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Abstract: In this work, the differential evolution algorithm behavior under a fixed point arithmetic is
analyzed also using half-precision floating point (FP) numbers of 16 bits, and these last numbers are
known as FP16. In this paper, it is considered that it is important to analyze differential evolution
(DE) in these circumstances with the goal of reducing its consumption power, storage size of the
variables, and improve its speed behavior. All these aspects become important if one needs to design
a dedicated hardware, as an embedded DE within a circuit chip, that performs optimization. With
these conditions DE is tested using three common multimodal benchmark functions: Rosenbrock,
Rastrigin, and Ackley, in 10 dimensions. Results are obtained in software by simulating all numbers
using C programming language.

Keywords: differential evolution; fixed point arithmetic; FP16; pseudo random number generator

1. Introduction

The use of different number types in machine learning applications has been analyzed
extensively in previous years, more specifically in deep learning neural networks [1,2].
These kinds of neural networks use the convolution as the basic function and have thou-
sands of parameters and must be trained first; that is, the network must be optimized
by modifying all the parameters to obtain a local minimum of the goal function. The
optimization step is called training and it could take hours in modern hardware of general
purpose graphics processor units (GPGPUs). A special type of number, Brain Floating
Point (bfloat16), which is a half-precision FP format of 16 bits with the same range of the
usual single precision FP numbers (float in C programming language, of 32 bits length), has
been proposed for training deep learning neural networks [2]. Other FP numbers of 16 bit
length are the so-called FP16 numbers, these are an IEEE standard [1,2] for half-precision
FP numbers and can be used on ARM processors.

The goal of using different, shorter numbers in machine learning applications is to
improve the speed, and as a consequence reduce the power consumption as it would take
less time to train a deep learning network, and also reduce the storage memory or disk size
for the variables. In [1] it is mentioned that half precision is also attractive for accelerating
general purpose scientific computing, such as weather forecasting, climate modeling, and
solution of linear systems of equations. The supercomputer Summit (it was in the Top
500 list https://www.top500.org (accessed on 3 February 2021)), has a peak performance
of 148.6 petaflops in the LINPACK benchmark, a benchmark that employs only double
precision. For a genetics application that uses half precision, the same machine has a peak
performance of 2.36 exaflops [1].

In this work it is proposed to analyze the well known heuristic for single objective
optimization, the differential evolution (DE) algorithm, under FP16 numbers, and also
under fixed point arithmetic that uses integer numbers of different lengths. This analysis
is important if we think of embedded optimization algorithms within a chip [3], which
performs a dedicated task. One constraint in these kinds of applications must be that the
power consumption is as low as possible. Also it is important if one designs a dedicated
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algorithm in hardware, just as in FPGAs (Field Programmable Gate Arrays), to accelerate
its behavior. Also, another possible application is to execute a fast and small DE inside
each core in a GPGPU. These three application scenarios justify the analysis of the DE
performed in this work.

The rest of this article is organized as: in Section 2 a very brief description of fixed
point arithmetic and FP numbers is made. In Section 3 the DE algorithm is analyzed for
which parts could be improved by using other different number types. In Section 4 some
experiments and their results are described. Finally, in Section 6 some conclusions are presented.

2. Fixed Point Arithmetic and Floating Point Numbers

The notation a.b will be used here to represent a set of integer numbers that uses a bits
in the integer part, and b bits in the fractional part. Each number is of size a + b + 1 bits
(plus the sign bit).

For a number x ∈ a.b, the range of numbers that can be represented is:

− 2a ≤ x ≤ 2a − 2−b (1)

Summing up two numbers a.b results in a number (a + 1).b [4]. The multiplication of
two numbers a.b results in a number (2a + 1).2b [4]. It is possible to verify these results by
applying the respective operation to two extreme numbers in (1).

The microprocessors offer the sum and multiplication of two integer numbers and the
result is stored in a number of the same size as the operands. In a hardware design for a
given application, one must use a big enough number to store the sum of two a.b numbers,
and the result to multiply two a.b numbers must be returned to a a.b number. The easiest
way to perform this is by truncating the result: the resulted 2a.2b is shifted b bits to the
right, again the number must be big enough to store the resulted a.b number. In a PC, if
one uses 32 bit integer numbers, the first bit is the sign bit, and then one could multiply
up two

√
231 = 231/2 values to keep the result within the used 31 bits. In any application,

normally one does not take care if the used numbers can keep the result of the operations
applied to them, and one trusts that the numbers are big enough to store the results.

