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Abstract: The present work proposes a new model to capture high heterogeneity of single phase
flow in naturally fractured vuggy reservoirs. The model considers a three porous media reservoir;
namely, fractured system, vugular system and matrix; the case of an infinite reservoir is considered
in a full-penetrating wellbore. Furthermore, the model relaxes classic hypotheses considering that
matrix permeability has a significant impact on the pressure deficit from the wellbore, reaching the
triple permeability and triple porosity model wich allows the wellbore to be fed by all the porous
media and not exclusively by the fractured system; where it is considered a pseudostable interporous
flow. In addition, it is considered the anomalous flow phenomenon from the pressure of each
independent porous medium and as a whole, through the temporal fractional derivative of Caputo
type; the resulting phenomenon is studied for orders in the fractional derivatives in (0, 2), known as
superdiffusive and subdiffusive phenomena. Synthetic results highlight the effect of anomalous
flows throughout the entire transient behavior considering a significant permeability in the matrix
and it is contrasted with the effect of an almost negligible matrix permeability. The model is solved
analytically in the Laplace space, incorporating the Tartaglia–Cardano equations.

Keywords: porous media; Darcy law; well test analysis; triple porosity; Tartaglia–Cardano equations;
Caputo time derivative

1. Introduction

In order to create an efficient plan to exploit a reservoir, proper design facilities at the bottom of
a well and in the surface and get a more realistic overview of the conditions of wellbore and of the
reservoir that help one to make better decisions to preserve the injectivity and later secondary recovery
of the fluid, it is necessary to correct reservoir modeling that allows the cover of the heterogeneity of
the fluid. Therefore, pressure tests are one of the main tools to determine reservoir characteristics and
at the same time determine the main factors that influence hydrocarbon production.

As is well known, Warren and Root [1] were among the pioneers in work with naturally fractured
reservoirs and started modeling non-homogeneous reservoirs, proposed a double porosity model and
thought of the reservoir as a set of rectangular parallelopipeds (which represents the matrix rock),
while the secondary porosity, the fractures, form a continuous orthogonal system uniformly spaced by

Math. Comput. Appl. 2020, 25, 74; doi:10.3390/mca25040074 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0002-7939-2304
https://orcid.org/0000-0003-4335-6413
https://orcid.org/0000-0001-7896-6460
http://www.mdpi.com/2297-8747/25/4/74?type=check_update&version=1
http://dx.doi.org/10.3390/mca25040074
http://www.mdpi.com/journal/mca


Math. Comput. Appl. 2020, 25, 74 2 of 21

the parallelepipeds; they considered the fluid in the matrix as being in a quasi-stable state flow while
the fluid in the fractures is unstable.

Adams et al. [2] analyzed the pressure tests in the buildup phase and emphasized two main
slopes in it, the first one related to the permeability of the matrix and the second one related to the
permeability of the fracture-matrix system.

Kazemi [3], on the other hand, generalized Warren and Root’s work by assuming that the fluid
throughout the reservoir is unstable; in addition, Kazemi considered in his model that the fractures are
all horizontal and uniformly distributed.

Moench [4] studied the works of Warren and Kazemi and developed a theory that incorporates
the term of hydraulic skin present in the matrix-fracture interface, which allows one to generalize the
assumptions of pseudo-stable Warren–Root [1] fluid and fully transient flow of Kazemi [3]. Moreover,
the skin is defined to characterize the condition of the well and the degree of connectivity between the
well and the reservoir, the result being that, for a positive skin s > 0, damage is considered in the well
where the greater the damage, the greater the value of the skin; while a negative skin s < 0 represents
a stimulated well [5]. Another important concept is the well storage effect, which occurs when fluid is
compressed into a completely filled well; characterized by causing a straight line behavior with slope 1
in the times immediately following the start of production [6].

Several observations in pressure well-tests showed that double porosity models were insufficient
to explain and reproduce these behaviors; so Abdassah and Ershaghi [7] developed a triple porosity
model formed by two types of matrix separated by horizontal layers of fractures and showed that triple
porosity systems are characterized by various anomalous slope changes generated by the respective
contribution of each matrix block.

Due to Bourdet [8], who developed a new method based on the analysis of the time rate of
pressure change, diagnosing pressure-transient behavior was simplified to identify characteristic
regimes that produce straight lines as Ehlig emphasized [9].

Analyzing the behaviors in naturally fractured vuggy carbonate reservoirs, Camacho-Velázquez
et al. [10] and Fuentes-Cruz et al. [11] proposed a triple porosity and double permeability model
for fully and partially penetrating wells. They considered the porous medium as a continuum
constituted by fractures, matrix and vugs (where it does not distinguish between channels, caverns and
vugs); they distinguished that the presence of vugs affects the behavior of pressure curves. In their
model, they allowed an interaction between each of the porous media using the pseudo-stable
flow approximation.

Following this approach, where the porous medium is constituted by fractures, matrix and vugs,
Wu et al. [12] proposed a model where the flow is radial and only the fractures feed the producing well.

Thus, different attempts to capture the heterogeneity in fractured reservoirs were made,
varying the considerations of flow, geometry or idealization of types of porous media that make
up the reservoir. Al-Ahmadi et al. [13] proposed a triple porosity model considering the matrix
rock and two different types of fractures (little permeable microfractures and more permeable macro
fractures) for pseudo-stable and transient flows periods for linear and radial geometries.

Nie et al. [14] addressed the triple porosity model considering the shape of vugs as spherical,
and therefore the interporous flow between fracture and vugs is unsteady, but the interporosity flow
between matrix and vugs was ignored.

