simulation; surveillance

1. Introduction

As Severe Acute Respiratory Virus-2 (SARS-CoV-2), the causative agent behind Coro-
navirus Disease-19 (COVID-19), continues to disrupt life globally, scientists are beginning
to understand principles underlying the movement of the virus through populations, and
plan accordingly. As the understanding of this virus grows, universities, businesses and
society at large are turning to science to inform their ability to return to everyday life
safely. The basic reproduction number (R0) of SARS-CoV-2 is highly variable and governed
by numerous biological, behavioral and environmental factors [1–3]. When evaluating
infectious diseases over time, it is important to move past a static concept of R0 that only
applies to a snapshot in place and time, and evaluate the time-dependent variation, or
effective reproduction number (Reff). Average estimates hover around 2.2 [4], but climb to
temporal values as high as 10 in congested areas with minimal mitigation strategies [5,6].
This number takes into account a decline in susceptible individuals as time progresses
(intrinsic factors) in addition to targeted control measures to prevent the spread of disease
(extrinsic factors). Infectious diseases continue to spread through populations unless the
Reff is below one [7].

By identifying extrinsic factors recommended by Public Health (e.g., social distancing,
masks, enhanced cleaning policies, remote working) and combining them with a targeted
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quarantine and isolation strategy (limiting exposure to susceptible individuals), it is possi-
ble to drive Reff below 1, “fizzling” out an outbreak, as the rate of new cases is less than
the rate of recovery. Despite the efficacy of these mitigation strategies, a growing body
of evidence suggests a significant asymptomatic or pre-symptomatic transmission rate
of SARS-CoV-2, especially amongst a younger population [8,9]. To combat this popula-
tion covertly spreading the virus, a level of surveillance testing is necessary to determine
the prevalence in a community and remove asymptomatic carriers from the susceptible
population.

This study identified variables likely to affect viral transmission, and overlaid them on
a social network common to the university setting. We developed, verified, and validated
a stochastic susceptible (S), exposed (E), infected (I) and recovered (R) model developed by
the University of Washington, adjusted for our population [10]. Finally, we demonstrated
an empirical method to determine the minimum level of surveillance testing required to
fizzle viral spread and used the SEIR model to validate our methodology.

2. Materials and Methods

Assumptions based on current literature, direct observation, and historical precedents
surrounding SARS-CoV-2 and other coronaviruses [11,12], were refined for our population
of 4000 students (low risk, medically screened 18–26 years old) and 1000 faculty or staff
members, as seen in Table 1. Some of the parameters, e.g., “Days b/w test”, are used
solely to explore the impact of different surveillance test planning options (e.g., testing
every day vs. once a week). With these variables, a stochastic SEIR compartmental model
(Appendix A) based on social network representations of the US Air Force Academy was
used to evaluate mitigation and control policy options for the institution [10]. This model
was run through the minimum and maximum value of each parameter, to elucidate the
overarching effect of each parameter on the results. A Monte Carlo simulation of daily
activities that included interactions between agents capable of transmitting a disease gave
similar results to the SEIR compartmental model.

Table 1. Parameters for Model Comparisons and Validation. The best estimate column provides the values chosen for
modeling the described population.

Parameter Description Best Estimate Range Modeled Comments

d0 Start Date 12 Aug - Day zero of simulation runs
R0 Initial R 1.6 1.2–3.5 Initial basic reproduction number
N Population 5000 2000–5000 Population size (students, faculty, and staff)
I0 Initial Infected 0 5–10 Initial infected (Asymptomatic)

αa Asymptomatic 50% 20–100% Percentage of infected individuals
remaining asymptomatic

φ Contact Tracing 10% 10–50% Close contact tracing effectiveness
ωw New I’s 1 0.25–5 Exogenous weekly infection rate (–wk−1)

δ Days b/w test 1 1–14 Days between baseline testing (pooled)
p Mixing 0.3 0.2–0.8 Likelihood of infection from random interaction

1 − p Mixing 0.7 0.2–0.8 Likelihood of infection from close contact

q Mixing 0.3 0.2–0.8 Likelihood of infection from random interaction
with quarantined or isolated individuals (Q&I)