The operations sum and multiplication of two integer numbers are the fastest because
each operation is built in the hardware and both take a single clock step.

The sum and multiplication of two FP numbers is totally different. An FP number
is composed as s · 2e, where s is the significant and e the exponent. If p bits are used for
the significant, it is an integer that could take values from 0 to 2p − 1. The exponent e is
an integer number too. The sum of two FP numbers is carried on first by expressing both
numbers with the same exponent, then summing up both significants. The greater exponent
of both numbers is used to express them with the same exponent. The result must be
rounded to express the same number of bits used in the significants. Also, the result could
be normalized, which means that the exponent will have a single binary precision number.

The multiplication takes more steps because two numbers s1 · 2e1 , and s2 · 2e2 are
multiplied as s = s1 · s2 and the exponents are summed (e = e1 + e2), and also both results
are rounded and the final result is normalized.

In the IEEE 754 standard [5], an FP number has a sign bit, i, and the represented
number is equal to (−1)i · s · 2e, where emin ≤ p + e − 1 ≤ emax. The values used in
common FP numbers are shown in Table 1.

Table 1. Characteristics of floating point (FP) numbers in the IEEE 754 standard.

Precision Exponent Significant emin emax Smallest Biggest

Half 5 10 −14 +15 6.10 × 10−5 6.55 × 104

Single 8 23 −126 +127 1.17549 × 10−38 3.40282 × 1038

Double 11 52 −1022 +1023 2.22507 × 10−308 1.79769 × 10308

Floating point operations take more than a clock cycle within a microprocessor.
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The IEEE 754 standard [5] gives much more aspects that are necessary to work with FP
numbers, such as rounding methods, Not a Number (NaN), infinities, and how to handle
exceptions. In [6] all these details about FPs are explained.

3. DE Analysis

DE is a heuristic used for global optimization under continuous spaces. DE solves
problems as:

minimize: f (x),

subject to: g(x) ≥ 0, and

h(x) = 0,

x ∈ S ⊂ Rn.

(2)

where f : Rn → R is the function to optimize; x ∈ Rn, that is, the problem has n variables;
and also we could have g : Rn → Rm1 , m1 inequality constraints; and h : Rn → Rm2 , m2
equality constraints. The solution to the problem x is in a subset S of the whole search
space Rn and where the constraints are satisfied, this space S is called the feasible space.

Also, the search space contains the feasible space and is defined by the box constraints:

xi ∈ [li, ui], for i = {1, 2, . . . , n}. (3)

This is, each variable xi is searched in the interval defined by the lower bound value li,
and the upper bound value ui, for i = {1, 2, . . . , n}.

Constraints can be incorporated into the problem (2) by modifying the objective
function as:

f1(x) = f (x) + α
m1

∑
i=1

min[0, gi(x)]2 + β
m2

∑
i=1

h2
i (x) (4)

Now the f1 will be optimized instead of f in (2). α and β in (4) represent the penalty
coefficients that weigh the relative importance of each kind of constraint.

One important point about DE is that the heuristic needs to only evaluate the problem
to solve. Classical mathematical optimization methods use the first and perhaps also the
second derivative of the given problem. These derivatives are easy to obtain if one has in
hand the mathematical expression to the given problem. It is possible to approximate the
derivatives numerically but with a very high computational cost [7].

According to the test in the CEC 2005 conference [8], DE is the second best heuristic to
solve real parameter optimization problems, when the number of parameters is around 10.