Some variants made in order to make the existing models more robust were made, such as
Camacho-Velazquez et al. [15], who resumed their proposed model for fully and partially penetrated
deposits incorporating information from pressure tests, imagelogs, cores, well logs, among others.
In this work, they concluded that vertical communication between vugs may be more important
than their horizontal communication in partially penetrated wells. Or through optimization methods,
like Gómez et al. [16], who implemented the tunneling method to find the parameters in the triple
porosity double permeability model and given the problem of multiple minimums, they suggested the
use of additional information to specify the physically correct solution.



Math. Comput. Appl. 2020, 25, 74 3 of 21

Considering an anomalous diffusion of the fluid throughout the whole reservoir,
Metzler et al. [17] showed that this behavior can be modeled through the inclusion of fractional
derivatives, allowing the introduction of a memory effect.

In spite of the work developed by Metzler, until that moment, understanding of the geometric
and physical interpretation of the fractional operators was minimal; thus, Moshrefi-Torbati and
Hammond [18] concluded that fractional operators can be grouped as filters with partial memory
varying between the extremes of complete memory and non-memory, depending on the order of the
fractional derivative.

Caputo [19], by studying the variation in size in the pores through which the fluid moves,
modified Darcy’s law by introducing the memory effect through the inclusion of the fractional
time derivative; however, in order to maintain a dimensional balance, he modified the definition
of permeability by introducing his term pseudopermeability.

Considering the modified Darcy’s law and combining it with the continuity equation,
Raghavan [20,21] developed a model to understand fluid transport in tight rocks.

From another point of view, theoretical advances have been made, generalizing areas such as the
dimension of the environment in which the reservoir is embedded, that is, considering that the space
through which the fluid moves can approximate as a fractal. Razminia et al. [22] combined fractal
geometry and fractional calculus to analyze the pressure in double porosity reservoirs, by integrating
the fractional derivative in a fractal system considering the order of the fractional derivative congruent
for both porous systems; more recently [23], they analyzed pressure in partially penetrated wells using
Green’s formula; in both cases, the dimensional balance is ignored.

Posadas-Mondragón and Camacho-Velázquez [24] used this approach to solve the model for a
partially penetrated well, considering that the distribution and connectivity of the fracture network as
a fractal and the reservoir as a single porous medium.

On the other hand, Tian et al. [25] investigated the transient pressure behavior in a horizontal
well in coalbed methane reservoirs with multiple fracture wings by identifying the characteristic
flow periods. Meanwhile, Gao et al. [26] addressed the problem of fast pressure drop and gas well
abandonment caused by well interference; divided the region around the MFHW into three regions
and solved the model using finite volumes and concluded that the IWCM can effectively control the
resources within the reservoir around the well.

Chang et al. [27], starting from the fact that integer derivatives cannot reliably quantify fluid
flow with time memory and/or spatial path dependency, proposed and evaluated a Darcy’s law
model with a spatial fractional derivative in the sense of Riemann-Liouville; showed how their model
can felicitously depict flow properties; explored subdiffusive flows and saw how these flows could
represent porous media with small pore sizes or dead pores.

Gu et al. [28] developed a double porosity model for multiple horizontal wells in a tight gas
reservoir based on the Warren and Root model, incorporating fractal fracture network and anomalous
behavior of diffusion processes through fractional calculus and explored the subdiffusive phenomenon.

Jiang et al. [29] considered an anomalous diffusion in multi-fractured horizontal wells in coalbed
methane reservoirs, building a model that integrates fractal theory and fractional calculus and
considered the stress sensitivity of the cleat systems; identified the characteristic flow regimes and
summarized the influence laws of the parameters.

Thus, in this work, a further effort is made to capture the high heterogeneity in naturally fractured
vugular reservoirs using fractional calculus as a tool. The idealization is resumed that the deposit
is constituted by three independent and interconnected porous media in which the memory effect
phenomenon is studied; however, it is allowed that the anomalous behavior can be proper and
independent of each porous medium where tight matrix restriction is eliminated and therefore the
possibility of a significant permeability in the matrix is allowed.

The work consists of Section 2, where the deduction of the dimensional fractional model is
shown; Section 3, where the dimensionless model, called the triple permeability and triple porosity
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fractional model, is presented and solved, the model preserves a dimensional balance and the
superdiffusive and subdiffusive phenomena are distinguished for each porous medium; Section 4,
where synthetic results are shown, showing the impact of the anomalous flow in each phase of the
transitory phenomenon and it is contrasted with the effect generated by a significant permeability in the
matrix, called triple permeability, together with the impact generated by the inclusion of the constant
that allows maintaining the dimensional balance; Section 5, which summarizes the conclusions reached
in this work. Finally, Appendix A shows the asymptotic behavior in short times in the pressure deficit.

2. Deduction of Fractional Triple Permeability and Triple Porosity Model

Assume that the reservoir is made up of three porous media: fractured media, vugular media
and matrix. Let φ the porosity of the whole reservoir, φ f the porosity of the fractured system, φv the
porosity of the vuggy system and φm the porosity of the matrix; then

φ = φm + φ f + φv. (1)

Let q be the Darcy flow of the whole reservoir, qf the Darcy flow of the fractured system, qv the
Darcy flow of the vuggy system and qm the Darcy flow of the matrix, then

q = qm + qf + qv. (2)

Now, the generic continuity equation is

∂(ρθ)

∂t
+∇ · (ρq) = ρΥ (3)

where ρ is density, Υ is a term of source or sink and θ is the volumetric fluid content with 0 < θ < φ;
note that, when the porous medium is saturated with fluid θ = φ. The Darcy’s law is

q = − 1
µ

k(p) (∇p− ρg∇D) ; (4)

where g is the gravitational acceleration and D is depth as a function of spatial coordinates.
Then, the general flow transfer equation results from the combination of Equations (3) and (4).
Therefore, assuming that the reservoir is saturated with fluid, the general flow transfer equation

for each porous medium is

∂(ρφm)

