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Abstract: Free in-plane vibrations of a scimitar-type nonprismatic rotating curved beam, with a
variable cross-section and increasing sweep along the leading edge, are calculated using an innovative,
efficient and accurate solver called the Adomian modified decomposition method (AMDM).
The equation of motion includes the axial force resulting from centrifugal stiffening, and the boundary
conditions imposed are those of a cantilever beam, i.e., clamped-free and simple-free. The AMDM
allows the governing differential equation to become a recursive algebraic equation suitable for
symbolic computation, and, after additional simple mathematical operations, the natural frequencies
and corresponding closed-form series solution of the mode shapes are obtained simultaneously.
Two main advantages of the application of the AMDM are its fast convergence rate to a solution and its
high degree of accuracy. The design shape parameters of the beam, such as transitioning from a straight
beam pattern to a curved beam pattern, are investigated. The accuracy of the model is investigated
using previously reported investigations and using an innovative error analysis procedure.

Keywords: non-prismatic beam; Adomian modified decomposition method; rotation; curved beam;
error analysis

1. Introduction

A scimitar rotor blade, with increasing sweep along the leading-edge and made of modern
light-weight materials, can lead to the production of more thrust and a reduction of propeller noise.
Prop-fan engines that use counter-rotating scimitar rotors achieve better turbo-prop efficiency levels
at high subsonic airspeeds than turbo-fans do. A downside of scimitar-type propellers is that
manufacturing costs tend to be much higher than for more traditional aircraft propellers. In this work,
the characteristics of scimitar rotor blades are investigated using the approximation of a rotating
curved blade.

Analytical solutions for the natural vibrations of rotating scimitar-type curved beams have not been
developed to any great extent. The area most closely associated with scimitar-type curved beams is that
of the nonrotating free vibration analysis of nonuniform thin curved arches and rings, as found in many
civil and mechanical engineering applications. The methods used were mostly based on finite element,
Rayleigh–Ritz, Galerkin and cell discretization methods. A review of the different methods of analysis
for circular arches has been given by Auciello and De Rosa [1]. Tong et al. [2] have used the exact
solution of inextensible thin uniform arches to study the in-plane free and forced vibration of circular
arches with stepped cross-sections. As a consequence, they have also used their method to obtain
an approximate solution for arches with nonuniform cross-sections. Karami and Malekzadeh [3]
used a Differential Quadrature (DQ) method to solve the basic governing equations of thin arches,
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comprising both radial and tangential displacements as the field variables. For nonuniform nonrotating
curved beams, closed-form solutions are rarely available or are even impossible to obtain, since their
analysis involves solving governing differential equations with variable coefficients introduced by the
varying cross-sectional area and moment of inertia. Several numerical techniques have been used for
the analysis of nonuniform curved beams, such as the cell discretization method [1], the differential
quadrature element method [4], the differential quadrature method [3,5], the transfer matrix method [6]
and the finite-element method [7].

A rotating beam differs from a nonrotating beam because it also possesses centrifugal stiffness
and Coriolis effects that influence its dynamics. In general, previous studies [8–10] have employed the
Euler–Bernoulli beam theory, where various approximate solution techniques have been used to obtain
the dynamic characteristics of the rotating beams. To investigate the effect of the centrifugal force,
Yoo et al. [11] used a modal formulation to obtain the natural frequencies.

In this work, the chosen method of solution is the Adomian Modified Decomposition method (AMDM).
Studies have been performed by several groups [12–15] on uniform beams using the Adomian
decomposition and Adomian modified decomposition method, which start with either the
Euler–Bernoulli or Timoshenko formulations. Mao [12] applied the AMDM to rotating uniform
beams and included a centrifugal stiffening term, whereas Hsu et al. [13] applied the AMDM to
Timoshenko beams. Adair and Jaeger [14] applied the AMDM to rotating tapered beams, and Adair and
Jaeger [15] applied the AMDM to uniform pretwisted rotating Euler–Bernoulli beams. Several methods
have been developed that use a power series solution to determine the natural frequencies of
rotating nonuniform beams, where the differential equation with variable coefficients is solved via the
Frobenius series. For example, Wang et al. [16] obtained the free vibrations of uniformly tapered beams,
where the accuracy of the solution depended on the number of terms included in the Frobenius function
and increased with higher modes, taper and rotational speed. Adair and Jaeger [17] developed a
power series solution for rotating nonuniform Euler–Bernoulli cantilever beams. Banerjee et al. [18]
studied the free vibration frequencies of tapered beams with various boundary conditions, where the
structure was discretized using beam elements with constant cross-sections in order to make the
considered stiffness lower that the physical stiffness. Özdemir and Kaya [19] investigated the free
vibrations of rotating beams using the differential transformation method, while Gunda et al. [20]
used a linear combination of terms for the functions derived from the exact solution of the governing
static differential equation of a stiff-string and that of a nonrotating beam. They proposed these new
hybrid-type functions to determine the free frequencies in both cases, i.e., with and without rotation.
Some interesting work has been recently carried out concerning calculations involving rotating beams
for various applications. Yang et al. [21] has investigated the gyroscopic effect in the free vibration of
rotating beams, while Chen and Du [22] have developed a Fourier series solution for a rotating beam
with elastic boundary supports. Furthermore, Qin et al. [23] have considered the vibration of a rotating
composite thin-walled beam under aerodynamic forces and within a hygrothermal environment,
while Jokar et al. [24] have calculated the vibrations of turbine blades within the renewable energy field.