We verified the model by comparing outputs with the available data from the out-
breaks on the USS Theodore Roosevelt (Appendix B, Figure A2), the French aircraft carrier
Charles de Gaulle, and the Diamond Princess cruise ship [5,11,13]. The aircraft carrier
outbreaks occurred in isolated, closed populations of the same size as our population
(~5000 individuals) with similar demographics (predominately young sailors, our students;
and some older sailors, our faculty and staff). Parameters relating to biological transmission
and social behavior were fitted to the available public data. The modeled social network
structure of the US Air Force Academy was validated by comparing simulations of a
norovirus outbreak with the actual outbreak that occurred in November 2019. Norovirus
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has well-defined transmission dynamics (incubation time, infectious period, R0) so, it was
possible to isolate and confirm the underlying social network and behavioral factors of our
population (Appendix B, Figure A2). The final values of parameters used for establishing
SARS-CoV-2 mitigation and policy measures are given in Table 1 and Appendix A. The USS
Theodore Roosevelt outbreak and stochastic simulation comparison is given in Appendix B,
Figure A2; however, the derivation of the Fizzle Equation, detailed below, is not dependent
on the computer model. The model merely provided a convenient means to demonstrate
that surveillance testing at the fizzle condition is sufficient to prevent a nascent outbreak
from developing and testing below the fizzle condition is insufficient to prevent exponential
spread.

IRB determination on the surveillance testing and mathematical modeling
(FAC20200024N and FAC20200025N, respectively) deemed this study as Not Humans
Subject Research in accordance with 32 CR 219, DoDI3216.02 and AFI 40-402.

3. Results

Modifying the SEIR compartmental model to include an isolation compartment for (1)
infections detected and identified through surveillance testing, (2) symptomatic individuals,
and (3) infections identified during testing of contact traced individuals, offers a strategy
for establishing a baseline surveillance test rate to fizzle any nascent outbreak. The goal
of the fizzle strategy is to reduce the number of infected circulating in the population and
reduce the effective reproductive number, Reff, to less than one. The Fizzle Equation then
permits policy makers to establish a minimum level of surveillance testing to avoid an
outbreak based on expected virus parameters and other population characteristics (e.g.,
symptomatic/asymptomatic rates and contact tracing effectiveness). The derivation of the
Fizzle Equation is as follows.

Including an isolation compartment, D, for detected infections modifies the usual
SEIR equations:

dS
dt

= −βI
S
N

(1)

dE
dt

= βI
S
N

− σE − ΘEΨEE (2)

dI
dt

= σE − γI − ΘIΨI I (3)

dR
dt

= γI + γDI (4)

dDE
dt

= ΘEΨEE − σDE (5)

dDI
dt

= ΘIΨI I + σDE − γDI (6)

where S, E, I, and R are the number of susceptible, exposed, infectious, and recovered
individuals in a population of N people. DE and DI are the detected infections from the
exposed and infectious compartments, respectively, β is the transmission rate, σ is the
latent rate at which the exposed become infected (after an incubation period), γ is the
rate at which the infected recover from the disease, Ψ is test effectiveness (combines test
sensitivity and collection efficacy) and Θ is the equivalent test rate that combines random
surveillance testing, symptomatic test rate, and contact tracing test rate. Specifically,

ΘI = Θeq = θ + αsθs + φηθ + φηαsθs (7)

where θ is the baseline (random) surveillance test rate, θs is the rate that symptomatics
volunteer for testing, αs is the proportion of the population that experiences symptoms,
φ is the contact tracing effectiveness and η is an efficiency parameter that accounts for
close contact redundancy between different infected individuals. For sufficiently large
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populations, and a low infection prevalence, η will be close to unity. As an epidemic
becomes more widespread and the network graph of infectious close contacts overlaps
with other infected nodes, η will decrease to some value less than 1. In all cases, the number
of infected identified through contact tracing cannot exceed the total number of individuals
infected. The η efficiency parameter ensures this is the case.

The effective reproductive number, Reff, can be estimated by the spectral radius of the
next-generation operator [14]. The rate of the change of xth

i compartment can be written as
Fi − Vi where Fi is the rate of appearance of new infections in the ith compartment and Vi is
the transfers between compartments. The next-generation matrix is then G = FV−1 where
F =

[
∂Fi/∂xj

]
and V =

[
∂Vi/∂xj

]
. Considering only the two infected compartments, E

and I, the appearance and transfer matrices are

F =

[
0 β
0 0

]
(8)

V =

[
σ + ΘEΨE 0

−σ γ + ΘIΨI

]
(9)

With testing, the effective reproductive number, Reff, is the spectral radius (domi-
nant eigenvalue).