∂t
+∇ · (ρqm) = ρΥm, qm = − 1

µ
km(pm) (∇pm − ρg∇D) ; (5)

∂(ρφ f )

∂t
+∇ · (ρqf) = ρΥf , qf = −

1
µ

k f (p f )
(
∇p f − ρg∇D

)
; (6)

∂(ρφv)

∂t
+∇ · (ρqv) = ρΥv, qv = − 1

µ
kv(pv) (∇pv − ρg∇D) . (7)

To get back the flow transfer equation for the whole reservoir from Equations (5)–(7), it must be
satisfied that

Υ = Υm + Υf + Υv. (8)

Assuming that in the reservoir there is no gain or loss of fluid, then Υ = 0 and consequently
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Υm = Υm f + Υmv; (9)

Υf = −Υm f + Υv f ; (10)

Υv = −Υmv −Υv f . (11)

Finally, assuming pseudostable interporous flow

Υm f = am f

(
p f − pm

)
; (12)

Υmv = amv (pv − pm) ; (13)

Υv f = av f

(
pv − p f

)
. (14)

Hence, with D = z, the triple permeability and triple porosity model is

φmcm
∂pm

∂t
= ∇

(
km

µ
∇pm

)
+ am f

(
p f − pm

)
+ amv (pv − pm) , cm =

1
φm

∂φm

∂pm
; (15)

φ f c f
∂p f

∂t
= ∇

( k f

µ
∇p f

)
− am f

(
p f − pm

)
+ av f

(
pv − p f

)
, c f =

1
φ f

∂φ f

∂p f
; (16)

φvcv
∂pv

∂t
= ∇

(
kv

µ
∇pv

)
− amv (pv − pm)− av f

(
pv − p f

)
, cv =

1
φv

∂φv

∂pv
. (17)

Including the memory phenomenon in the dynamics of fluid movement, it is considered that
the flow in the reservoir may be anomalous, so that the fractional derivative is included in the time
derivative in the flow equation of each porous medium, obtaining the following system of partial
differential equations.

φmcmταm−1 ∂αm pm

∂tαm
= ∇

(
km

µ
∇pm

)
+ am f

(
p f − pm

)
+ amv (pv − pm) ; (18)

φ f c f τα f−1 ∂αm p f

∂tαm
= ∇

( k f

µ
∇p f

)
− am f

(
p f − pm

)
+ av f

(
pv − p f

)
; (19)

φvcvταv−1 ∂αm pv

∂tαm
= ∇

(
kv

µ
∇pv

)
− amv (pv − pm)− av f

(
pv − p f

)
(20)

where τ is a coefficient included to maintain dimensional balance in the previous system.
Equations (18)–(20) will be referred to as a fractional triple permeability and triple porosity model.

3. Fractional Triple Permeability and Triple Porosity Model

Figure 1a shows how the porous medium is idealized; it is considered that the porous medium is
composed of fractures, vuggs and rock matrix where each porous medium interacts with the others.
Figure 1b shows how the fluid moves in the porous media and how it reaches the well; as in classical
models, it is considered that the matrix leads the fluid to the fractured system and to the vugular
system. Besides, the vugular system feeds the fractured system; however, unlike classic models,
all three porous media are allowed to feed the well.
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(a) (b)
Figure 1. (a) Idealized model to triple porosity reservoir. (b) Interporosity flow between porous media
and well feed.

Considering the model (18)–(20) and assuming further that: the well penetrates the reservoir
completely, the porous medium is single-phase saturated by oil, the interporous flow between
each porous medium is pseudo-stable, the density and viscosity are constant, the permeability in
each porous medium is constant, the initial pressure Pi is constant throughout the entire reservoir;
assuming radial symmetry and that the fluid has an anomalous behavior along each porous medium,
that is, including fractional time derivative of Caputo type. The dimensionless model becomes:

ωmταm−1
D

∂αm pDm

∂tαm
D

= κm
1

rD

∂

∂rD

(
rD

∂pDm
∂rD

)
+ λm f

(
pD f − pDm

)
+ λmv (pDv − pDm) , (21)

ω f τ
α f−1
D

∂α f pD f

∂t
α f
D

= κ f
1

rD

∂

∂rD

(
rD

∂pD f

∂rD

)
− λm f

(
pD f − pDm

)
+ λv f

(
pDv − pD f

)
, (22)

ωvταv−1
D

∂αv pDv

∂tαv
D

= κv
1

rD

∂

∂rD

(
rD

∂pDv
∂rD

)
− λmv (pDv − pDm)− λv f

(
pDv − pD f

)
(23)

where ωm = 1−ω f −ωv and κm = 1− κ f − κv, the dimensionless variables are given by

pDj =
2πh(km + k f + kv)(Pi − pj)

Q0B0µ
, j = m, f , v;

ωj =
φjcj

φmcm + φ f c f + φvcv
, j = m, f , v;

κj =
k j

km + k f + kv
, j = m, f , v;

λij =
aijµr2

w

km + k f + kv
, i, j = m, f , v;

tD =
t(km + k f + kv)

µr2
w(φmcm + φ f c f + φvcv)

;

rD =
r

rw
;

τD =
τ(km + k f + kv)

µr2
w(φmcm + φ f c f + φvcv)

;

the meaning of each variable is given in Abbreviations;
∂

αj pDj

∂t
αj
D

with j = m, f , v is the Caputo fractional

derivative defined as
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∂αj pDj

∂t
αj
D

(t) =
1

Γ(n− αj)

∫ t

0

p(n)Dj (t̄)dt̄

(t− t̄)αj−n+1 , (24)

where p(n)Dj is the usual nth derivative and n = [αj] + 1 for αj /∈ N, n = αj for α ∈ N and Γ(·) is Euler’s
gamma funciton; see [30–32].