In this paper, an efficient method called the Adomian modified decomposition method is used to
calculate the vibration characteristics of a curved scimitar-type rotating beam, where the cross-sectional
area can vary arbitrarily, and where centrifugal stiffening is included. The AMDM is employed to
solve a sixth-order governing differential equation to obtain the tangential displacement under various
rotational speeds, beam radii and taper parameters. Other studies have demonstrated that the AMDM is
a powerful method for solving linear and nonlinear differential equations, and it has the advantage of
computational simplicity. In addition, it does not involve linearization, discretization, perturbation or
a priori assumptions, which may alter the physics of the problem considered [25]. For the AMDM,
the solution is considered to be the sum of an infinite series with a rapid convergence [26]. When applying
the AMDM, the governing differential equation becomes a recursive algebraic equation, and the boundary
conditions become simple algebraic frequency equations that are suitable for symbolic computation.
After some algebraic operations on the frequency equations for any ith natural frequency, the closed-form
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series solution for any ith mode shape can be obtained. Clamped-free boundary conditions are imposed,
which can be briefly summarized as: at the inner root (or hub), the beam does not experience
any deflection; and at the free end, the beam experiences no bending moment and no shearing force.
Simple-free boundary conditions are also tested. The reasonable agreement between the results found
here and those reported previously, together with the use of an innovative error analysis procedure [27,28],
demonstrates the accuracy and efficiency of the proposed method.

2. Governing Equations

A scimitar-type rotating curved beam can basically be thought of as a thin rotating circular beam
with a variable cross-section, as shown in Figure 1.
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The equations of motion, when taking the effects of shear deformation and rotary inertia into account,
are [29]:

∂T(θ, t)
∂θ

+ N(θ, t) − µ(θ)R
∂2u(θ, t)
∂t2 = 0, (1)

∂N(θ, t)
∂θ

− T(θ, t) − µ(θ)R
∂2w(θ, t)
∂t2 = 0, (2)

∂M(θ, t)
∂θ

−RT(θ, t) = 0, (3)

where T(θ, t) denotes the shear force, N(θ, t) the normal force, M(θ, t) the bending moment, µ(θ) the
mass per unit length (≡ ρA(θ)) and R the radius of the circular beam. The flexural deformations are
more important than the axial deformation for the lowest modes of vibration [2], so that it is possible
to neglect the extensibility of the beam’s neutral axis. The inextensibility condition is written as:

u =
∂w
∂θ

, (4)

with the bending moment expressed as:

M(θ, t) = −
EI(θ)

R2

(
∂2u
∂θ2 + u

)
= −

EI(θ)
R2

(
∂3w
∂θ3 +

∂w
∂θ

)
, (5)

where E is Young’s modulus, and I(θ) is the second moment of area. On substituting (5) into (3),
an expression for the shear force is found:

T(θ, t) = −
1

R3
∂
∂θ

[
EI(θ)

(
∂3w
∂θ3 +

∂w
∂θ

)]
. (6)
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From (1) and (6), the following relation, identifying the normal force, is found:

N(θ, t) = −∂T(θ,t)
∂θ +µ(θ)R∂2u(θ,t)

∂t2

= 1
R2

∂2

∂θ2

[
EI(θ)

(
∂3w
∂θ3 + ∂w

∂θ

)]
+ µ(θ)R∂3w(θ,t)

∂θ∂t .
(7)

By substitution the equation of motion for the deflection component, w can be written as:

∂3

∂θ3

[
EI(θ)

(
∂3w(θ,t)
∂θ3 +

∂w(θ,t)
∂θ

)]
+ ∂

∂θ

[
EI(θ)

(
∂3w(θ,t)
∂θ3 +

∂w(θ,t)
∂θ

)]
+R4 ∂

∂θ

[
µ(θ)

∂3w(θ,t)
∂θ∂t2

]
− µ(θ)R4 ∂w2(θ,t)

∂t2 = 0.
(8)

According to the modal analysis for the harmonic free vibration, w(θ, t) can be separable in space
and time as:

w(θ, t) = ϕ(θ)h(t), (9)

where ϕ(θ) is the modal deflection, and h(t) is a harmonic function of time. If ω denotes the circular
frequency of h(t), then the eigenvalue problem of (8) is reduced to:

d3

dθ3

EI(θ)

d3ϕ

dθ3 +
dϕ
dθ

+ d
dθ

EI(θ)

d3ϕ

dθ3 +
dϕ
dθ

−R4ω2
(

d
dθ

[
µ(θ)

dϕ
dθ

]
− µ(θ)ϕ

)
= 0. (10)

Centrifugal stiffening occurs within rotors due to rotation and is given by:

Ts(θ) =

θ0∫
θ

[
µ(θ)Ω2(rh + θ

]
dθ, (11)

where Ts is the centrifugal stiffening, Ω is the angular rotating speed of the rotor, and rh is the offset
length between the rotor and rotating hub center. For this work, the rotor is considered as a rotating
beam without any offset, due to the presence of a hub, except for Figure 8 where the effect of the hub
offset is considered. The governing equation for the tangential displacement of the beam becomes:

d3

dθ3

[
EI(θ)

(
d3ϕ
dθ3 +

dϕ
dθ

)]
+ d

dθ

[
EI(θ)

(
d3ϕ
dθ3 +

dϕ
dθ

)]
−R4 d

dθ

[
T(θ)dϕ

dθ

]
−R4ω2

(
d

dθ

[
µ(θ)

dϕ
dθ

]
− µ(θ)ϕ

)
= 0.