The DE pseudocode is shown in Algorithm 1.
DE works with a population that is composed of a set of individuals, or vectors, of

real numbers. All vectors are initialized with random numbers with a uniform distribution
within the search bounds of each parameter (line 1 in Algorithm 1). For a certain number
of iterations (line 4) the population is modified and this modified population could replace
the original individuals. The core of DE is in the loop on lines 8–13: a new individual
is generated from three different individuals chosen randomly; each value of the new
vector (it represents a new individual) is calculated from the first father, plus the difference
of the other two fathers multiplied by F, the difference constant; the new vector value
is calculated if a random real number (between zero and one) is less than R, the DE’s
recombination constant. To prevent the case when the new individual could be equal to the
current father i, at least one vector’s component (a variable value) is forced to be calculated
from their random fathers values: it is in line 9 of the pseudocode, when j = jrand, and jrand
is an integer random number between 1 and n. In lines 10–12 it is checked if each combined
variable value is within the search space. Then the new individual is evaluated, and if it is
better than the father (in lines 11–12), then the child replaces its father. The stop condition
used here is: if the number of iterations is greater than a maximum number of iterations
or when the difference in the objective function values of the worst and best individuals
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is less than v. This stop condition is called diff criterion in [9], and is recommended for a
global optimization task.

Algorithm 1 Differential evolution algorithm (rand/1/bin version)
Require: The search space and the value v for the stop condition. The values for population

size, µ; maximum number of generations, g; difference and recombination constants, F

and R, respectively.

Ensure: A solution of the minimization problem

1: initialize (P = {x1, x2, . . . , xµ})

2: evaluate (P)

3: k = 0

4: repeat

5: for i = 1 to µ do

6: Let r1, r2 and r3 be three random integers in [1, µ], such that r1 6= r2 6= r3

7: Let jrand be a random integer in [1, n]

8: for j = 1 to n do

9: x′j =

xr3,j + F(xr1,j − xr2,j) if U(0, 1) < R or j = jrand

xi,j otherwise

10: if x′j < li or x′j > ui then . Check bounds

11: x′j = U(0, 1)(ui − li) + li

12: end if

13: end for

14: if f (x′) < f (xi) then

15: xi = x′

16: end if

17: end for

18: min = f (x1), max = f (x1)

19: for i = 2 to µ do

20: if f (xi) < min then

21: min = f (xi)

22: end if

23: if f (xi) > max then

24: max = f (xi)

25: end if

26: end for

27: k← k + 1

28: until (max−min) < v or k > g

A general form to set the parameter values for DE is: if d is the number of variables,
the population size is set to 10d, F ∈ [0.5, 1.0], and R ∈ [0.8, 1.0] [9].
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The DE in Algorithm 1 can be improved by using a random integer number generator
as the one described in [10], which does not use divisions or FP numbers. This idea could
improve the algorithm in line 6 (to generate three numbers in the interval [1, µ], and in
line 7 where another random integer number is generated in the interval [1, n]. Also, the
values for F and R are within the interval [0.5, 1.0], and usually no more than one or two
decimal values are used for these constants, thus these values are not affected by using half
precision numbers (see Table 1). Even more, a totally integer arithmetic could be used in
the comparison U(0, 1) < R) (in line 9 in Algorithm 1), if it is used instead rand(1, 231) < I,
with I = b231 · Rc.

Two implementations of DE were used in this work: one with fixed point arithmetic,
and another one using FP16 numbers. The implementation with fixed point arithmetic uses
integer (of 32 bits) numbers for all the variables. The implementation using FP16 numbers
uses half precision floats (FP16, 16 bits) for all the variables. In this paper a computer of
64 bits architecture was used, then the multiplication of two integers was stored in a long
type variable of 64 bits, shifted and truncated to a integer of 32 bits. The core part of DE
(lines 8–13 in Algorithm 1) calculates the selected and mutated vector x′ as:

x′j =

{
xr3,j + F(xr1,j − xr2,j) if U(0, 1) < R or j = jrand,
xi,j otherwise,

(5)

for j = {1, 2, . . . , n}, this is for each variable of the given problem. Thus, one subtraction
(xr1,j − xr2,j) followed of one multiplication (by constant F) and one summation (with xr3,j)
are needed to calculated the new vector x′. The greatest value for F could be 1, if all the
search space is equal for all variables, the result in (5) could be the double of the current x′j value.

Then, the maximum possible values in the search space could be the double of the
bound values of the search space. Another problem is to find the maximum possible value
in the function space. Also, it is not clear how many bits are necessary in the fractional part
for the fixed point arithmetic. These items are solved in the following section.