In general, when the order of the fractional derivative is <1, it is said that the anomalous flow is
subdiffusive, while if the order of the fractional derivative is >1, it is said that the anomalous flow is
superdiffusive.

By modifying Darcy’s law to introduce the memory phenomenon, Caputo [19] modifies the
definition of permeability to maintain dimensional balance, although it introduces the problem of how
to measure what it is called “fractional permeability”. In this work, the variable τ is introduced,
with units of speed, independent of the physical parameters of viscosity µ and permeability κ;
this constant maintains dimensional balance. The dimensional balance variable τ is kept in the
dimensionless model, Equations (21)–(23), through the variable τD. Section 4 will show the effect of
this variable.

From considering the oil field as a porous medium composed of the union of three independent
porous media (fractures, vuggs and matrix), added to the assumption that the fluid has an anomalous
flow in each porous medium. The proposed model considers the possibility that this anomalous
behavior may become different in each porous medium, expressing itself through a different order in
the temporal fractional derivative.

In the triple permeability and triple fractional porosity model, constant flow boundary conditions
are considered, that is:

lim
rD→1

rD

(
κm

∂pDm
∂rD

+ κ f
∂pD f

∂rD
+ κv

∂pDv
∂rD

)
= −1; (25)

pDw(tD) = pDm(rD, tD)|rD=1 = pD f (rD, tD)
∣∣∣
rD=1

= pDv(rD, tD)|rD=1 ; (26)

lim
rD→∞

pDm = lim
rD→∞

pD f = lim
rD→∞

pDv = 0. (27)

Equation (27) represents the external border condition when considering an infinite reservoir.
Next, the fractional triple permeability and triple porosity model will be analytically solved,

Equations (21)–(23), with boundary conditions (25)–(27).

3.1. Laplace Transform

From the classical definition of Laplace transform

p̄(u) = L{p(t)}(u) =
∫ ∞

0
e−ut p(t)dt, u ≥ 0; (28)

where u is the Laplace variable.
It is known that, applying this transformation to the Caputo’s fractional derivative operator,

we have

L
{

∂α p
∂tα

(t)
}

= uα p̄(u)−
n−1

∑
k=0

uα−k−1 p(k)(0). (29)

In particular, if α ∈ (0, 1] then n = 1 and

L
{

∂α p
∂tα

(t)
}

= uα p̄(u)− uα−1 p(0). (30)
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From Equations (29) and (30), it is shown that initial conditions can be incorporated to compute
the fractional derivative, which is not the case with other definitions of fractional derivative.

So, the Laplace transform of Equations (21)–(23) are

κm
1

rD

∂

∂rD

(
rD

∂ p̄Dm
∂rD

)
−
[
uαm ωmταm−1

D + λm f + λmv

]
p̄Dm +

ωmταm−1
D

n−1

∑
k=0

uαm−k−1 p(k)Dm(0) + λm f p̄D f + λmv p̄Dv = 0, (31)

κ f
1

rD

∂

∂rD

(
rD

∂ p̄D f

∂rD

)
−
[
uα f ω f τ

α f−1
D + λm f + λv f

]
p̄D f +

ω f τ
α f−1
D

n−1

∑
k=0

uα f−k−1 p(k)D f (0) + λm f p̄Dm + λv f p̄Dv = 0, (32)

κv
1

rD

∂

∂rD

(
rD

∂ p̄Dv
∂rD

)
−
[
uαv ωvταv−1

D + λmv + λv f

]
p̄Dv +

ωvταv−1
D

n−1

∑
k=0

uαv−k−1 p(k)Dv(0) + λmv p̄Dm + λv f p̄D f = 0; (33)

where u is the Laplace variable and p̄Dj with j = m, f , v is the Laplace transform applied to pDm,
pD f and pDv respectively.

The System (31)–(33) must be treated carefully; if α ∈ (0, 1] then n = 1 and we would have

∑n−1
k=0 uαj−k−1 p(k)Dj (rD, 0) = 0 since pDj(rD, 0) = 0 for j = m, f , v; however, if αj /∈ (0, 1] y αj > 0 with

j = m, f , v then additional initial conditions must be included.

3.2. Bessel Function

The solution to each of the equations of the general model (31)–(33) is expressed as a linear
combination of modified Bessel functions of first and second type [33]; however, being an infinite site,
its solution is expressed as

p̄Dm(u, rD) = AK0 (α(u)rD) , (34)

p̄D f (u, rD) = BK0 (α(u)rD) , (35)

p̄Dv(u, rD) = CK0 (α(u)rD) . (36)

From the substitution of the previous equations, in the model (31)–(33), the matrix system is
obtained

κmα2 −m1 m2 m3

m2 κ f α2 −m4 m5

m3 m5 κvα2 −m6


A

B
C

 = −


ωmταm−1

D ∑n−1
k=0 uαm−k−1 p(k)Dm(0)

ω f τ
α f−1
D ∑n−1

k=0 uα f−k−1 p(k)D f (0)

ωvταv−1
D ∑n−1

k=0 uαv−k−1 p(k)Dv(0)

 , (37)

where
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m1(u) = uαm ταm−1
D ωm + λm f + λmv,

m2 = λm f ,

m3 = λmv,

m4(u) = uα f τ
α f−1
D ω f + λm f + λv f ,

m5 = λv f ,

m6(u) = uαv ταv−1
D ωv + λmv + λv f .