Re f f = ρ
(

FV−1
)
=

βσ

(γ + ΘIΨI)(σ + ΘEΨE)
(10)

For a nascent outbreak to fizzle, Reff < 1. In establishing the required surveillance test
rate for an outbreak of a novel virus to fizzle, the population is taken as fully-susceptible.
For surveillance of SARS-CoV-2, the additional contribution from possible detection of
exposed individuals from random testing can be reasonably neglected. Noting that in the
absence of testing the basic reproductive number, R0 = β

γ as expected, (10) may be solved
to yield the Fizzle Equation:

Θeq = (θ + αaθs)(1 + φη) ≥ 1
ψ

γ(R0 − 1) (11)

where Θeq is the equivalent testing (7) that combines all types of testing: asymptomatic
surveillance testingθ, symptomatic diagnostic testingθs, and contract tracingφ.

The Fizzle Equation was evaluated using the SEIR model (term definitions in Table 2)
for thousands of permutations across a range of parameters (Table 1). Each run was seeded
with different random numbers generating different outbreak responses. In all cases,
nascent outbreaks fizzled for all runs in which the baseline testing met or exceeded the
fizzle condition given by (11). Figure 1 depicts the baseline daily test rate for asymptomatic
individuals as a function of basic reproductive number (assuming a totally susceptible
population) and contact tracing effectiveness for a range of asymptomatic rates.

Table 2. Susceptible, Exposed, Infected, and Recovered (SEIR) Model Parameters and Values used in
Figure 1. The baseline test rate range was chosen based on requirement to fizzle an outbreak.

Parameter Description Range Modeled

θ Baseline test rate 3–21%
φ Contact tracing effectiveness 0–50% [15]
αa Infectious asymptomatic rate 20–90% [16]
ψ Overall test effectiveness rate (sensitivity and collection) 85% [17]

γ−1 Duration of infectiousness 10 [18]
R0 Basic reproduction number 3.0 [19]
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Figure 1. Solution of the Fizzle Equation for values in Table 2. The random baseline testing (θ) is the daily test rate contact
tracing effectiveness for a range of asymptomatic rates for a basic reproductive number of 3.0. For a given contact tracing
effectiveness and asymptomatic rate, testing at or above the indicated baseline test rate will ensure an effective reproductive
number of less than unity and that any nascent outbreak fizzles rather than grows exponentially. For this instance, when the
reproductive number is 3.0, with a 20% efficiency at contact tracing effectiveness, and 50% of the population is asymptomatic,
the daily baseline testing rate is 7%, as shown by the red arrows.

4. Discussion

The variability of the virus and behavioral factors in diverse institutions make pre-
dictions on the amount of testing required difficult. However, as demonstrated here, with
careful validation it is possible to model the dynamics of SARS-CoV-2, allowing commu-
nity leaders to predict the spread of SARS-CoV-2 through different populations, and make
informed policy decisions based on scientific evidence. Specifically, our Fizzle Equation
provides a direct way to determine the amount and type of testing in a population required
to prevent outbreaks.

Our results illustrate that surveillance testing on asymptomatic individuals is crucial
to prevent the spread of SARS-CoV-2 and creates a greater impact on containing outbreaks
rather than contact tracing. Modeling this relationship creates a more effective allocation of
resources at institutions with similar dynamics to our population, i.e., universities, cruise
ships and otherwise isolated communities.

As seen in Figure 1, contact tracing effectiveness is a fundamental variable in determin-
ing the amount of random testing required. In a scenario with numerous personnel able to
dedicate time and resources to contact tracing, it is a valuable alternative to random testing.
However, limitations in determining efficacy of contact tracing have led to conservative
estimates for contract tracing effectiveness. Preliminary efficacy data from the implementa-
tion of contact tracing at our university supports our initial assumptions (approximately
60% of SARS-CoV-2 infections were identified on the basis of random surveillance testing,
25% from contact tracing, and 15% of cases from symptomatic individuals). For example,
without random surveillance testing, at a 35% asymptomatic rate, a low estimate for SARS-
CoV-2 [20], the contact tracers would need to identify 45% of the individuals coming into
contact with each infected person. If that rate jumps to a 50% asymptomatic population, a
more likely scenario, contact tracing needs to identify well over half of the individuals an
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infected individual came into contact with. In this instance, contact tracing is an adjunct,
but not sufficient by itself for outbreak control.