(12)

3. Application of the AMDM

A flowchart is provided in the Appendix A to help the reader follow the various steps involved
when using the Adomian modified decomposition method.

In order to simplify the analysis, the following parameters are introduced:

x = θ/θ0, λ1 = ω2ρA0R4

EI0
, λ2 = Ω2ρA0R4

EI0
. (13)

Assuming a rectangular cross-section with a constant breath and linearly varying width,
the cross-sectional area and moment of inertia can be expressed in general as:

A(x) = A0a(x) = A0(1 + α(2x− 1))r1 ,
I(x) = I0b(x) = I0(1 + α(2x− 1))r2 ,

(14)

where r1 and r2 are real positive, α is the taper parameter, and A0 and I0 are the cross-sectional area
and moment of inertia of the beam directly above the origin, as shown in Figure 2. This is the case for
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r1 = 1 and r2 = 3 and where the cross-sectional width is h(x) = h0(1 + α(2x− 1)), with this case being
used in the following development.
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Then, (12), together with (13) and (14), can be combined and expanded to give the following
sixth-order differential equation:

ϕ′′′′′′ + 18α
a(x)ϕ

′′′′′ + 2
(a(x))2

[
(a(x)θ0)

2 + 36α2
]
ϕ′′′′ + 24α

b(x)

[
(a(x)θ0)

2 + 2α2
]
ϕ′′′

+
(
θ0

a(x)

)2[
(a(x)θ0)

2 + 72α2
− λ1θ2

0 − λ2γθ2
0

]
ϕ′′

+
2αθ2

0
b(x)

[
3(a(x)θ0)

2 + 24α2
− λ1θ2

0 − λ2γ′θ2
0

]
ϕ′ +

θ6
0λ1

(a(x))2ϕ = 0,

(15)

where γ = 1
6

(
3 + α+ 3(α− 1)x2

− 4αx3
)
, and ϕ′ and γ′ indicate a derivative w.r.t. x.

According to the AMDM, ϕ(x) in (15) can be expressed as an infinite series, i.e.:

ϕ(x) =
∞∑

m=0

Cmxm (16)

where the unknown coefficients Cm are determined recurrently. If a linear operator G ≡ d6/dx6 is used,
then the inverse operator of G is a six-fold integral operator defined as:

G−1 =

x∫
0

x∫
0

x∫
0

x∫
0

x∫
0

x∫
0

(· · · )dx dx dx dx dx dx dx. (17)

Then, (15) can now be written as:

ϕ(x) = Φ(x) + G−1
{
−18α
a(x) ϕ

′′′′′
−

2
(a(x))2

[
(a(x)θ0)

2 + 36α2
]
ϕ′′′′

−
24α
b(x)

[
(a(x)θ0)

2 + 2α2
]
ϕ′′′

−

(
θ0

a(x)

)2[
(a(x)θ0)

2 + 72α2
− λ1θ2

0 − λ2γθ2
0

]
ϕ′′

−
2αθ2

0
b(x)

[
3(a(x)θ0)

2 + 24α2
− λ1θ2

0 − λ2γ′θ2
0

]
ϕ′ −

θ6
0λ1

(a(x))2ϕ,

(18)

where Φ(x) =
5∑

m=0
Cmxm = ϕ(0) + ϕ′(0)x + ϕ′′ (0)x2/2! + · · ·+ ϕ′′′′′(0)x5/5!.
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To simplify the computational effort, use can be made of the Cauchy product, first by using a
power series expansion to obtain:

1
1 + α(2x− 1)

=
∞∑

m=0

(−1)k(2α)k

(1− α)k+1
xk =

∞∑
m=0

βkxk, (19)

and then:
1

(1 + α(2x− 1))2 =
∞∑

m=0

βkxk
∞∑

m=0

βkxk =
∞∑

m=0

xk
m∑

j=0

βm− jβ j =
∞∑

m=0

ϑmxm, (20)

1

(1 + α(2x− 1))3 =
∞∑

m=0

βkxk
∞∑

m=0

ϑmxm =
∞∑

m=0

xk
m∑

j=0

βm− jϑ j =
∞∑

m=0

κmxm. (21)

By substituting the decomposition (16) into (18) and making use of (19)–(21) as alternatives for
a(x) and b(x):

∞∑
m=0

Cmxm =Φ(x)

+G−1
{
∞∑

m=0
xm

−18α
m∑

j=0
βm− j( j + 1)( j + 2)( j + 3)( j + 4)( j + 5)C j+5

−2θ2
0(m + 1)(m + 2)(m + 3)(m + 4)Cm+4

−72α2
m∑

j=0
ϑm− j( j + 1)( j + 2)( j + 3)( j + 4)C j+4

−24αθ2
0

m∑
j=0

βm− j( j + 1)( j + 2)( j + 3)C j+3

−48α3
m∑

j=0
κm− j( j + 1)( j + 2)( j + 3)C j+3−θ

4
0(m + 1)(m + 2)Cm+2

−

(
72α2θ2

0 − λ1θ4
0 − λ2γθ4

0

) m∑
j=0

ϑm− j( j + 1)( j + 2)C j+2

−6αθ4
0

m∑
j=0
βm− j( j + 1)C j+1

−

(
48α3θ2

0 − 2λ1αθ4
0 − 2λ2αγ′θ4

0

) m∑
j=0

κm− j( j

+1)C j+1 −θ
6
0λ1

m∑
j=0

ϑm− jC j


.

