
Mathematical

and Computational

Applications

Article

Differential Evolution in Robust Optimization Over
Time Using a Survival Time Approach

José-Yaír Guzmán-Gaspar 1,* , Efrén Mezura-Montes 1 and Saúl Domínguez-Isidro 2

1 Artificial Intelligence Research Center, University of Veracruz, Sebastián Camacho 5, Col. Centro, Xalapa 91000,
Veracruz, Mexico; emezura@uv.mx

2 National Laboratory on Advanced Informatics, Rebsamen 80, Xalapa 91000, Veracruz, Mexico;
saul.dominguez@lania.edu.mx

* Correspondence: yairguz@gmail.com

Received: 2 October 2020; Accepted: 23 October 2020; Published: 26 October 2020
����������
�������

Abstract: This study presents an empirical comparison of the standard differential evolution (DE) against
three random sampling methods to solve robust optimization over time problems with a survival time
approach to analyze its viability and performance capacity of solving problems in dynamic environments.
A set of instances with four different dynamics, generated by two different configurations of two
well-known benchmarks, are solved. This work also introduces a comparison criterion that allows the
algorithm to discriminate among solutions with similar survival times to benefit the selection process.
The results show that the standard DE holds a good performance to find ROOT solutions, improving the
results reported by state-of-the-art approaches in the studied environments. Finally, it was found that the
chaotic dynamic, disregarding the type of peak movement in the search space, is a source of difficulty for
the proposed DE algorithm.

Keywords: robust optimization; differential evolution; ROOT

1. Introduction

Optimization is an inherent process in various areas of study and everyday life. The search to improve
processes, services, and performances has originated in different solution techniques. However, there are
problems in which uncertainty is present over time, given that the solution’s environment can change at a
specific time. These types of problems are named Dynamic Optimization Problems (DOPs) [1]. This study
deals with dynamic problems where the environment of the problem changes over time. Various studies
have been carried out to resolve DOPs through tracking moving optima (TMO), which is characterized by
the search for and implementation of the global optimal-solution every time the environment changes [2–4].

Evolutionary algorithms, such as Differential Evolution (DE), have shown good performance to
solve tracking problems [5–7]. However, the search and implementation of the optimum each time the
environment changes may not be feasible due to different circumstances, such as time or cost.

The approach introduced in [8] tries to solve DOPs through a procedure known as robust optimization
over time (ROOT). ROOT seeks to solve DOPs by looking for a good solution for multiple environments
and preserve it for as long as possible, while its quality does not decrease from a pre-established threshold.
The solution found is called Robust Solution Over Time (RSOT).

In this regard, Fu et al. [9] introduced different measures to characterize environmental changes.
After that, the authors developed two definitions for robustness [10]. The first one was based on “Survival

Math. Comput. Appl. 2020, 25, 72; doi:10.3390/mca25040072 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0003-3606-0278
https://orcid.org/0000-0002-1565-5267
http://dx.doi.org/10.3390/mca25040072
http://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/25/4/72?type=check_update&version=2

Math. Comput. Appl. 2020, 25, 72 2 of 16

Time”—when a solution is considered acceptable (an aptitude threshold must be previously defined).
The second definition was based on the “Average Fitness”—the solution’s average fitness is maintained
during a previously defined time window. The measurements incorporate information on the concepts
of robustness and consider the values of error estimators. An algorithm performance measure was
suggested to find ROOT solutions. The study was carried out using a modified version of the moving
peaks benchmark (mMPB) [10].

Jin et al. [11] proposed a ROOT framework that includes three variants of the Particle Swarm
Optimization algorithm (PSO). PSO with a simple restart strategy (sPSO), PSO with memory scheme
(memPSO), and a variant that implements the species technique SPSO. The authors applied a radial basis
function as an approximation and an autoregressive model as a predictor.

On the other hand, Wang introduced the concept of robustness in a multi-objective environment,
where a framework is created to find robust Pareto fronts [12]. The author adopted the dynamic
multi-objective evolutionary optimization algorithm in the experiments. At the same time, Huang et al.
considered the cost derived from implementing new solutions, thus addressing the ROOT problem by a
multi-objective PSO (MOPSO); The Fu metric was applied in that study [13].

Yazdani et al. introduced a new semi-ROOT algorithm that looks for a new solution when the current
one is not acceptable, or if the current one is acceptable but the algorithm finds a better solution, whose
implementation is preferable even with the cost of change [14].

Novoa-Hernández, Pelta, and Corona analyzed the ROOT behavior using some approximation
models [15]. The authors suggested that the radial basis network model with radial basis function works
better for problems with a low number of peaks. However, considering all the scenarios, the SVM model
with Laplace Kernel shows notably better performance to those compared in the tests carried out.