The complimentary option in our scenario, with a 90% asymptomatic population
and an initial R0 of 3.0, is surveillance testing, and when used alone this requires testing
20% of the population daily—a daunting and expensive option for most institutions.
Fortunately, surveillance testing is used in conjunction with, but not as a replacement for,
symptomatic screening and contact tracing. Our Fizzle Equation demonstrates that this
combination reduces the daily surveillance testing burden to 7% of the population, a much
more manageable workload. Surveillance testing represents a particularly powerful tool for
pathogens with a high proportion of asymptomatic carriers, such as SARS-CoV-2, because
each individual pulled out of circulation due to random surveillance is an individual that
otherwise would have remained infectious without being isolated.

The advantages of surveillance testing are so robust that even when expected test
sensitivity was decreased in our model, it was still possible to fizzle any outbreaks. This
finding implies that pooled testing, which typically reduces sensitivity, is a viable strategy
for increasing the efficiency of a surveillance testing program. A pooled testing strategy
informed by Hitt et al. [19] was developed based on predicted individual test sensitivity,
specificity, and expected disease prevalence within the population. While this approach
loses the ability to initially say which individual sample is positive, the low viral prevalence
(expected to be ~0.5–1%) means the majority of samples and therefore pools will yield
negative test results. When a positive pool is identified, the individual samples can then
be retested separately to identify the infected individual(s). Thus, the minimum number
of tests required to surveil a population using this approach is a function of pool size
and prevalence. As prevalence grows, pool size must decrease. Likewise, as prevalence
decreases, pool size should increase in order to maintain the optimal testing configuration
and consume less test material over the long term.

Furthermore, an active surveillance testing program provides regular updates to the
estimated prevalence of infections in a population which may be used to drive policy
decisions in a continuous feedback loop. Institutions may vary the surveillance and contact
tracing testing rates to conserve resources as infection load increases or decreases in the
population. Knowing the prevalence in the community also enables decision-makers to
determine the efficacy of the control measures in place and strike a balance between public
health and safety on one hand, and mental health and morale on the other.

This model also helps leaders allocate limited infrastructure for quarantine and isola-
tion, by providing predictions on the number of exposed and known infected individuals
within a given confidence interval. Decision makers may anticipate and reserve adequate
space to quarantine and isolate infectious individuals to stem the virus spread. This in-
formation, in addition to the amount of time before the peak infection, may be seen in
Figure 2, which annotates the values and information typically gleaned from a simulation
run. To demonstrate the effectiveness of testing at the fizzle condition, Figure 3 compares
transmission dynamics of SARS-CoV-2 through a 5000-person population with surveillance
testing at and below the fizzle condition.

While morbidity and mortality are of great concern for SARS-CoV-2, and subsequently
COVID-19, a limitation of this study is not knowing the severity of disease in the infected
individuals. This equation and modeling approach does not directly take into account
different populations, as it is targeting a healthy, low risk, medically-screened group of
18–26-year-olds. If this equation and approach is utilized in a higher-risk setting, public
health data for the relevant age ranges should be taken into account, as the risk to an
individual may be higher even with few cases. Additionally, the planning parameters for
implementation here focused on the near-term, so reinfection rates were kept at zero. As
additional scientific evidence emerges on the topic of reinfection, this parameter may play
a larger role [21,22].
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Figure 3. Demonstration of surveillance testing at and below the Fizzle condition. R0 = 3.0, 50% asymptomatic rate, 20%
contact tracing effectiveness, and 85% test effectiveness for the infected compartment. Results are the median run (ordered by
peak infection) of 100 simulations of the stochastic SEIR model except as noted. Cumulative cases are depicted as percentage
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of the entire population (top of y-axis is 100%). Population size is 5000; initial conditions include 25 exposed on 1 Jan (0.5%
of population) and 2 new random exposed cases introduced every week (depicted by red E). (a) No surveillance testing
(symptomatic individuals are identified through volunteering of symptoms and are contact traced with the same contact
tracing effectiveness); (b) daily surveillance testing at 1/3 the predicted fizzle rate; (c) daily surveillance testing at 2/3 the
predicted fizzle rate; (d) testing at the fizzle rate (median run); (e) testing at the fizzle rate (75th-percentile run); (f) testing at
the fizzle rate (95th-percentile run).