Once again, the order of the fractional derivatives has a big impact, if αj ∈ (0, 1] for j = m, f , v then
the matrix Equation (37) turns out to be a homogeneous matrix equation so to obtain non-trivial
solutions, it must be satisfied that

κmκ f κvα6 −
[
κm

(
κ f m6 + κvm4

)
+ κ f κvm1

]
α4 +

+
[
κm

(
m4m6 −m2

5

)
+
(

κ f m6 + κvm4

)
m1 − κvm2

2 − κ f m2
3

]
α2

−m1m4m6 + m1m2
5 + m2

2m6 + 2m2m3m5 + m2
3m4 = 0. (38)

Similarly, for α > 0 and α /∈ (0, 1] with trivial initial conditions, Equation (38) must be satisfied;
for the case with non-trivial initial conditions, the Equation (37) is always trivially solvable if
Equation (38) does not hold.

These considerations show the great challenge that arises when approaching a triple permeability
and triple porosity model with a fractional temporal derivative; firstly, due to the generalization when
considering that the permeability of the matrix is significant and later when adding the fractional
temporal derivative in each porous medium, which adds a degree of freedom to the fluid that, as will
be seen later, has a significant impact on the well’s pressure.

In the following, it will considered trivial initial conditions; this is p(k)Dj = 0 for j = m, f , v and
k = 0, 1, · · · , n− 1.

3.3. Tartaglia–Cardano Equations

Equation (38) is equivalent to a third degree equation, making ᾱ = α2. In general, the solution
of third degree equation depends of the value of the discriminant D = (q/2)2 + (p/3)3; in particular,
for the parameters of a naturally fractured vuggy carbonate reservoir with triple porosity and triple
permeability, it follows that D < 0, which means that roots of (38) are all real numbers. Therefore,
applying the Tartaglia–Cardano formulas [34], the solution is

α2
k = 2

√
− p

3
cos

θ + 2kπ

3
− a

3
, cos θ =

−q/2√
−(p/3)3

, (39)

with p = b− a2

3 , q = 2a3−9ab+27c
27 and
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a = −

(
1− κ f − κv

) (
κ f m6 + κvm4

)
+ κ f κvm1(

1− κ f − κv

)
κ f κv

; (40)

b =

(
1− κ f − κv

) (
m4m6 −m2

5
)
+
(

κ f m6 + κvm4

)
m1 − κvm2

2 − κ f m2
3(

1− κ f − κv

)
κ f κv

; (41)

c =
−m1m4m6 + m1m2

5 + m2
2m6 + 2m2m3m5 + m2

3m4(
1− κ f − κv

)
κ f κv

. (42)

3.4. General Solution

Therefore, the solution for pressure comes from replacing (39) in the Equations (34)–(36);
consequently, the solution in each porous medium p̄Dj for j = m, f , v is rewritten as a linear
combination of Bessel function in each solution αk, namely

p̄Dm(u, rD) = A1K0(α1(u)rD) + A2K0(α2(u)rD) + A3K0(α3(u)rD), (43)

p̄D f (u, rD) = B1K0(α1(u)rD) + B2K0(α2(u)rD) + B3K0(α3(u)rD), (44)

p̄Dv(u, rD) = C1K0(α1(u)rD) + C2K0(α2(u)rD) + C3K0(α3(u)rD). (45)

By substituting the previous equations in the System (31)–(33), we obtain a matrix system with
infinite solutions, similar to the System (37) for [Ai, Bi, Ci]

T for i = 1, 2, 3. Making C1 = C2 = C3 = 1 in
that matrix system, so it reaches

Ai =
m3

(
κ f α2

i −m4

)
−m2m5

m2
2 −

[(
1− κ f − κv

)
α2

i −m1

] [
κ f α2

i −m4

] , (46)

Bi =
−m3 − Ai

[(
1− κ f − κv

)
α2

i −m1

]
m2

; (47)

for i = 1, 2, 3. Thus, the System (34)–(36) is expressed as follows

p̄Dm(u, rD) = A1D1K0(α1rD) + A2D2K0(α2rD) + A3D3K0(α3rD), (48)

p̄D f (u, rD) = B1D1K0(α1rD) + B2D2K0(α2rD) + B3D3K0(α3rD), (49)

p̄Dv(u, rD) = D1K0(α1rD) + D2K0(α2rD) + D3K0(α3rD); (50)

where D1, D2, D3 are constants determined by the boundary conditions and αi is the positive root of
α2

i for i = 1, 2, 3.
To obtain the associated constants D1, D2, D3, note that, when replacing the solutions obtained,

the Equations (48)–(50) in the boundary conditions, Equations (25) and (26), the following matrix
system is reached α1E1K1(α1) α2E2K1(α2) α3E3K1(α3)

(A1 − 1)K0(α1) (A2 − 1)K0(α2) (A3 − 1)K0(α3)

(B1 − 1)K0(α1) (B2 − 1)K0(α2) (B3 − 1)K0(α3)


D1

D2

D3

 =

1/u
0
0

 , (51)

where
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Ei =
[(

1− κ f − κv

)
Ai + κ f Bi + κv

]
, con i = 1, 2, 3. (52)

Therefore, the analytical solution in the Laplace space, for pressure at the boundary of the well,
rD = 1, with dimensionless variables for a single-phase medium with triple permeability and triple
porosity is:

p̄Dw(u) = D1K0(α1) + D2K0(α2) + D3K0(α3)

= A1D1K0(α1) + A2D2K0(α2) + A3D3K0(α3)

= B1D1K0(α1) + B2D2K0(α2) + B3D3K0(α3). (53)

To calculate pressure in real space, the Stehfest [35] algorithm was used.
Dimensionless pressure considering mechanical skin in the fractured medium, vugular medium

and matrix rock, is calculated by

pDw(tD) = pDm,D f ,Dv

∣∣∣
rD=1

− sm, f ,v rD
∂pDm,D f ,Dv

∂rD

∣∣∣∣
rD=1

. (54)