Novoa-Hernández and Amilkar in [16] reviewed different relevant contributions to ROOT. The
authors analyzed papers hosted in the SCOPUS database. Concerning new methods to solve ROOT
problems, Yazdani, Nguyen, and Branke proposed a new framework using a multi-population approach
where sub-populations track peaks and collect information from them [17]. Adam and Yao introduced
three methods to address ROOT (Mesh, Optimal in time, and Robust). The authors mentioned that they
significantly improves the results obtained for ROOT in the state-of-the-art [18]. Fox, Yang and Caraffini
studied different prediction methods in ROOT, including the Linear and Quadratic Regression methods,
an Autoregressive model, and Support Vector Regression [19]. Finally, Liu and Liang mapped a ROOT
approach to minimize the electric bus transit center’s total cost in the first stage [20].

In different studies, DE has been used to solve ROOT problems using the Average Fitness approach,
achieving competitive results [21,22]. However, to the best of the authors’ knowledge, there are no studies
that determine DE’s performance in solving ROOT problems with the Survival Time approach, and this
is where this work precisely focuses. This research aims to present an empirical comparison of the
standard DE against three random sampling methods to solve robust optimization over time problems
with a survival time approach to analyze its viability and performance capacity of solving problems in
dynamic environments.

The paper is organized as follows: Section 2 includes ROOT’s definition under a survival time
approach, while in Section 3 the implemented methods based on random sampling are detailed. Section 4
details the standard differential evolution and the objective function used by the algorithm in the present
study. Section 5 specifies the benchmark problems to be solved. After that, Section 6 specifies the
experimental settings and Section 7 shows the results obtained. Finally, Section 8 summarizes the
conclusions and future work.

Math. Comput. Appl. 2020, 25, 72 3 of 16

2. Survival Time Approach

Under this approach, a threshold is predefined to specify the quality that a solution must have to be
considered good or suitable to survive. Once the threshold is defined, the search begins for a solution
whose fitness can remain above the threshold in as many environments as possible. In this sense, the
solution is maintained until its quality does not meet the predefined expectations, and then new robust
solution over time must be sought.

In Equation (1), the function Fs(~x, t, V) to calculate the survival time fitness of a solution ~x at time t is
detailed. It measures the number of environments that a solution remains in above the threshold V.

Fs(~x, t, V) =

{
0 if ft(~x) < V
1 + max{l|∀i ∈ {t, t + 1, ..., t + l} : fi(~x) ≥ V}, in other case

(1)

3. Random Sampling Methods

In the study presented in [18] the authors proposed three random sampling methods to solve
ROOT problems, with a better performance against the state-of-the-art algorithms. The methods are
described below.

In all three methods, the best solution should be searched in the current time’s solutions space,
modifying the solution space when the “Robust method” is used and then using that solution next time
according to the approach used (Survival Time or Average Fitness).

3.1. Mesh

This method performs random sampling in the current search space, then uses the sample with the
best fitness in the current environment as a robust solution over time, using the solution found in the
following times (Figure 1).

Figure 1. Mesh method. The yellow point is the robust solution found by the method and it is used in the
next times.

3.2. Time-Optimal

This method performs a search similar to the “Mesh” method, with the difference that the best
solution found being improved using a local search (Figure 2).

Math. Comput. Appl. 2020, 25, 72 4 of 16

Figure 2. Time-optimal method. The green point is the robust solution found by the method, which is used
in the next times.

3.3. Robust

This method performs a search similar to the “Mesh” method, differing in that a smoothing
preprocessing of the solution space is performed before the search process. As seen in Figure 3, the solution
obtained (green dot) can vary concerning the solution with better suitability in the raw environment
(yellow dot).

Figure 3. Robust method. The green point is the robust solution found by the method which is used in the
next times.

4. Differential Evolution

In 1995, Storm and Price proposed an evolutionary algorithm to solve optimization problems in
continuous spaces. DE is based on a population of solutions that, through simple recombination and
mutation, evolves, thus improving individuals’ fitness [23].

Considering the fact that this work, to the best of the authors’ knowledge, is the first attempt to study
DE in this type of ROOT problems (i.e., survival time), and also taking into account that the most popular
DE variant (DE/rand/1/bin) has provided competitive results in ROOT problems under an average
fitness approach [21,22], the algorithm used in this study is precisely the most popular variant known as
DE/rand/1/bin, where ’‘rand” (random) refers to the base vector used in the mutation, ‘’bin” (binomial)
refers to the crossover type used, and 1 means one vector difference computed.

The algorithm starts by randomly generating a uniformly distributed population ~xi,G ∈ i = 1, ..., NP,
where NP is the number of individuals for each generation ‘’G”.