5. Conclusions

With the high asymptomatic rate of individuals infected with SARS-CoV-2, surveil-
lance testing is required to identify individuals that do not appear sick, but are still capable
of spreading the virus. Our derived Fizzle Equation lays bare the level of testing required to
prevent an outbreak. Mathematical modeling tailored to specific populations confirmed
that employing testing in the manner prescribed by the Fizzle Equation is effective at prevent-
ing outbreaks while preserving resources. Furthermore, this approach takes into account
potential reduced test sensitivity, either from collection type, detection methodology or
pooled testing, providing a scaled approach for a variety of applications.
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Appendix A

Table A1. SEIR-Model Parameters for Simulation of SARS-CoV-2 Dynamics at the USAF Academy. For a full discussion of
the parameters and the model see [10].

Parameter Description Initial Parameter Value or
Modeled Range

S Number of susceptible individuals N − E
E Number of exposed individuals 1–5% of N
I Number of infectious individuals 0

DE Number of exposed individuals with detected cases 0
DI Number of infected individuals with detected cases 0
R Number of recovered individuals 0
F Number of infection-related fatalities 0
N Total number of living individuals 5000
β Rate of transmission 0.12–0.16

βasymp Rate of asymptomatic transmission 20–80% βsym
σ−1 Incubation period (upon exposure) 2–5 days
γ−1 Duration (reciprocal of recovery period) 5–14 days

µ Rate of infection-related deaths 0
θE Rate of baseline testing (for exposed individuals) varies
θI Rate of baseline testing (for infectious individuals) varies
φ contact tracing effectiveness (probability of finding a positive individual from list of close contacts) 5–50%
ψI Infected compartment test effectiveness (combines test sensitivity and sample efficacy)) 80–95%
ψE Exposed compartment test effectiveness (combines test sensitivity and sample efficacy)) 0–15%
q Probability of isolated individual interacting with population (“leaky Quarantine and Isolation”) 0–10%
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Description of the social network used to simulate SAR-CoV-2 transmission at the
USAF Academy:

Nodes:

- 4000 students.
- 500 faculty.
- 500 staff.
- Edges between nodes:
- Students in a student squadron.
- Students between student squadrons (squadron-to-squadron link).
- Faculty-to-faculty.
- Faculty-to-cadets in class.
- Students-to-students in class.
- Staff-to-staff.
- Staff-to-students.

The USAF Academy is organized around 40 student squadrons consisting of approx-
imately 100 students each. Students live and interact within squadrons. Each student
attends on average five classes. A Erdős–Rényi random (binomial) graph was used for each
of the base sub-groups to connect nodes with the probability of average close contact per
category. A pseudo-random graph algorithm is used to connect nodes between sub-groups
with the probability of average expected close contact per category in Table A2. The result
is a social network structure that closely resembles expected close contacts typical of the
US Air Force Academy.

Table A2. US Air Force Academy Social Network Generation.

Edge Relationship Description Value

Student Average close contacts per student in student squadron 8
Student Average close contact links between student squadrons 5
Faculty Average close contacts between faculty members 1.5

Faculty/Student Average close contacts due to attending class (between faculty and students) 3
Student Attends 5 classes 5
Faculty Teaches 2 classes 2
Student Average close contacts per class (student-to-student) 1.5

Staff Average close contacts between staff members 1.5
Staff/Student Average close other contacts (student-to-staff) 1.5
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Appendix B. Stochastic SEIR Simulation of USS Theodore Roosevelt Outbreak
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Figure A2. (a) Spring 2020 coronavirus outbreak on the U.S.S. Theodore Roosevelt Aircraft Carrier with deterministic SEIR 
least-squares parameter fits; (b) comparison of the stochastic SEIR computer simulations with actual outbreak data on the 
U.S.S. Theodore Roosevelt; (c) deterministic SEIR least-squares parameter fits to USAFA Norovirus 2019 outbreak (single 
fit (orange) and two piecewise fits (green, cyan)) demonstrating change in public health measure on day 42. 
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Figure A2. (a) Spring 2020 coronavirus outbreak on the U.S.S. Theodore Roosevelt Aircraft Carrier with deterministic SEIR
least-squares parameter fits; (b) comparison of the stochastic SEIR computer simulations with actual outbreak data on the
U.S.S. Theodore Roosevelt; (c) deterministic SEIR least-squares parameter fits to USAFA Norovirus 2019 outbreak (single fit
(orange) and two piecewise fits (green, cyan)) demonstrating change in public health measure on day 42.
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