By using this condition instead of (26), constants D1, D2 and D3 are determined and the following
matrix system is reached


α1E1K1(α1) α2E2K1(α2) α3E3K1(α3)

(A1 − 1)K0(α1)+

α1K1(α1)(sm A1 − sv)

(A2 − 1)K0(α2)+

α2K1(α2)(sm A2 − sv)

(A3 − 1)K0(α3)+

α3K1(α3)(sm A3 − sv)

(B1 − 1)K0(α1)+

α1K1(α1)(s f B1 − sv)

(B2 − 1)K0(α2)+

α2K1(α2)(s f B2 − sv)

(B3 − 1)K0(α3)+

α3K1(α3)(s f B3 − sv)


D1

D2

D3

 =

1/u
0
0

 (55)

giving the solution for the pressure

p̄Dw|CD=0 = D1K0(α1)+ D2K0(α2)+ D3K0(α3)+ sv(D1α1K1(α1)+ D2α2K1(α2)+ D3α3K1(α3)). (56)

To include the effect of storage in wellbore, the following equation is used:

p̄Dw =
1

u2CD + 1/ p̄Dw|CD=0
. (57)

4. Results and Discussion

This section will present several synthetic results of solving the fractional triple permeability and
triple porosity model, Equations (21)–(23), subject to the initial and boundary conditions (25)–(27).
The results show the value of the pressure at the boundary of the well in real space pDw and its
respective Bourdet derivative, p′Dw [8]; pressure results will be shown with a solid line, while its
derivative will be with a dashed line; both results will be drawn with the same color.

Figure 2 shows the results of the triple permeability and triple porosity fractional model compared
to other models in the literature. In this figure, a skin value of s = sm = s f = sv = 1.5 and a well storage
coefficient of CD = 100 are considered. Figure 2a shows the results considering a non-anomalous flow,
i.e., αm = α f = αv = 1; It is shown how κm → 0 recovers the triple porosity and double permeability
model [10] and; moreover, results of double porosity models [22]. Figure 2b shows the results of
considering an anomalous flow; in particular, it is highlighted the similarity between the results of
Razminia et al. [22] considering the Euclidean case θ = 0 and the results of the triple permeability and
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triple porosity fractional model considering an anomalous flow throughout the whole reservoir, i.e.,
α = αm = α f = αv.

(a) (b)
Figure 2. (a) Results of the triple permeability and triple porosity model with non-anomalous flow.
(b) Results of the triple permeability and triple porosity model with anomalous flow.

The next results will show the effect of considering that the fluid has an anomalous behavior in
each porous medium independently and as a whole. The following results consider a skin and null
well storage effect; that is, sj = 0 for j = m, f , v and CD = 0.

Considering the fluid flow in reservoirs with triple porosity and non-anomalous flow; the pressure
deficit pDw can be separated into three main phases: short-time phase, where the well storage effect is
shown through the straight line behavior with slope 1, followed by the skin effect and ending with the
so-called fractures dominated phase, behavior that is exhibited in short times if the previous effects
were null. The transient phase, where each porous medium dominates the pressure deficit in the well,
starting with the phase dominated by the fracture system, until it loses its domain and yields it to the
vugular system and ends with the phase dominated by the matrix system; in particular, the effect of
the interporous flow coefficients indicate the moment in which each porous medium ends its domain,
being reflected by a “V”-shaped behavior, forming, as a whole, what is called “W”-shaped behavior
when said behaviors do not intersect. Finally, the stability phase, when the stability phase of the matrix
system is reached and the pressure deficit grows at a constant rate, being reflected in its derivative
through a horizontal line.

4.1. Case Study 1

Figure 3 considers that the fluid has an anomalous behavior only through the fractured system;
that is, in Equations (21)–(23), the order of the fractional derivative for the vugular system and the rock
matrix is 1. The Figure shows how the effect of the anomalous flow influences the phenomenon from
short times, phase dominated by fractures, where for superdiffusive flows, it is shown with greater
force, compared to the case of subdiffusive flows, where the effect of the fractional time derivative is
barely distinguishable. See Appendix A.

The transient phase is particularly insensitive to anomalous flow from the fractured system;
however, an additional phenomenon can be observed between the transient phase and the stability
phase for subdiffusive flows. This phenomenon is characterized by a drop in the rate of pressure
increase that affects the second crest of the characteristic “W”-shaped behavior when α f → 0 affecting
the stability phase, both in its appearance and in the growth rate.

Throughout the evolution of the phenomenon, the fractional time derivative impacts the effect
of interporous flows; in particular for the anomalous flow in the fractured system, the interporous
flow coefficient between the matrix and the fracture, λm f , is affected. Therefore, for subdiffusive
flows, the feeding to the fractured system is slower, which explains the pressure drop instead of
reaching stability.
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Figure 3. Effects of considering anomalous flow only in the fractured system, αv = 1, αm = 1.

Figure 4 considers that the fluid has an anomalous behavior only through the vugular system,
that is, in Equations (21)–(23), the order of the fractional derivative for the fracture system and the
rock matrix is 1. The figure shows the impact of the anomalous vugular flow beginning in the phase
dominated by fractures whose behavior is analogous to the case of anomalous flow in the fractured
system, see Appendix A; however, its effect is longer lasting, affecting the transient phase.

During the transient phase, the anomalous flow influences the characteristic “W”-shaped behavior;
in particular, it impacts on the effect of the interporous flow coefficient between the matrix and the
vugular system, λmv, increasing its effect for superdiffusive flows and inhibiting it for subdiffusive
cases; which is shown in the first crest of the “W” shaped behavior.