After that, the algorithm enters an evolution cycle until the stop condition is reached. We applied the
maximum number of evaluations allowed ‘’MAXEval” as the stop condition.

Subsequently, to adapt individuals, the algorithm performs recombination, mutation, and the
replacement of each one in the current generation. One of the most popular mutations is DE/rand/1 in

Math. Comput. Appl. 2020, 25, 72 5 of 16

Equation (2), where r0 6= r1 6= r2 6= i are the indices of individuals randomly chosen from the population,
1 is the number of differences used in the mutation and F > 0 is the scale factor.

~vi,G = ~xr0,G + F(~xr1,G −~xr2,G) (2)

The vector obtained ~vi,G is known as mutant vector, which is recombined with the target (parent)
vector by binomial crossover, as detailed in Equation (3).

ui,j,G =

{
vj,i,G, i f

(
randj ≤ CR

)
or (j = jrand)

xj,i,G, otherwise
(3)

In this study, the elements of the child vector (also called trial) ui,j,G are limited according to the
pre-established maximum and minimum limits, also known as boundary constraints. Based on the study
in [24], we use the boundary method (see Algorithm 1, line 14). In the selection process, the algorithm
determines the vector that will prevail for the next generation between parent (target) and child (trial), as
expressed in Equation (4).

~xi,G+1 =

{
~ui,G, i f (f (~ui,G) ≤ f (~xi,G))

~xi,G, otherwise
(4)

Algorithm 1: “DE/rand/1/bin” Algorithm. NP, MAXEval , CR and F are parameters defined by
the user. D is the dimension of the problem.

1 G ← 0
2 Generate an uniform initial random population ~xi,G ∈ i = 1, ..., NP
3 Compute f (~xi,G)∀i, i = 1, ..., NP
4 Eval ← NP
5 while Eval < MAXEval do
6 for j = 1 to NP do
7 Randomly select r0 6= r1 6= r2 6= i:
8 jrand ← randi([1, D])

9 for j = 1 to D do
10 if randj([0, 1]) < CR or j = jrand then
11 ui,j,G ← xr0,j,G + F(xr1,j,G − xr2,j,G)

12 else
13 ui,j,G ← xi,j,G

14 ui,G ← min(max(ui,G, xmin), xmax)
15 if f (~ui,G) ≥ f (~xi,G) then
16 ~xi,G+1 ← ~ui,G
17 else
18 ~xi,G+1 ← ~xi,G

19 Eval ← Eval + 1
20 if Eval >= MAXEval then
21 break

22 G ← G + 1

Math. Comput. Appl. 2020, 25, 72 6 of 16

In Equation (1), the function to obtain an individual’s fitness through the survival time approach is
shown. However, the fitness obtained is not enough to differentiate similar individuals, i.e., individuals
who have survived the same amount of environments. That is why, in the implemented algorithm, we
consider an additional calculation to help identify better solutions.

We propose to obtain the average of the solution’s quality in the environments that have survived.
This average value helps to differentiate solutions with similar survival times. Therefore, the objective
function now considers both, the number of surviving environments and the performance achieved by
this solution in those environments that it has survived.

Considering the fact that the maximum height of the peaks is defined at 70 (see Table 3), the objective
function for the implemented algorithm is given by the result obtained in Equation (1) multiplied by 100
plus the average fitness of the solution throughout the environments it has survived.

5. Benchmark Problems

The problems tackled in this study are based on Moving Peaks Benchmark (MPB) [25] and are
configured in a similar way to that used in various specialized literature publications on ROOT, and
specifically as used in [18].

Two modified MPBs can be highlighted, which are described in the following subsections. The
dynamics used are presented in Table 1, where ∆φ is the increment from time t to time t + 1 of the
φ parameter.

Table 1. Dynamic Functions.

1. Small Step ∆φ = γ · ‖φ‖ · r · φseverity
2. Large Step ∆φ = ‖φ‖ · (γ ∗ sign(r) + (γmax − γ) · r) · φseverity
3. Random ∆φ = N(0, 1) · φseverity
4. Chaotic φt+1 = φmin + A · (φt − φmin) · (1− (φt − φmin)/‖φ‖)

5.1. Moving Peaks Benchmark 1 (MPB1)

In this benchmark, environments with conical peaks of height h(t) ∈ [hmin, hmax], width w(t) ∈
[wmin, wmax] and center c(t) ∈ [xmin, xmax] are generated, where the design variable x is bounded in
[xmin, xmax]. The function to generate the environment is expressed in Equation (5), where the dynamic
function for height and width is given as in Table 1, while the center moves according to Equation (6).
ri follows an uniform distribution of a D-dimensional sphere of radius si, and λ ∈ [0, 1] is a fixed parameter.

f (~x,~a(t)) = maxi=m
i=1 {hi(t)− wi(t)‖~x−~ci(t)‖l2} (5)

~ci(t + 1) = ~ci(t) +~vi(t + 1)

~vi(t + 1) = si (1− λ)ri(t + 1) + λvi(t)
‖(1− λ)ri(t + 1) + λvi(t)‖

(6)

In the present study, two problems generated by this benchmark are solved, with λ = 0 it implies
that the movement of the peaks is random, while with λ = 1 it implies that the movement is constant in
the direction ~vi(t).