4. Experiments with Three Multimodal Functions in 10 Dimensions

Three very well known benchmark functions were used: shifted version of Rosenbrock,
Rastrigin, and Ackley functions in 10 dimensions. All these functions are multimodal,
which justify solving them using the DE heuristic. The used Rosenbrock function is
defined as:

f1(x) = 0.39 +
1

10

n−1

∑
i=1

{[
(xi + 1)2 − (xi+1 + 1)

]2
+

x2
i

100

}
, (6)

its minimum value is 0.39 with x = [0, 0, . . . , 0].
The Rastrigin function is defined as:

f2(x) = −33 +
n

∑
i=1

[
x2

i
10
− cos(2π xi) + 1

]
, (7)

its minimum value is −33 for x = [0, 0, . . . , 0].
The Ackley function is defined as:

f3(x) =
1
20

{
e− exp

[
1
n

n

∑
i=1

cos(2π xi)

]}
− 6− exp

[
−1

5

√
1
n

n

∑
i=1

x2
i

]
, (8)

its minimum value is −7 with x also equal to x = [0, 0, . . . , 0]. These three functions are
scaled with respect to the three ones defined in [11] in order to keep their amplitudes within
the range of half precision FP numbers (see Table 1). A summary of these three functions is
described in Table 2.

All functions were programmed in single precision FP (float in C) arithmetic.
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Table 2. The three test functions used in this work. The search space was set to [−10, 10], thus the
shown values are the extreme possible values that the functions could take, also the minimum value
is shown at the optimum solution x = [0, . . . , 0], and the evaluation at x = [1, . . . , 1] is shown in the
last column.

Function x = [10, . . . , 10] x = [−10, . . . ,−10] x = [0, . . . , 0] x = [1, . . . , 1]

Rosenbrock 10891.29 7291.29 0.39 4.00
Rastrigin 67.00 67.00 −33.00 −32.00

Ackley −6.14 −6.14 −7.00 −6.82

The number of bits used for the integer and fractional parts for the simulations in
fixed point arithmetic is shown in Table 3. The number of bits in the integer part is set
according to Table 2 because the maximum number in the third column in Table 3 must be
greater than the maximum extreme value shown in Table 2.

Table 3. Calculation of the number of bits in the integer part for the simulations using fixed point
arithmetic. Numbers shown here must be greater than the corresponding ones in Table 2 to permit
the optimization operations for differential evolution (DE).

Functions Bits Integer Part Max. Value Bits Fractional Part

Rosenbrock 14 214 = 16384 1–17
Rastrigin 7 27 = 128 1–24
Ackley 5 25 = 32 1–26

The resulted statistics for the simulations using 100 runs per bit in the fractional part
and FP16 arithmetic are shown in Tables 4–6, for the Rosenbrock, Rastrigin, and Ackley
functions, respectively. In those tables the statistics for the number of generations and the
obtained function values are shown. The used number of bits in the integer part are shown
in Table 3. These number of bits in the integer part were calculated from data in Table 2,
for example, for the Rosenbrock function in Table 2 the maximum obtained value function
is 10891.29, thus the number of bits for the integer part must be greater than this number,
therefore 14 bits were selected because 214 = 16, 384 > 10, 891.29. The corresponding
variable values for the minimum for each function for the FP16 simulations are shown in
Table 7. The obtained mean value for the FP16 simulation for the Rosenbrock function is
0.391538 (see at the end of sixth column in Table 4). The equivalent mean for the fixed point
arithmetic is 0.391079 at 11 bits in the fractional part; the associated variable values at this
simulation with 11 bits is also shown in Table 7. The same procedure was repeated for the
results for the Rastrigin and Ackley functions and are also shown in Table 7.



Math. Comput. Appl. 2021, 26, 13 7 of 10

Table 4. Statistics of the 100 runs per bits used in the fractional part for the fixed point arithmetic and
for the Rosenbrock function (14 bits were used for the integer part). Results for 100 runs for the FP16
are also shown. g represents the number of generations.