(22)

On integrating, the following is obtained:

∞∑
m=0

Cmxm = ϕ(0) +ϕ′(0) + ϕ′′ (0) x2

2! + ϕ′′′ (0) x3

3! + ϕ′′′′(0) x4

4! + ϕ′′′′′(0) x5

5! .

+
∞∑

m=0

xm+6

(m+1)(m+2)(m+3)(m+4)(m+5)(m+6)

−18α
m∑

j=0
βm− j( j

+1)( j + 2)( j + 3) j + 4)( j + 5)C j+5

−2θ2
0(m + 1)(m + 2)(m + 3)(m + 4)Cm+4

−72α2
m∑

j=0
ϑm− j( j + 1)( j + 2)( j + 3)( j + 4)C j+4

−24αθ2
0

m∑
j=0

βm− j( j + 1)( j + 2)( j + 3)C j+3

−48α3
m∑

j=0
κm− j( j + 1)( j + 2)( j + 3)C j+3 − θ

4
0(m + 1)(m + 2)Cm+2

−

(
72α2θ2

0 − λ1θ4
0 − λ2γθ4

0

) m∑
j=0

ϑm− j( j + 1)( j + 2)C j+2

−6αθ4
0

m∑
j=0

βm− j( j + 1)C j+1

−

(
48α3θ2

0 − 2λ1αθ4
0 − 2λ2αγ′θ4

0

) m∑
j=0

κm− j( j + 1)C j+1−θ
6
0λ1

m∑
j=0

ϑm− jC j



(23)



Math. Comput. Appl. 2020, 25, 68 7 of 18

The recurrence relation for the coefficients Cm can be stated as:

C0 = ϕ(0), C1 = ϕ′(0), C2 =
ϕ′′ (0)

2!
, C3 =

ϕ′′′ (0)
3!

, C4 =
ϕ′′′′(0)

4!
, C5 =

ϕ′′′′′(0)
5!

, (24)

and for m ≥ 6, as:

Cm = 1
m(m−1)(m−2)(m−3)(m−4)(m−5)

−18α
m−6∑
j=0

βm− j−6( j + 1)( j + 2)( j

+3) j + 4)( j + 5)C j+5−2θ2
0(m− 5)(m− 4)(m− 3)(m− 2)Cm−2

−72α2
m−6∑
j=0

ϑm− j−6( j + 1)( j + 2)( j + 3)( j + 4)C j+4

−24αθ2
0

m−6∑
j=0

βm− j−6( j + 1)( j + 2)( j + 3)C j+3

−48α3
m−6∑
j=0

κm− j−6( j + 1)( j + 2)( j + 3)C j+3

−θ4
0(m− 5)(m− 4)Cm−4

−

(
72α2θ2

0 − λ1θ4
0 − λ2γθ4

0

) m−6∑
j=0

ϑm− j−6( j + 1)( j + 2)C j+2

−6αθ4
0

m−6∑
j=0

βm− j−6( j + 1)C j+1

−

(
48α3θ2

0 − 2λ1αθ4
0 − 2λ2αγ′θ4

0

) m−6∑
j=0

κm− j−6( j

+1)C j+1−θ
6
0λ1

m−6∑
j=0

ϑm− j−6C j

.

(25)
Therefore, the coefficients Cm can be found from the recurrent (24) and (25), and the solution for

ϕ(x) can calculated using (22). The series solution is ϕ(x) =
∑
∞

m=0 Cmxm, but all of the coefficients Cm

cannot be determined, and so the solutions must be approximated by the truncated series
∑n−1

m=0 Cmxm,
with the successive approximations beingϕ[n] =

∑n−1
m=0 Cmxm as n increases and the boundary conditions

are met.
Thus ϕ[1](x) = C0, ϕ[2](x) = ϕ[1](x) + C1x, · · · , ϕ[5](x) = ϕ[4](x) + C4x4 serve as

approximate solutions with an increasing accuracy as n→∞ and are also obligated to satisfy
the boundary conditions, which are now discussed.

The boundary conditions for ϕ, in the presence of constraints with the translational spring
constants kTL, kTR and the rotational spring constants kRL, kRR (as shown on Figure 3), are given:Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 9 of 20 

 

 

Figure 3. Scimitar-type curved beam with rotational and translational flexible ends. 

On setting 𝐼1 = 𝐼0(1 + 𝛼)3  as the inertia at the free end of the beam, the coefficients can be 

written as: 

𝑘𝑇𝐿 =
𝐾𝑇𝐿

𝐸𝐼0
,   𝑘𝑇𝑅 =

𝐾𝑇𝑅

𝐸𝐼1
, 𝑘𝑅𝐿 =

𝐾𝑅𝐿

𝐸𝐼0
,   𝑘𝑅𝑅 =

𝐾𝑅𝑅

𝐸𝐼1
. (28) 

and the boundary conditions (26) and (27) can now be written as: 

d2𝜑(0)

d𝑥2
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Figure 3. Scimitar-type curved beam with rotational and translational flexible ends.
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For x = 0:

EI(x)
d2ϕ(x)

dx2 −KRL
dϕ(x)

dx
= 0,

d
dx

EI(x)
d2ϕ(x)

dx2

+ KTLϕ(x) = 0. (26)