5.2. Moving Peaks Benchmark 2 (MPB2)

The set of test functions in this benchmark is described in Equation (7), where~a(t) is the environment
at time step t, hi(t), wi(t),~ci(t) is the height, width and center of the i-th peak function at time t, respectively;

Math. Comput. Appl. 2020, 25, 72 7 of 16

~x is the decision variable and m is the total number of peaks. hi(t + 1) and wi(t + 1) vary according to
Table 1. An additional technique that uses a rotation matrix is used to rotate the centers [25].

f (~x,~a(t)) =
1
d

d

∑
j=1

maxi=m
i=1 {hi(t)− wi(t)‖~x−~ci(t)‖} (7)

6. Experimental Settings

Based on the information in Section 5, different environments are generated as test problems and they
are summarized in Table 2.

Table 2. Summary of problems.

Benchmark Abbreviation Configuration Dynamic (δ)

MPB1 B1Dδ− 1 λ = 0 {1,2,3,4}
MPB1 B1Dδ− 2 λ = 1 {1,2,3,4}
MPB2 B2Dδ− a uniform start of peak distribution {1,2,3,4}
MPB2 B2Dδ− b random start of peak distribution {1,2,3,4}

The parameter settings of the problems are detailed in Table 3.

Table 3. Parameters settings.

Parameter MPB1 MBP2

Number of peaks m 5 25
Number of dimensions d 2 2
Search range [xmin, xmax] [0, 50] [−25, 25]
Height range [hmin, hmax] [30, 70] [30, 70]
Width range [wmin, wmax] [1, 12] [1, 13]
Angle range [θmin, θmax] - [−π, π]
heightseverity U(1, 10) 5.0
widthseverity U(0.1, 1) 0.5
angleseverity - 1.0
Initial h 50 U(hmin, hmax)
Initial w 6 U(wmin, wmax)
Initial Angle - 0
λ {0, 1} -
Number of dimensions for rotation lr - 2
Computational budget at each step ∆e 2500 2500

The height and width of the peaks were randomly initialized in the predefined ranges. The centers
were randomly initialized within the solution space.

A survival threshold V = 50 is selected, representing the most difficult cases that have been resolved
in the literature under the survival approach. The higher the survival threshold, the more difficult it is to
find solutions that satisfy multiple scenarios.

The DE parameters were fine-tuned using the iRace tool [26] and they are summarized in Table 4,
where NP is the population size, CR is the crossover parameter, and F is the scale factor.

Math. Comput. Appl. 2020, 25, 72 8 of 16

Table 4. Parameter settings of DE.

NP CR F

54 0.53 0.73

For each problem, a solution is sought at each time t ∈ (2, ..., 100).
In order to evaluate an RSOT in a specific time, approximate and predictive methods have been used

in the literature so that the performance of an algorithm depends on their accuracy. However, in this
study, we want to know the DE behavior when solving the ROOT environments considering they had
ideal predictors to evaluate the solutions. In this regard, the process to study the algorithm’s ability to find
RSOT using DE at each instant of time is as follows:

• A solution is sought according to the algorithm described in Section 4, and the measured solution
value by Equation (1) is recorded.

• Subsequently, to obtain the algorithm’s performance in the following environment, the search process
is performed again using the real-environments; the best solution found is newly measured by
Equation (1) and is also recorded.

• The described procedure is carried out at each instant of time that is being recorded. Therefore, in the
present study, it is not necessary to detect environmental changes to know at what point in time a
solution is no longer considered good. Each time a solution is sought, the algorithm initializes its
population randomly, avoiding diversity problems.

7. Results and Discussion

The results for the problems generated with dynamics 1–4 are detailed in Table 7 and graphically
shown in Figures 6–9, for each one of the four dynamics. In all four figures, those labeled with (a) and (b)
present the results obtained in the MPB1 problems, while those labeled with (c) and (d) refer to the MPB2
problems. In all cases, the average survival values obtained by Mesh, time-optimal and robust approaches
are compared against DE.

Non-parametric statistical tests [27] were applied to the corresponding numerical results presented in
Table 7. The 95%-confidence Kruskal–Wallis and 95%-confidence Friedman tests were applied and their
obtained p-values are reported in Table 5.