The final part of the transient phase is immune to the anomalous flow of the vugular system;
however, and analogously to the case of anomalous flow in the fractured system, a drop in the rate of
increase in pressure is observed that affects the second crest of the characteristic “W”-shaped behavior
in the case of subdiffusive flows affecting the stability phase.

Figure 4. Effects of considering anomalous flow only in the vugular system, α f = 1, αm = 1.

Figure 5 shows the case of an anomalous flow in the matrix, making the order of the fractional
time derivative for the fractured system and the vugular system 1. As expected from the asymptotic
behavior in short times, see Appendix A, the effect of the anomalous flow of the matrix is greater for
the phase dominated by fractures compared to the effect shown in the previous cases.

On the other hand, the effect that the anomalous flow of the matrix has on the interporous
flow coefficients, λm f and λmv, considerably alters the characteristic “W”-shaped behavior,
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completely altering the transient phase; this affects the shape of the crests of the “W” -shaped behavior,
as well as the time in which they occur.

In particular, for superdiffusive flows, the stability phase is delayed due to the overexcitation
received by the porous media coming from the matrix; while for subdiffusive flows, the same
phenomenon of drop in the pressure increase rate seen in previous cases is observed.

Figure 5. Effects of considering anomalous flow only in matrix rock, α f = 1, αv = 1.

Figure 6 shows the results of considering an anomalous flow in the whole porous medium
composed of the fractured, vugular and matrix systems; in particular, the anomalous behavior is
considered to be congruent in each porous medium; that is, α = α f = αv = αm in (21)–(23) where the
combined effect of the fractional time derivative of each porous medium will be seen. Like in the case of
anomalous flow in each porous medium, it affects the phase dominated by fractures; when considering
the anomalous flow in the whole porous medium, it will show, with greater impact, its effect in short
times, see Appendix A.

As might be expected, from the effect caused by the anomalous vugular flow and increased by
the anomalous flows from the other porous media, the phase dominated by fractures culminates with
a greater impact that has repercussions in the beginning of the transient phase.

The transient phase has a combined impact by the anomalous flow of each porous medium,
resulting from the impact to the interporous flow coefficients λij with i, j = f , v, m.

Finally, the stability phase is reached promptly for superdiffusive casesm because the combined
effect of anomalous flows generates an increase in the rate of increase pressure in contrast to the effect
of independent anomalous flows where the rate of increase in the pressure tends to be the same as
in the non-anomalous case; while for subdiffusive cases, the stability phase is delayed, showing a
behavior as in the cases already described.
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Figure 6. Effects of varying the order on the fractional time derivative considering α = α f = αv = αm.

4.2. Case Study 2

The previous case study showed the effect of an anomalous flow isolated to each porous medium
and an anomalous flow in the entire porous medium, combined with a remarkably significant
permeability in the matrix. In this case study, the same phenomenon will be described, highlighting the
effect of permeability in the matrix, contrasting the previous results with the results of an almost
negligible permeability in the matrix, that is, κm ≈ 0.

From the equations in Appendix A, an almost negligible permeability in the matrix strongly affects
the fracture-dominated phase by pronouncing the pressure velocity in the wellbore; furthermore,
the duration of this phase is also extended, as can be seen in Figures 7–10.

Figure 7 shows the combined effect of almost negligible permeability with the effect of anomalous
flow in the fractured system. In particular, having a nearly impermeable matrix increases the
effect generated by the interporous flow coefficients, namely λm f and λmv, where the characteristic
“W”-shaped behavior is more remarkable.

By having a more marked “W”-shaped behavior, the effect created by the anomalous flow from
the fractured system has on the effects generated by the interporous flow coefficients is even more
remarkable showing, for subdiffusive flows, the phenomenon described in the case of study 1; whereas,
for superdiffusive flows, a trough mitigation typical of the interporous flow effect λm f is shown when
α f → 2, precipitating the stability phase.

Figure 7. Effects of considering anomalous flow only in the fractured system, αv = 1, αm = 1.
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Figure 8 shows more strongly the effect created by an anomalous flow in the fractured system;
where the phase dominated by fractures, being more marked, extends its duration by increasing the
first crest that makes up the “W” -shaped behavior characteristic of the transitory phase, which directly
impacts the trough that follows; however, the anomalous flow does not affect all the “W”-shaped
behavior, so the end of the transient phase and the stability phase is as in the previous case.

Figure 8. Effects of considering anomalous flow only in the vugular system, α f = 1, αm = 1.

As in Figure 5, Figure 9 shows the effect of anomalous flow in the matrix. In particular, when the
effects of permeability in the matrix in non-anomalous cases are compared; it is observed that by
decreasing the permeability value in the matrix, in addition to impacting the phase dominated
by fractures, the effect on interporous flows increases, pronouncing the characteristic “W”-shaped
behavior in the transient phase; consequently, the time in which the stability phase is reached is delayed.

Thus, the anomalous flow in the matrix enhances the effects generated by the permeability of
the matrix by altering the way in which the fractured system and the vugular system are fed by the
matrix. In particular, superdiffusive flows accelerate at the moment when the crests and troughs of the
characteristic “W”-shaped behavior shows up by overstimulating said crests and troughs; while for
subdiffusive behaviors, the flow follows the same behavior described in the previous case.

Figure 9. Effects of considering anomalous flow only in matrix rock, α f = 1, αv = 1.

Figure 10 shows the equivalent anomalous flow effect in each porous medium, where, as discussed
in the previous case, a combined effect is generated from considering an anomalous flow in each
porous medium; besides, considering an almost negligible permeability in the matrix, shows an effect
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that softens the phase dominated by fractures, impacting, as a consequence, the time in which the
transient phase begins.