For x = 1:

EI(x)
d2ϕ(x)

dx2 + KRR
dϕ(x)

dx
= 0,

d
dx

EI(x)
d2ϕ(0)

dx2

−KTRϕ(x) = 0. (27)

On setting I1 = I0(1+ α)3 as the inertia at the free end of the beam, the coefficients can be written as:

kTL =
KTL

EI0
, kTR =

KTR

EI1
, kRL =

KRL

EI0
, kRR =

KRR

EI1
. (28)

and the boundary conditions (26) and (27) can now be written as:

d2ϕ(0)
dx2 − kRL

dϕ(0)
dx = 0,

d3ϕ(0)
dx3 + 6α(1− α)2 d2ϕ(0)

dx2 + kTLϕ(0) = 0,
d2ϕ(1)

dx2 + kRR
dϕ(1)

dx = 0,
d3ϕ(1)

dx3 + 6α(1 + α)2 d2ϕ(1)
dx2 + kTLϕ(1) = 0.

(29)

The six coefficients Cm(m = 0, 1, 2, . . . , 5) are decided by the boundary conditions of (29), with two
of the coefficients C0 and C1 chosen as arbitrary constants, while the other three coefficients can be
expressed as functions of C0 and C1. Thus, from (24) and (29):

C2 = kRL
2 C1,

C3 =
−6α(1−α)2kRLC1−kTLC0

6 ,

C4 =
−36α(1−α)2C3+kTLC1

24 ,

C5 =
−144α(1−α)2C4+2kTLC2

120 .

(30)

The initial term Φ(x) in (22) is a function of C0, C1, and from the recurrence relation of (25)
the coefficients Cm(m ≥ 6) are functions of C0, C1 and λ1. By substituting ϕ[n](x) into the last two
equations of (29), i.e., for the free end of the beam, we then have:

f [n]r0 (λ1)C0 + f [n]r1 (λ1)C1 = 0, r = 1, 2. (31)

For nontrivial solutions of C0 and C1, the frequency equation is given as:∣∣∣∣∣∣∣ f [n]10 (λ1) f [n]11 (λ1)

f [n]20 (λ1) f [n]21 (λ1)

∣∣∣∣∣∣∣ = 0. (32)

The ith estimated eigenvalue λ
[n]
1(i)

corresponding to n is obtained from (32), i.e., the ith

estimated dimensionless natural frequency Ω[n]
n(i)

=

√
λ
[n]
1(i)

is obtained, and n is determined by

the following equation: ∣∣∣∣Ω[n]
n(i)
−Ω[n−1]

n(i)
≤ ε

∣∣∣∣, (33)
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where Ω[n−1]
n(i)

is the ith estimated dimensionless natural frequency corresponding to n − 1, and ε is

a preset and sufficiently small value. If (33) is satisfied, then Ω[n]
n(i)

is the ith dimensionless natural

frequency Ωn(i). By substituting Ω[n]
n(i)

into (31), we obtain:

C1 = −
f [n]r0

(
Ω[n]

n(i)

)
f [n]r1

(
Ω[n]

n(i)

)C0, r = 1, 2, (34)

and all of the other coefficients Cm can be obtained from (24) and (25). Furthermore, the ith shape
function ϕ[n]

i corresponding to the ith eigenvalue Ω[n]
n(i)

is obtained by:

ϕ
[n]
i (x) =

n−1∑
m=0

C[i]
m xm, (35)

where C[i]
m (x) is Cm(x), in which λ1 is substituted by λ1(i) andϕ[n]

i is the ith eigenfunction corresponding
to the ith eigenvalue λ1(i). By normalizing (35), the ith normalized eigenfunction is defined as:

ϕ
[n]
i (x) =

ϕ
[n]
i (x)√∫ 1

0

[
ϕ
[n]
i (x)

]2
dx

, (36)

where ϕ[n]
i (x) is the ith mode shape function of the beam corresponding to the ith natural frequency

ω
[n]
i =

√
λ
[n]
i

√
EI0/ρA0R4 = Ω[n]

n(i)

√
EI0/ρA0R4.

4. Numerical Results

4.1. Unsymmetrical Nonrotating Arch

The AMDM was first partially validated using the unsymmetrical nonprismatic, nonrotating
arch shown on Figure 2, whose cross-sectional height varies as h0(1 + α(2x− 1)). In this example,
the beam is considered as a clamped-free beam, so that kRL →∞, kTL →∞, kRR = 0 and kRT = 0.
Furthermore, the beam is not rotating, so the terms in (15) involving Ω are set to zero. The boundary
conditions are:

ϕ(0) = 0,
dϕ(0)

dx
= 0,

d2ϕ(1)
dx2 = 0,

d3ϕ(1)
dx3 = 0. (37)

The coefficients C0 and C1 can be set to zero and the coefficients C2 and C3 set as arbitrary constants.
The coefficients C4 and C5 are expressed in terms of C0 and C1 with the coefficients Cm found from (25).