Table 5. Results of the 95%-confidence Kruskal–Wallis (KW) and Friedman (F) tests. The symbol (*)
after letter ‘’D” in the Problem column refers to the type of dynamic used according to columns Dynamic.
A p-value less than 0.05 means that there are significant differences among the compared algorithms in
such problems.

Problem Instance
p-Value

Dynamic 1 Dynamic 2 Dynamic 3 Dynamic 4

KW F KW F KW F KW F

B1D*-1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

B1D*-2 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0082 <0.0001

B2D*-a <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

B2D*-b <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

To further determine differences among the compared algorithms, the 95%-confidence Wilcoxon test
was applied to pair-wise comparisons for each problem instance. The obtained p-values are reported in

Math. Comput. Appl. 2020, 25, 72 9 of 16

Table 6, where the significant improvement with a significance level α = 0.5 is shown in boldface. We can
observe that the Wilcoxon test confirmed significant differences obtained in Kruskal–Wallis and Friedman
Tests, most of them comparing DE/rand/1/bin versus random sampling methods, with the exception of
four corresponding to problems generated with dynamic 4 (B1D4-1 and B1D4-2 both, in the comparison of
DE/rand/1/bin versus Mesh and DE/rand/1/bin versus Time-optimal).

Table 6. Results of the 95%-confidence Wilcoxon signed-rank test. A p-value less than 0.05 means that exists
significant differences.

Problem Algorithm
p-Value

Dynamic 1 Dynamic 2 Dynamic 3 Dynamic 4

B1D*-1

DE/rand/1/bin versus Mesh <0.0001 <0.0001 <0.0001 0.2545

DE/rand/1/bin versus Time-optimal <0.0001 <0.0001 <0.0001 0.2881

DE/rand/1/bin versus Robust <0.0001 <0.0001 <0.0001 <0.0001

Mesh versus Time-optimal 0.1167 0.0019 0.0483 0.8758

Mesh versus Robust <0.0001 0.0006 0.1019 <0.0001

Time-optimal versus Robust <0.0001 <0.0001 0.0007 <0.0001

B1D*-2

DE/rand/1/bin versus Mesh <0.0001 <0.0001 <0.0001 0.7724

DE/rand/1/bin versus Time-optimal <0.0001 <0.0001 <0.0001 0.7531

DE/rand/1/bin versus Robust <0.0001 <0.0001 <0.0001 0.0037

Mesh versus Time-optimal 0.9602 0.9358 0.8852 0.9984

Mesh versus Robust 0.0987 0.9078 0.0087 0.0067

Time-optimal versus Robust 0.104 0.8558 0.0126 0.0069

B2D*-a

DE/rand/1/bin versus Mesh <0.0001 <0.0001 <0.0001 <0.0001

DE/rand/1/bin versus Time-optimal <0.0001 <0.0001 <0.0001 <0.0001

DE/rand/1/bin versus Robust <0.0001 <0.0001 <0.0001 <0.0001

Mesh versus Time-optimal 0.8796 0.6044 0.8479 0.9221

Mesh versus Robust 0.5502 0.9639 <0.0001 0.761

Time-optimal versus Robust 0.4222 0.5658 <0.0001 0.7259

B2D*-b

DE/rand/1/bin versus Mesh <0.0001 <0.0001 <0.0001 <0.0001

DE/rand/1/bin versus Time-optimal <0.0001 <0.0001 <0.0001 <0.0001

DE/rand/1/bin versus Robust <0.0001 <0.0001 <0.0001 <0.0001

Mesh versus Time-optimal 0.7937 0.9805 0.6242 0.9028

Mesh versus Robust 0.7231 0.6922 0.0001 0.3679

Time-optimal versus Robust 0.8786 0.6761 0.0014 0.3369

Table 7 summarizes the mean and standard deviation statistical results obtained by the compared
algorithms. It can be seen that DE/rand/1/bin obtains the highest average values in all the problems
that were solved. Nevertheless, the higher standard deviation values obtained by DE/rand/1/bin in
problems B1D4-1 and B1D4-2 confirm those expressed by the non-parametric tests—the differences are not
significant with respect to the random sampling methods. Figures 4 and 5 have the box-plots for B1D4-1
and B1D4-2, where all the compared algorithms reach survival times between 1 and 3, with the exception
of the Robust approach in B1D4-1, but such a difference was not significant.

Math. Comput. Appl. 2020, 25, 72 10 of 16

Table 7. Statistical Results obtained by each Algorithm in each one of the problem instances. Best statistical
results are marked with boldface.