Bits ḡ σ(g) min(g) max(g) f̄1 σ( f1) min( f1) max( f1)

1 400.0 0.0 400 400 0.005 0.05 0.000 0.500
2 400.0 0.0 400 400 0.250 0.00 0.250 0.250
3 400.0 0.0 400 400 0.375 0.00 0.375 0.375
4 400.0 0.0 400 400 0.375 0.00 0.375 0.375
5 400.0 0.0 400 400 0.375 0.00 0.375 0.375
6 400.0 0.0 400 400 0.390625 0.00000 0.390625 0.390625
7 400.0 0.0 400 400 0.393360 0.00375 0.390625 0.398438
8 400.0 0.0 400 400 0.394765 0.00145 0.390625 0.398438
9 400.0 0.0 400 400 0.394472 0.00137 0.390625 0.396484

10 400.0 0.0 400 400 0.393555 0.00153 0.390625 0.396484
11 400.0 0.0 400 400 0.391079 0.00098 0.390137 0.395020
12 400.0 0.0 400 400 0.390174 0.00025 0.389893 0.391602
13 400.0 0.0 400 400 0.390064 0.00040 0.390015 0.394043
14 370.02 25.73 298 400 0.390012 2.19×10−5 0.389954 0.390076
15 337.72 25.02 280 400 0.390029 2.17×10−5 0.389984 0.390106
16 333.27 25.73 278 400 0.390040 3.07×10−5 0.389999 0.390167
17 330.18 23.06 259 396 0.390046 2.79×10−5 0.390007 0.390152

FP16 400.0 0.0 400 400 0.391538 0.00040 0.390869 0.392578

Table 5. Simulation results for Rastrigin function. Statistics of the 100 runs per bits used in the
fractional part for the fixed point arithmetic (7 bits were used for the integer part). Results for 100
runs for the FP16 are also shown. g is the number of generations.

Bits ḡ σ(g) min(g) max(g) f̄2 σ( f2) min( f2) max( f2)

1 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
2 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
3 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
4 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
5 200.0 0.0 200 200 −33.0 0.0 −33.0 −33.0
6 200.0 0.0 200 200 −32.9917 0.00784 −33.0000 −32.9844
7 200.0 0.0 200 200 −32.9923 0.00136 −33.0000 −32.9844
8 200.0 0.0 200 200 −32.9960 0.00055 −32.9961 −32.9922
9 200.0 0.0 200 200 −32.9979 0.00101 −32.9980 −32.9883

10 200.0 0.0 200 200 −32.9988 0.00113 −32.9990 −32.9883
11 200.0 0.0 200 200 −32.9993 0.00077 −32.9995 −32.9936
12 200.0 0.0 200 200 −32.9996 0.00033 −32.9998 −32.9976
13 200.0 0.0 200 200 −32.9997 0.00031 −32.9999 −32.9971
14 200.0 0.0 200 200 −32.9997 0.00042 −32.9999 −32.9964
15 200.0 0.0 200 200 −32.9998 0.00029 −33.0000 −32.9981
16 200.0 0.0 200 200 −32.9997 0.00090 −33.0000 −32.9915
17 200.0 0.0 200 200 −32.9997 0.00080 −33.0000 −32.9938
18 200.0 0.0 200 200 −32.9997 0.00066 −33.0000 −32.9938
19 200.0 0.0 200 200 −32.9998 0.00066 −33.0000 −32.9938
20 200.0 0.0 200 200 −32.9997 0.00070 −33.0000 −32.9938
21 200.0 0.0 200 200 −32.9997 0.00070 −33.0000 −32.9938
22 200.0 0.0 200 200 −32.9997 0.00071 −33.0000 −32.9938
23 200.0 0.0 200 200 −32.9997 0.00071 −33.0000 −32.9938
24 200.0 0.0 200 200 −32.9997 0.00079 −33.0000 −32.9928

FP16 200.0 0.0 200 200 −32.9997 0.00313 −33.0000 −32.9688
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Table 6. Simulation results for Ackley function. Statistics of the 100 runs per bits used in the fractional
part for the fixed point arithmetic (5 bits were used for the integer part). Results for 100 runs for the
FP16 are also shown. g is the number of generations.