By substituting ϕ[n] =
n−1∑
m=0

Cmxm into the last two boundary conditions of (37), two algebraic equations

involving C2 and C3 can be written as:

n−3∑
m=0

(m + 1)(m + 2)Cm+2 = f [n]12 (λ1)C2 + f [n]13 (λ1)C3 = 0 (38)

n−4∑
m=0

(m + 1)(m + 2)(m + 3)Cm+3 = f [n]22 (λ1)C2 + f [n]23 (λ1)C3 = 0 (39)
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For nontrivial solutions of C2 and C3, the frequency equation can be written as:

f [n]12 (λ1) f [n]23 (λ1) − f [n]22 (λ1) f [n]13 (λ1) = 0 (40)

This problem has also been considered by Liu and Wu [5] and Karami and Malekzadeh [3], and the
current results for dimensionless natural frequencies are compared with those of [5] in Table 1.

Table 1. Nondimensional natural frequencies for a nonrotating arch under clamped-free
boundary conditions.

θ0 (deg) AMDM DQ [5] Dev
(%)

AMDM DQ [5] Dev
(%)

Ωn(1)

α = 0.1 α = 0.2

10 10.0834 10.0834 0 9.4062 9.4064 −0.002
20 5.0465 5.0465 0 4.7077 4.7078 −0.002
40 2.5328 2.5328 0 2.3631 2.3630 +0.004
60 1.6993 1.6993 0 1.5857 1.5856 +0.006
80 1.2858 1.2858 0 1.2000 1.1999 +0.008

Ωn(1)

α = 0.3 α = 0.4

10 8.7089 8.7087 +0.002 7.9817 7.9805 +0.015
20 4.3588 4.3586 +0.005 3.9951 3.9943 +0.020
40 2.1582 2.1580 +0.009 2.0059 2.0053 +0.030
60 1.4685 1.4683 +0.014 1.3466 1.3460 +0.045
80 1.1117 1.1115 +0.018 1.0194 1.0191 +0.030

Ωn(2)

α = 0.1 α = 0.2

10 26.3098 26.3097 +0.0004 25.7092 25.7091 +0.0003
20 13.0809 13.0808 +0.0008 12.7757 12.7756 +0.0008
40 6.4038 6.4038 0 6.2430 6.2429 +0.0016
60 4.1398 4.1399 −0.002 4.0264 4.0263 +0.0025
80 2.9956 2.9955 +0.003 2.9064 2.9062 +0.0067

Ωn(2)

α = 0.3 α = 0.4

10 25.0359 25.0358 +0.0004 24.2758 24.2742 +0.0066
20 12.4340 12.4338 +0.0016 12.0487 12.0479 +0.0066
40 6.0640 6.0638 +0.0033 5.8629 5.8625 +0.0068
60 3.9009 3.9007 +0.0051 3.7610 3.7608 +0.0053
80 2.8089 2.8086 +0.0106 2.7010 2.7005 +0.0185

In the above table, the AMDM results are from the present method and the DQ results are those
reported by Ref. [5]. It can be seen that, for the taper parameter α up to 0.3, there is very little difference
in the two sets of results, but that for α = 0.4, the respective sets of results begin to vary with the
present natural frequencies calculated as being slightly higher. At this value of α, the height ratio of
the two ends of the arch is (1 + α)/(1− α) = 2.

.
3, which is a significant variation, and the results of

Table 1 indicate an increasing deviation between the two sets of results as α increases.
In Tables 2 and 3, the results calculated with the current method are compared with those

from Ref. [3] calculations for the nonrotating unsymmetrical arch for different slenderness ratios(
S =

(
Rθ0/

√
I0/A0

))
for the two sets of boundary conditions clamped-free and simple-free. For the

simple-free boundary conditions, the following are set for (29): kRL = ∞, kTL →∞, kRR = 0 and
kRT = 0. At up to two decimal places, the results are identical, but when the third and fourth decimal
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places are considered, there is at times a large variation. The variation between the two sets of results
gets larger with the higher modes and also generally as the slenderness ratio increases.

Table 2. The first four nondimensional natural frequencies (Ωn(i)) for a nonrotating arch (θ0 = 90◦)

against the slender ratio S =
(
Rθ0/

√
I0/A0

)
and under clamped-free boundary conditions.

S α = 0.2

AMDM DQ [3] Dev (%) AMDM DQ [3] Dev (%)

Ωn(1) Ωn(2)

10 1.0704 1.0705 −0.0093 2.2911 2.2905 0.0262
20 1.0718 1.0720 −0.0186 2.4867 2.4854 0.0523
40 1.0722 1.0724 −0.0186 2.5228 2.5220 0.0317

100 1.0723 1.0725 −0.0186 2.5321 2.5311 0.0395
200 1.0724 1.0725 −0.0093 2.5334 2.5323 0.0434
400 1.0724 1.0725 −0.0093 2.5340 2.5327 0.0513
1000 1.0724 1.0725 −0.0093 2.5341 2.5328 0.0513
4000 1.0724 1.0725 −0.0093 2.5341 2.5328 0.0513

Ωn(3) Ωn(4)

10 3.0401 3.0399 0.0066 4.3598 4.3602 −0.0092
20 3.8912 3.8907 0.0129 4.8401 4.8671 −0.5547
40 4.5823 4.5818 0.0109 5.7111 5.7200 −0.1556

100 4.6669 4.6660 0.0193 6.7050 6.7160 −0.1638
200 4.6739 4.6736 0.0064 6.7398 6.7427 −0.0430
400 4.6757 4.6754 0.0064 6.7401 6.7454 −0.0786
1000 4.6758 4.6756 0.0043 6.7456 6.7489 −0.0488
4000 4.6758 4.6760 −0.0043 6.7467 6.7491 −0.0356