Problem Algorithm
Dynamic 1 Dynamic 2 Dynamic 3 Dynamic 4

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

B1D*-1

DE/rand/1/bin 10.1438 1.5056 6.1306 0.6816 10.6581 1.4973 1.5678 1.7595

Mesh 4.9337 0.7772 2.9772 0.3448 5.6844 0.8894 0.9429 0.8177

Time-optimal 5.0527 0.7756 3.0365 0.3503 5.7979 0.8857 0.9569 0.8728

Robust 4.4819 0.7853 2.8947 0.3577 5.5371 0.9837 0.3176 0.2515

B1D*-2

DE/rand/1/bin 13.5633 3.866 8.623 2.1388 13.8394 3.6942 1.8219 1.9531

Mesh 10.329 4.0575 5.6162 1.8619 10.5887 3.9488 1.7269 1.8693

Time-optimal 10.3309 4.0328 5.6104 1.8461 10.5731 3.923 1.7235 1.8584

Robust 10.1437 3.9241 5.6533 1.8166 10.2246 3.7413 1.2843 1.4648

B2D*-a

DE/rand/1/bin 19.1757 0.1236 19.8474 0.0399 19.381 0.0748 18.0117 0.3944

Mesh 6.596 0.7258 6.5154 0.26 6.3956 0.3199 2.7558 0.229

Time-optimal 6.5914 0.7413 6.5321 0.2713 6.4116 0.3177 2.7593 0.2315

Robust 6.6709 0.7904 6.5109 0.2611 6.1947 0.2593 2.7411 0.2276

B2D*-b

DE/rand/1/bin 16.9954 0.4005 18.1336 0.1144 17.7187 0.1345 13.1993 0.8169

Mesh 5.5729 0.8528 5.2304 0.3239 4.8788 0.2544 2.2192 0.3461

Time-optimal 5.5825 0.836 5.233 0.3227 4.868 0.2463 2.2238 0.3472

Robust 5.6479 0.981 5.215 0.3266 4.7578 0.2359 2.1818 0.334

Mesh Time-optimal Robust DE

0

1

2

3

4

5

6

A
v
e
ra

g
e
d
 s

u
rv

iv
a
l
(m

a
x
 2

0
).

 T
h
re

s
h
o
ld

 V
=

5
0

Figure 4. Boxplot of the results obtained in B1D4-1.

Math. Comput. Appl. 2020, 25, 72 11 of 16

Mesh Time-optimal Robust DE

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
d
 s

u
rv

iv
a
l
(m

a
x
 2

0
).

 T
h
re

s
h
o
ld

 V
=

5
0

Figure 5. Boxplot of the results obtained in B1D4-2.

With respect to the graphical results, when MPB1 (items (a) and (b)) is compared against MPB2 (items
(c) and (d)) in Figures 6–9, it is clear that MPB1 is more difficult to solve by all four approaches. However,
in all cases (MPB1 and MPB2 in the four dynamics) DE is able to provide better results against the three
other algorithms. Such a performance is more evident in all MPB2 instances.

Regarding MPB1 (items (a) and (b)), it is important to note that it is more difficult to find higher
survival times when the peak movement is random (items (a), where λ = 0).

Another interesting behavior found is that all four compared methods are affected mainly by
the random and chaotic dynamics in those MPB1 instances, the latter one being the most complex
(chaotic dynamic). However, even in such a case DE was able to match and in some cases improve the
survival values of the compared approaches. This source of difficulty now found motivates part of our
future research.

Math. Comput. Appl. 2020, 25, 72 12 of 16

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(a) B1D1− 1.

0 50 100 150

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(b) B1D1− 2.

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(c) B2D1− a.

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(d) B2D1− b.
Figure 6. Results obtained using dynamic 1.

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(a) B1D2− 1.

0 50 100 150

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(b) B1D2− 2.
Figure 7. Cont.

Math. Comput. Appl. 2020, 25, 72 13 of 16

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(c) B2D2− a.

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(d) B2D2− b.
Figure 7. Results obtained using dynamic 2.

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(a) B1D3− 1.

0 50 100 150

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(b) B1D3− 2.

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(c) B2D3− a.

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(d) B2D3− b.
Figure 8. Results obtained using dynamic 3.

Math. Comput. Appl. 2020, 25, 72 14 of 16

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(a) B1D4− 1.

0 50 100 150

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(b) B1D4− 2.

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(c) B2D4− a.

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
d

 s
u

rv
iv

a
l
(m

a
x
 2

0
).

 T
h

re
s
h

o
ld

 V
=

5
0

Mesh

Time-optimal

Robust

DE

(d) B2D4− b.
Figure 9. Results obtained using dynamic 4.