In the same way as has been discussed above, the variation in permeability influences the
effect caused by the interporous flow coefficients, so when adding the anomalous flow phenomenon,
the crests and troughs that make up the characteristic behavior are overstimulated.

Finally, the stability phase is invariable to the effect on the variation of the permeability in the
matrix, so the anomalous flow effect is analogous to that discussed in the previous case.

Figure 10. Effects of varying the order on the fractional time derivative considering α = α f = αv = αm.

Figure 11 shows the results of assuming an anomalous flow in the whole reservoir, considering a
non-trivial dimensionless coefficient τD 6= 1. As can be confirmed in the appendix, the dimensionless
coefficient τD strongly impacts the phase dominated by fractures and consequently the subsequent
phases, appearing mainly as a delay.

Figure 11. Effects of varying the order on the fractional time derivative considering α = α f = αv = αm

with a non-trivial auxiliar constant, i.e., τD 6= 1.

As observed comparing the previous case studies, by eliminating the assumption of negligible
matrix permeability and considering it significant, κm 6= 0, a degree of freedom is added with respect
to the existing models in the literature, allowing modeling a broader set of heterogeneous reservoirs
than those that can be obtained with triple porosity and double permeability models, making κm = 0;
triple porosity and single permeability models, making κ f = 0 for primary flow in the fractured system
and κ f = 1 for primary flow in the vugular system; and double porosity models. On the other hand,
each case study explores anomalous flows not limited to subdiffusive flows as in the existing literature;
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additionally, the order of the fractional derivative is allowed to be different in each porous medium,
showing particular results of each porous medium, exploiting the idea that, when considering a
porous medium with anomalous flow, each porous medium may have particular anomalous flows
and different from those of the surrounding porous media.

5. Conclusions

A new model is proposed to capture the high heterogeneity in naturally fractured vuggy
reservoirs saturated with one fluid, oil, which relaxes the usual assumptions in classical models
by considering that the effect of permeability in the matrix is significant; in addition, all media porous
that make up the reservoir (fractured system, vugular system and matrix) contribute to the well
feeding. Furthermore, the phenomenon of anomalous flows is considered, incorporating the Caputo
type temporary fractional derivative with orders in (0, 2), encompassing the phenomena known as
subdiffusive and superdiffusive; constants are added to the resulting system, in order to maintain
dimensional balance and ensure that the physical conclusions obtained are consistent. The model
is solved analytically considering an infinite reservoir in Laplace space, solving an equivalent third
degree equation with the Tartaglia–Cardano formulas, and obtaining results in real space, applying the
Stefhest method. The results showed the anomalous flow effect that each porous medium provides
separately and as a whole to the phenomenon of transient pressure. The impact that each anomalous
flow has in the phase dominated by fractures is exposed, the effect that the anomalous flow of each
porous medium has on each part of the transitory phase is highlighted, reaching to pronounce or
soften each crest and trough in the characteristic “W”-shaped behavior, depending on the porous
medium that has the anomalous behavior. Likewise, the phenomenon of decay in fluid velocity
generated by subdiffusive flows is shown, creating a stability phase markedly different from the
classical case, while superdiffusive flows show a stability phase similar to the non-anomalous case
when the anomalous phenomenon is restricted to a single porous medium, while when the anomalous
phenomenon is shown in the complete reservoir, the stability phase is altered, showing a higher
velocity in the fluid pressure.
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Abbreviations

αm Order of the fractional time derivative in the matrix system
α f Order of the fractional time derivative in the fracture system
αv Order of the fractional time derivative in the vugular system
m Matrix rock
f Fracture system
v Vugular system
pj Pressure in porous medium j [Pa]
Pi Constant initial pressure [Pa]
kj Permeability in the porous medium j [m2]
h Reservoir height [m2]
µ Dynamic viscosity of the fluid [Pa·s]
ρ Density [kg/m3]
θ Volumetric fluid content
B0 Fluid deformation factor [m3/m3]
Q0 Flow rate of extracted fluid [m3·s−1]
qj Flow rate of fluid per unit area of porous medium j [m/s]
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φj Porosity of the porous medium j [m3/m3]
cj Compressibility of the porous medium j [Pa−1]
aij Terms of transfer between interfaces ij [Pa−1·s−1]
t Time [s]
rw Well radius [m]
r Distance variable [m]
τ Auxiliary constant to get dimensional balance in the fractional differential equation [s]
reD Distance to the outer boundary of the reservoir
pDw Dimensionless pressure at the well
pDj Dimensionless pressure of the porous medium j
ωj Storage coefficient of the porous medium j
κj Dimensionless permeability of the porous medium j
λij Interporosity flow coefficient of the porous medium i, j
tD Dimensionless time
rD Dimensionless distance
τD Auxiliary constant to get dimensional balance in the dimensionless fractional differential equation
s Mechanical skin factor
CD Dimensionless wellbore storage constant

Appendix A. Short-Time Approximation

Considering the Equation (53), and using the approximation K1(x)/K0(x) ≈ 1. The asymptotic
behavior in short times is

lim
u→∞

p̄Dw =
1
u

[√
ωmκmuαm ταm−1

D +

√
ω f κ f uα f τ

α f−1
D +

√
ωvκvuαv ταv−1

D

]−1

. (A1)

In particular, for the non-anomalous case, αm = α f = αv = 1 and τD = 1, the asymptotic
behavior becomes

lim
u→∞

p̄Dw =
1

u3/2

[√
ωmκm +

√
ω f κ f +

√
ωvκv

]−1
. (A2)

Equation (A2) is analytically invertible, finding that

lim
tD→0

pDw =

√
tD
π

[(√
ωmκm +

√
ω f κ f +

√
ωvκv

)
/2
]−1

. (A3)
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