α = 0.4

Ωn(1) Ωn(2)

10 0.9102 0.9100 0.0220 2.1468 2.1464 0.0186
20 0.9111 0.9109 0.0219 2.3069 2.3065 0.0173
40 0.9113 0.9111 0.0219 2.3391 2.3385 0.0256

100 0.9114 0.9112 0.0219 2.3476 2.3467 0.0384
200 0.9114 0.9112 0.0219 2.3483 2.3478 0.0213
400 0.9114 0.9112 0.0219 2.3483 2.3481 0.0085
1000 0.9114 0.9112 0.0219 2.3483 2.3481 0.0085
4000 0.9114 0.9112 0.0219 2.3483 2.3481 0.0085

Ωn(3) Ωn(4)

10 2.9215 2.9211 0.0137 4.3236 4.3228 0.0185
20 3.7675 3.7669 0.0159 4.7479 4.7467 0.0253
40 4.4269 4.4262 0.0158 5.5915 5.5908 0.0125

100 4.5160 4.5153 0.0155 6.5627 6.5618 0.0137
200 4.5243 4.5237 0.0133 6.5904 6.5899 0.0076
400 4.5269 4.5256 0.0287 6.5981 6.5951 0.0455
1000 4.5278 4.5261 0.0376 6.5989 6.5964 0.0380
4000 4.5283 4.5263 0.0442 6.5992 6.5967 0.0379

A typical convergence of the AMDM is shown in Figure 4 for the first two natural frequencies.
The case that is shown is for θ0 = 60◦ and α = 0.3. Acceptable results can be seen with Ωn(1) converging
after about 40 iterations and Ωn(2) after about 60 iterations. Generally, it was found that for higher
modes more iterations were necessary.
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Table 3. The first four nondimensional natural frequencies (Ωn(i)) for a nonrotating arch (θ0 = 90◦)

against the slender ratio S =
(
Rθ0/

√
I0/A0

)
and under simple-free boundary conditions.

S α = 0.2

AMDM DQ [3] Dev (%) AMDM DQ [3] Dev (%)

Ωn(1) Ωn(2)

10 2.0366 2.0368 −0.0098 2.9081 2.9076 0.0172
20 2.0905 2.0907 −0.0096 3.8750 3.8743 0.0180
40 2.1014 2.1016 −0.0095 4.1963 4.1956 0.0167

100 2.1045 2.1045 0 4.2241 4.2236 0.0118
200 2.1047 2.1049 −0.0095 4.2272 4.2266 0.0142
400 2.1049 2.1050 −0.0048 4.2278 4.2273 0.0118
1000 2.1049 2.1050 −0.0048 4.2279 4.2275 0.0095
4000 2.1049 2.1050 −0.0048 4.2279 4.2276 0.0071

Ωn(3) Ωn(4)

10 4.1621 4.1619 0.0048 4.6155 4.6160 −0.0108
20 4.4472 4.4466 0.0135 6.2216 6.2220 −0.0064
40 5.7189 5.7184 0.0087 6.4123 6.4127 −0.0062

100 6.2838 6.2832 0.0095 8.2643 8.2648 −0.0060
200 6.2935 6.2930 0.0079 8.3163 8.3169 −0.0072
400 6.2954 6.2950 0.0064 8.3218 8.3220 −0.0024
1000 6.2958 6.2955 0.0048 8.3230 8.3232 −0.0024
4000 6.2958 6.2956 0.0032 8.3232 8.3234 −00024

α = 0.4

Ωn(1) Ωn(2)

10 1.9122 1.9121 0.0052 2.8262 2.8258 0.0141
20 1.9645 1.9645 0 3.7478 3.7475 0.0080
40 1.9758 1.9757 0.0051 4.0866 4.0861 0.0122

100 1.9788 1.9786 0.0100 4.1211 4.1208 0.0073
200 1.9792 1.9791 0.0050 4.1251 4.1246 0.0121
400 1.9793 1.9792 0.0051 4.1257 4.1255 0.0048
1000 1.9793 1.9792 0.0051 4.1259 4.1258 0.0024
4000 1.9793 1.9792 0.0051 4.1259 4.1258 0.0024

Ωn(3) Ωn(4)

10 4.1111 4.1108 0.0073 4.5748 4.5746 0.0044
20 4.3849 4.3841 0.0182 6.1583 6.1585 −0.0032
40 5.5899 5.5894 0.0089 6.3112 6.3118 −0.0095

100 6.1674 6.1670 0.0065 8.1102 8.1100 0.0025
200 6.1791 6.1784 0.0113 8.1724 8.1728 −0.0049
400 6.1813 6.1807 0.0097 8.1793 8.1788 0.0061
1000 6.1820 6.1814 0.0097 8.1810 8.1802 0.0098
4000 6.1823 6.1815 0.0129 8.1812 8.1805 0.0086

4.2. Unsymmetrical Rotating Scimitar-Type Curved Beam

This section investigates the characteristics of a scimitar-type beam for different taper parameters
and rotating speeds. An analysis using the absolute error remainder function and maximal error
remainder [23,24] is also given in an effort to quantify the accuracy of the AMDM approach.