8. Conclusions

A performance analysis of the differential evolution algorithm, with one of its original variants, called
DE/rand/1/bin, when solving robust optimization over time problems with a survival time approach, was
presented in this paper. Three state-of-the-art random sampling methods to solve ROOT problems were
used for comparison purposes. Sixteen generated problems by two benchmarks with two configurations
and four different dynamics were solved. The solutions generated by the DE were obtained using the real
environments without prediction mechanisms with the aim to analyze its behavior in ideal conditions. The
findings supported by the obtained results indicate that DE is a suitable algorithm to deal with this type of
dynamic search space when a survival time approach is considered. Moreover, the additional criterion
that was added to the DE objective function allowed the algorithm to better discriminate between similar
solutions in terms of survival time. Furthermore, it was found that the combination of a chaotic dynamic
with both, random and constant peak movements, is a source of difficulty that requires further analysis.

This last finding is the starting point of our future research, where more recent DE variants, such as
DE/current-to-p-best, will be tested in those complex ROOT instances. Moreover, the effect of predictors
in DE-based approaches will be studied.

Author Contributions: Conceptualization, J.-Y.G.-G.; methodology, E.M.-M. and J.-Y.G.-G.; software, J.-Y.G.-G.; data
curation, J.-Y.G.-G.; investigation, J.-Y.G.-G.; formal analysis, J.-Y.G.-G. and E.M.-M.; validation, E.M.-M. and S.D.-I.;
writting—original draft preparation, J.-Y.G.-G., E.M.-M. and S.D.-I.; writing—review and editing, S.D.-I., E.M.-M. and
J.-Y.G.-G. All authors have read and agreed to the published version of the manuscript.

Math. Comput. Appl. 2020, 25, 72 15 of 16

Funding: The first author acknowledges support from the Mexican National Council of Science and Technology
(CONACyT) through a scholarship to pursue graduate studies at the University of Veracruz.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DE Differential Evolution
MPB1 Moving Peaks Benchmark 1
MPB2 Moving Peaks Benchmark 2
ROOT Robust Optimization over Time
RSOT Robust Solution over Time
S.D. Standard deviation

References

1. Nguyen, T.T.; Yang, S.; Branke, J. Evolutionary dynamic optimization: A survey of the state of the art. Swarm
Evolut. Comput. 2012, 6, 1–24. [CrossRef]

2. Dang, D.C.; Jansen, T.; Lehre, P.K. Populations Can Be Essential in Tracking Dynamic Optima. Algorithmica 2017,
78, 660–680. [CrossRef] [PubMed]

3. Yang, S.; Li, C. A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic
environments. IEEE Trans. Evolut. Comput. 2010, 14, 959–974. [CrossRef]

4. Yang, S.; Yao, X. Evolutionary Computation for Dynamic Optimization Problems; Springer: Berlin/Heidelberg,
Germany, 2013. [CrossRef]

5. Das, S.; Mullick, S.S.; Suganthan, P. Recent advances in differential evolution—An updated survey. Swarm
Evolut. Comput. 2016, 27, 1–30. [CrossRef]

6. Lin, L.; Zhu, M. Efficient Tracking of Moving Target Based on an Improved Fast Differential Evolution Algorithm.
IEEE Access 2018, 6, 6820–6828. [CrossRef]

7. Zhu, Z.; Chen, L.; Yuan, C.; Xia, C. Global replacement-based differential evolution with neighbor-based memory
for dynamic optimization. Appl. Intell. 2018, 48, 3280–3294. [CrossRef]

8. Yu, X.; Jin, Y.; Tang, K.; Yao, X. Robust optimization over time; A new perspective on dynamic optimization
problems. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010;
pp. 1–6. [CrossRef]

9. Fu, H.; Sendhoff, B.; Tang, K.; Yao, X. Characterizing environmental changes in Robust Optimization Over Time.
In Proceedings of the IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012;
pp. 1–8. [CrossRef]

10. Fu, H.; Sendhoff, B.; Tang, K.; Yao, X. Finding Robust Solutions to Dynamic Optimization Problems. In
Applications of Evolutionary Computation; Esparcia-Alcázar, A.I., Ed.; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 616–625.

11. Jin, Y.; Tang, K.; Yu, X.; Sendhoff, B.; Yao, X. A framework for finding robust optimal solutions over time. Memetic
Comput. 2013, 5, 3–18. [CrossRef]

12. Wang, H.L.G.C. The Evolutionary Algorithm to Find Robust Pareto-Optimal Solutions over Time. Math. Probl.
Eng. 2014, 2014, 814210.