Bits ḡ σ(g) min(g) max(g) f̄3 σ( f3) min( f3) max( f3)

1 200.0 0.0 200 200 −7.00000 0.00000 −7.00000 −7.0000
2 200.0 0.0 200 200 −6.95500 0.14381 −7.00000 −6.5000
3 200.0 0.0 200 200 −6.82625 0.06128 −6.87500 −6.75000
4 200.0 0.0 200 200 −6.93750 0.00000 −6.93750 −6.93750
5 200.0 0.0 200 200 −6.96875 0.00000 −6.96875 −6.96875
6 200.0 0.0 200 200 −6.98406 0.00312 −6.98438 −6.95313
7 200.0 0.0 200 200 −6.99219 5.08× 10−7 −6.99219 −6.99219
8 200.0 0.0 200 200 −6.99609 8.47× 10−8 −6.99609 −6.99609
9 200.0 0.0 200 200 −6.99748 0.00566 −6.99805 −6.94141

10 200.0 0.0 200 200 −6.99900 9.76× 10−5 −6.99902 −6.99805
11 200.0 0.0 200 200 −6.99950 9.63× 10−5 −6.99951 −6.99902
12 200.0 0.0 200 200 −6.99850 0.00811 −6.99976 −6.94214
13 200.0 0.0 200 200 −6.99990 5.93× 10−5 −6.99988 −6.99939
14 108.05 12.28 82 161 −6.99990 3.79× 10−5 −6.99994 −6.99963
15 85.25 3.85 76 94 −6.99990 1.99× 10−4 −6.99997 −6.99796
16 83.58 3.37 76 91 −6.99993 2.91× 10−5 −6.99997 −6.99973
17 82.23 3.26 75 93 −6.99992 4.84× 10−5 −6.99996 −6.99961
18 82.06 3.62 75 93 −6.99992 9.82× 10−5 −6.99997 −6.99899
19 81.78 3.16 75 88 −6.99990 1.61× 10−4 −6.99997 −6.99878
20 81.53 3.14 72 88 −6.99991 1.16× 10−4 −6.99996 −6.99887
21 81.31 3.31 75 91 −6.99991 1.00× 10−4 −6.99998 −6.99907
22 81.68 3.58 73 90 −6.99991 8.37× 10−5 −6.99997 −6.99929
23 81.59 3.41 74 90 −6.99991 8.64× 10−5 −6.99996 −6.99927
24 81.49 3.20 73 89 −6.99991 1.10× 10−4 −6.99996 −6.99904
25 81.80 3.23 73 93 −6.99991 1.10× 10−4 −6.99997 −6.99904
26 81.69 3.26 73 93 −6.99991 1.10× 10−4 −6.99997 −6.99904

FP16 66.5 15.54 49 106 −6.99711 0.00172 −7.00000 −6.99609

Table 7. Variables values for the minimum function value for FP16 simulation, and the integer
arithmetic simulation. The shown numbers 11, 12, and 11 correspond to the used bits in the fractional
part for integer arithmetic, which also correspond to the same mean of FP16 results for each function
in Tables 4–6.

Rosenbrock Rastrigin Ackley

Bits FP16 11 FP16 12 FP16 11

min( f ) 0.39087 0.39111 −33.0000 −32.9998 −7.0000 −6.9995
x1 −0.003113 −0.000488 −0.000257 −0.000244 0.011742 −0.000488
x2 −0.014801 −0.006836 −0.004440 −0.000244 −0.008049 −0.000488
x3 −0.020218 −0.027832 0.017883 −0.001709 −0.009605 0.003418
x4 −0.048187 −0.071289 0.003246 −0.000244 −0.002329 0.000000
x5 −0.077759 −0.101562 0.001313 0.001221 −0.001261 0.000977
x6 −0.147705 −0.153809 −0.002254 0.000000 0.000976 −0.001953
x7 −0.288574 −0.318359 0.000988 0.000977 0.006023 −0.000977
x8 −0.471924 −0.544922 −0.014542 −0.001709 0.005493 0.000000
x9 −0.720215 −0.806641 −0.008965 0.000488 0.004948 0.001953
x10 −0.934082 −0.953613 0.000543 0.000488 −0.001174 −0.001465

5. Discussion

With the simulation results shown in Tables 4–7 it is confirmed that the heuristic DE
can be executed in fixed point arithmetic or half precision FP numbers.

As one can see in Tables 4–6 not all the fractional numbers of bits are necessary with
a given application. From Table 7 same results for FP16 numbers can be obtained with
numbers 14.11, 7.12, and 5.11 for the scaled Rosenbrok, Rastrigin, and Acklen functions.