The results here are limited to a maximum of θ0 = 80◦ because the trends found with these lower
values of θ0 simply continued for higher values and because, secondly, values up to 80◦ constitute the
region of interest in this work, as eventually the calculations are to be used in the design of propeller
blades for prop-fan engines. For values above 80◦, it may well be that a sudden change in the beam
cross-section and/or material density, causing a discrete discontinuity in the beam parameters, may be
necessary for aerodynamic and acoustic reasons.
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The first and second natural frequencies, at different rotating speeds (λ2) and with different
taper parameter (α) and opening angle θ0 values, are shown on Figures 5 and 6. Generally, there is
a consistent rise in the natural frequency values with the rotation speed for all the taper parameters
and opening angles that are tested. For the first natural frequencies, it can be seen that, at θ0 = 40◦,
the increase when α = 0.4 is substantially greater than when α = 0.1. This pattern is repeated for
θ0 = 80◦. It can be also seen that the values for the first natural frequency increase at a faster rate with
the rotation speed for each equivalent value of α when the value of θ0 is greater.Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 15 of 20 
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Figure 6. The first three mode shape functions, with θ0 = 60◦, λ2 = 1.0 and α = 0.2.

For the second natural frequency, an increase with the rotation speed is again generally found.
In this case, the trend of an increase with the taper parameter is reversed in that for both θ0 = 40◦ and
θ0 = 60◦ the increase is much more substantial when α = 0.4 rather than α = 0.1. Additionally, for each
equivalent value of α, the increase in values when θ0 = 40◦ is greater when compared to θ0 = 80◦.

The first three mode shapes for θ0 = 60◦, λ2 = 1.0 and α = 0.2 are shown in Figure 6 using the
nondimensional form shown in (36). Variations of the first mode shape with the taper parameter and
with the opening angle are shown in Figure 7. The mode shape is shown to deepen as both α and
θ0 increase, as indicated by the arrows.Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 16 of 20 
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Figure 7. Variation of the first mode shape function, with λ2 = 1.0.

The effect that the variation of the hub radius parameter has on the first frequency parameter is
shown in Figure 8. It can be clearly seen that an increase in the hub offset has a considerable effect on
the first frequency, especially at higher rotation speed values. The first frequency generally increases
with the hub radius.

In this investigation, the accuracy of the present method is examined using the absolute error
remainder functions and the maximal error remainder parameters, as defined for the current model
(see (15)): ∣∣∣En(x)

∣∣∣ = ∣∣∣∣Lϕ[n]
i (x) + Rϕ[n]

i (x)
∣∣∣∣, (41)

MERn = max
0≤x≤1

∣∣∣ERn(x)
∣∣∣. (42)
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Here, L is an invertible operator, which is taken as the highest-order derivative, R is the remainder
of the linear operation of (15),

∣∣∣En(x)
∣∣∣ is plotted against x for each approximation of ϕ[n]

i and MERn

is plotted against the index n. One of the native commands in Mathematica [30] is used here,
i.e., NMaximize.

In Figure 9, it can be noted that the absolute error remainder values steadily decrease along
the length of the beam, with very little movement noted between n = 60 and n = 70. In Figure 10,
the maximal error remainder parameter MER70 is just above 10−4, and it is noted that between n = 40
and n = 70 the points indicate a reasonably linear decrease, indicating an approximately exponential
rate of convergence.
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5. Conclusions

The governing differential equation of motion for a scimitar-type rotating curved beam undergoing
free natural vibration and rotation was derived using the Euler−Bernoulli formulation, and subsequently
the Adomian modified decomposition technique was used for the resulting equation’s solution and
boundary conditions. The Adomian modified decomposition method proved to be a highly effective
and efficient method of obtaining the closed-form series solutions of the free vibrations of a rotating
scimitar-type beam with flexible ends. Once the coding was written for the governing equations and
boundary conditions, which were written compactly using coefficients which could be given zero
or infinity, it was relatively simply to change from one type of boundary condition to another. The ith
natural frequency and mode shape function can be derived using this method, and based on the current
work there is good reason to say that this method, though limited to one type of beam, gives similar
results for other, more complicated, schemes. Although not shown in this work, the possibility of
extending the AMDM to nonlinear equations is also very appealing.

Numerical results for the natural frequencies were obtained for both a nonrotating arch and
a rotating beam, with a good agreement found with the few solutions available in the literature.
Two decisive advantages in using the AMDM are its fast convergence rate to the solution and the high
degree of accuracy of the solution. The natural frequencies that are obtained are in good agreement
with the published results. Compared to the results of the generalized differential quadrature rule
used by several authors in the literature, the AMDM method was found to calculate the natural
frequencies of nonrotating beams at slightly higher values, although overall the percentage deviation
was very low for all results. In addition to the clamped-free boundary conditions that were suitable
for propeller investigations, some calculations were performed for simple-free boundary conditions.
Here, as with the clamped-free boundary conditions, the variation between the current and published
calculations gets higher with a higher mode and slenderness ratio.

There was a consistent rise in the natural frequency with the rotational speed for all the taper
parameters and opening angles that were tested, both for the first and second frequencies. Regarding the
mode shape, it was found to deepen as both the taper parameter and opening angle increased. The effect
of adding the hub radius to the governing equation was quite substantial, with a considerable effect
found on the profile of the first frequency.

Lastly, the accuracy of the present method was investigated using a novel method. The absolute
error remainder values steadily decreased along the length of the beam until almost reaching zero,
while the maximal error remainder parameter showed a fairly linear decrease, indicating an approximate
exponential rate of convergence.
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Appendix A

A flowchart (Figure A1) is provided here to help the reader follow the various steps involved
when using the Adomian modified decomposition method.
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