13. Huang, Y.; Ding, Y.; Hao, K.; Jin, Y. A multi-objective approach to robust optimization over time considering
switching cost. Inf. Sci. 2017, 394–395, 183–197. [CrossRef]

14. Yazdani, D.; Branke, J.; Omidvar, M.N.; Nguyen, T.T.; Yao, X. Changing or Keeping Solutions in Dynamic
Optimization Problems with Switching Costs. In Proceedings of the Genetic and Evolutionary Computation
Conference, Kyoto, Japan, 15–19 July 2018; pp. 1095–1102. [CrossRef]

http://dx.doi.org/10.1016/j.swevo.2012.05.001
http://dx.doi.org/10.1007/s00453-016-0187-y
http://www.ncbi.nlm.nih.gov/pubmed/28690348
http://dx.doi.org/10.1109/TEVC.2010.2046667
http://dx.doi.org/10.1007/978-3-642-38416-5
http://dx.doi.org/10.1016/j.swevo.2016.01.004
http://dx.doi.org/10.1109/ACCESS.2018.2793298
http://dx.doi.org/10.1007/s10489-018-1147-9
http://dx.doi.org/10.1109/CEC.2010.5586024
http://dx.doi.org/10.1109/CEC.2012.6256410
http://dx.doi.org/10.1007/s12293-012-0090-2
http://dx.doi.org/10.1016/j.ins.2017.02.029
http://dx.doi.org/10.1145/3205455.3205484

Math. Comput. Appl. 2020, 25, 72 16 of 16

15. Novoa-Hernández, P.; Pelta, D.A.; Corona, C.C. Approximation Models in Robust Optimization Over Time—An
Experimental Study. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de
Janeiro, Brazil, 8–13 July 2018; pp. 1–6. [CrossRef]

16. Novoa-Hernández, P.; Puris, A. Robust optimization over time: A review of most relevant contributions
[Optimización robusta en el tiempo: Una revisión de las contribuciones más relevantes]. Rev. Iber. Sist. Tecnol.
Inf. 2019, 2019, 156–164.

17. Yazdani, D.; Nguyen, T.T.; Branke, J. Robust Optimization Over Time by Learning Problem Space Characteristics.
IEEE Trans. Evolut. Comput. 2019, 23, 143–155. [CrossRef]

18. Adam, L.; Yao, X. A Simple Yet Effective Approach to Robust Optimization Over Time. In Proceedings of
the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019;
pp. 680–688.

19. Fox, M.; Yang, S.; Caraffini, F. An Experimental Study of Prediction Methods in Robust optimization Over Time.
In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020;
pp. 1–7.

20. Liu, Y.; Liang, H. A ROOT Approach for Stochastic Energy Management in Electric Bus Transit Center with PV
and ESS. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI,
USA, 9–13 December 2019; pp. 1–6.

21. Guzmán-Gaspar, J.; Mezura-Montes, E. Differential Evolution Variants in Robust Optimization Over
Time. In Proceedings of the 2019 International Conference on Electronics, Communications and Computers
(CONIELECOMP), Cholula, Mexico, 27 February–1 March 2019; pp. 164–169.

22. Guzmán-Gaspar, J.; Mezura-Montes, E. Robust Optimization Over Time with Differential Evolution using
an Average Time Approach. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC),
Wellington, New Zealand, 10–13 June 2019; pp. 1548–1555.

23. Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution a Practical Approach to Global Optimization, 1st ed.;
Springer: Berlin/Heidelberg, Germany, 2005.

24. Juárez-Castillo, E.; Acosta-Mesa, H.G.; Mezura-Montes, E. Adaptive boundary constraint-handling scheme for
constrained optimization. Soft Comput. 2019, 23, 8247–8280. [CrossRef]

25. Li, C.; Yang, S.; Nguyen, T.T.; Yu, E.L.; Yao, X.; Jin, Y.; Beyer, H.G.; Suganthan, P.N. Benchmark Generator for
CEC 2009 Competition on Dynamic Optimization. Available online: https://bura.brunel.ac.uk/bitstream/2438/
5897/2/Fulltext.pdf (accessed on 24 October 2020).

26. López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.; Birattari, M.; Stützle, T. The irace package: Iterated
racing for automatic algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

27. García, S.; Molina, D.; Lozano, M.; Herrera, F. A Study on the Use of Non-Parametric Tests for Analyzing
the Evolutionary Algorithms’ Behaviour: A Case Study on the CEC’2005 Special Session on Real Parameter
Optimization. J. Heuristics 2009, 15, 617–644. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/CEC.2018.8477670
http://dx.doi.org/10.1109/TEVC.2018.2843566
http://dx.doi.org/10.1007/s00500-018-3459-4
https://bura.brunel.ac.uk/bitstream/2438/5897/2/Fulltext.pdf
https://bura.brunel.ac.uk/bitstream/2438/5897/2/Fulltext.pdf
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1007/s10732-008-9080-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Survival Time Approach
	Random Sampling Methods
	Mesh
	Time-Optimal
	Robust

	Differential Evolution
	Benchmark Problems
	Moving Peaks Benchmark 1 (MPB1)
	Moving Peaks Benchmark 2 (MPB2)

	Experimental Settings
	Results and Discussion
	Conclusions
	References