About the precision obtained in the solution using FP16 or integer arithmetic. The
defined machine epsilon value is that such when ε 6= 1 + ε. In most of the modern
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microprocessors (that use two’s complement arithmetic) this machine epsilon value for
each data type is shown in Table 8.

Table 8. Machine epsilon values for the different floating point numbers, for a general integer number
of n bits in the fractional part, and also for the integer arithmetic of results shown in Table 7.

Data Type Machine Epsilon Value Precision Bits

double 2.220446 · 10−16 ≈ 2−52 53
float 1.192093 · 10−7 ≈ 2−23 24
FP16 9.765625 · 10−4 ≈ 2−10 11
n bits 2−n n

fractional part
11 bits 4.882813 · 10−4 = 2−11 11
12 bits 2.441406 · 10−4 = 2−12 12

The precision bits is one bit more than the positive exponent of epsilon in floating point
types and equal to the number of bits used in the fractional part in integer arithmetic.

Roughly, one cannot expect a result in an optimization problem beyond the precision
of the machine epsilon. Thus, using FP16 numbers will give precision in the result at most
9.765625× 10−4. Or using an integer number a.b, the result will have at most a precision of
2−b. This means also that using FP16 numbers the heuristic, DE in this case, will finish early
compared to using single or double precision floating point numbers. In the experiment in
this work the DE’s stop condition was set equal to 10−4. It is expected that using a smaller
stop condition the heuristic will finish in more generations but then is necessary to change
to other number types.

One possible application of using FP16 numbers of integer arithmetic could be to
obtain first a low precision result within the precision given by the used type numbers (see
Table 8). If a bigger precision is required, then a traditional mathematical algorithm, such
as the Newton method, could be used. The starting solution for the Newton method will
be the previous obtained low resolution solution.

Of course if FP16 numbers of integer arithmetic are used, the application should
work at the precision results given by those type numbers. Finally, this behavior must be
analyzed in advance for a given application.

For all the simulations the DE’s stop condition was set equal to 0.0001. This number in
3.28 notation is equal to 0x000068db (it is a hexadecimal number of 32 bits), and this number
can be written by convenience with the binary point as 0x0.00068db. The 13 bits after the
binary point are all zeros, thus the stop condition is equal to zero for less than 13 bits used
in the fractional part, as one can confirm in Tables 4 and 6 where the simulations show the
maximum number of iterations and the stop condition is not taken into account for lesser
than and equal to 13 bits.

For the use of fixed point arithmetic in DE, it is critical to know in advance the range
of values for the function to optimize. Here the extremes values of the search space were
used to know those quantities. In a practical task, it could be tried with the extremes and
perhaps other points, on a very coarse grid, to evaluate the function to optimize. The same
procedure should be applied to use FP16 numbers.

DE core (in Algorithm 1) uses one difference and one multiplication, thus there is not
a numerical problem to be used with fixed point arithmetic or FP16 numbers.

A naive implementation of fixed point arithmetic with a word length of 32 bits is not
required, in general. As one can see in Table 4, the same results using 14–17 bits in the
fractional part for the Rosenbrock function are obtained. The same applies from results in
Table 5 for the Rastringin function for 11–24 bits, and in Table 6 for the Ackley function
from 13 to 26 bits in the fractional part.

A future work will be the design in the hardware of DE, which should include the
random number generator that can be optimized to use directly the generated bits without
FP divisions, as is suggested in [10]. This idea of this design also could be used in software
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within each core of a GPGPU. Also an interesting idea is to incorporate a random number
generator based in chaos [12], which is easy to implement.

6. Conclusions

The DE optimization heuristic was analyzed under its implementation with fixed
point arithmetic and half precision floating point arithmetic. Results were shown in
software simulation with three multimodal functions: Rosenbrock, Rastrigin, and Ackley
in 10 dimensions. To apply these arithmetic representations, it is necessary first to know
how to scale the function values to be inside the ranges of FP16 numbers. It is suggested to
use the extreme search values to have an idea of those range function values. If this point
is solved, DE can be perfectly used in these arithmetics.

Still is possible to optimize the DE algorithm in the pseudo random number generator,
without using FP arithmetic. This analysis is required if DE will be embedded in hardware
inside a circuit chip or in massive parallel versions in GPGPUs.
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